

Master's Thesis

Diversify or specialize: Disturbances influence trait evolution in *Pinus*

Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann

University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics

> Bianca Saladin October 2013

Front page: Forest of *Pinus taeda*, northern Florida, 1/2013

Table of content

<u>1</u>	TRONG PHYLOGENETIC SIGNAL IN PINE TRAITS	5
1.1	Abstract	5
1.2	INTRODUCTION	5
1.3	MATERIAL AND METHODS	8
1.3.1	PHYLOGENETIC INFERENCE	8
1.3.2	TRAIT DATA	9
1.3.3	Phylogenetic signal	9
1.4	RESULTS	11
1.4.1	PHYLOGENETIC INFERENCE	11
1.4.2	Phylogenetic signal	12
1.5	DISCUSSION	14
1.5.1	PHYLOGENETIC INFERENCE	14
1.5.2	Phylogenetic Signal	16
1.6	CONCLUSION	17
1.7	ACKNOWLEDGEMENTS	17
1.8	References	19
2	THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES	21
2.1	Abstract	21
2.2	INTRODUCTION	21
2.3	MATERIAL AND METHODS	24
2.3.1	PHYLOGENETIC INFERENCE	24
2.3.2	DIVERSIFICATION RATE	24
2.4	RESULTS	25
2.4.1	PHYLOGENETIC INFERENCE	25
2.4.2	DIVERSIFICATION RATE	25
2.5	DISCUSSION	29
2.5.1	DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS	29
2.5.2	DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS	30
2.5.3	CRITICAL EVALUATION OF THE ANALYSIS PATHWAY	33
2.5.4	PHYLOGENETIC INFERENCE	34
2.6	CONCLUSIONS AND OUTLOOK	34
2.7	ACKNOWLEDGEMENTS	35
2.8	References	36
<u>3</u>	SUPPLEMENTARY MATERIAL	39
3.1	S1 - ACCESSION NUMBERS OF GENE SEQUENCES	40
3.2	S2 - TRAIT DATABASE	44
3.3	S3 - SPECIES DISTRIBUTION MAPS	58
3.4	S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY	81
3.5	S5 - Phylogenetic signal of 19 bioclim variables	84
3.6	S6 – COMPLETE LIST OF REFERENCES	85

Introduction to the Master's thesis

The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework. I was particularly interested in studying the role of trait evolution shaping diversification.

Since tracing the evolution of traits only makes sense if the observed trait values correlate with the phylogenetic structure of the analyzed species I first worked out the basics acquired for comparative analyses in pines. Chapter 1 therefore deals with the construction of a pine phylogeny and assessing the degree of phylogenetic signal of various traits. Recently, there have been great advances in sequencing plastome genomes in pines, which I could make use of for inferring a phylogeny including all recognized pine species. Additionally, a wealth of information on pine traits is now available due to a tremendous amount of studies that focused on numerous features of pines ecology, biogeography, evolution, systematics or taxonomy. I compiled a single trait databases from various sources and publications and I analyzed their correlation with the phylogeny.

I was intrigued by the manifold evolutionary adaptations of pine species' life history characteristics to different fire regimes and therefore continued to focus on fire response traits. Chapter 2 presents my analyses on the impact of fire regimes on trait evolution and diversification in pines and provides fascinating insights into niche specialization and how these affect diversification.

Given the comprehensive data set compiled in my thesis, including numerous trait states, detailed distribution maps combined with the underlying niche parameters, and a comparably well-resolved and complete phylogeny, various comparative hypotheses in ecology and evolution could further be tested. The data set developed in this master's thesis can therefore also serve as a basis for teaching as well as for demonstration studies.

1 Strong phylogenetic signal in pine traits

1.1 Abstract

Evolutionary processes shape the currently observed, extant species distribution of pines, and their underlying niche and trait characteristics. Phylogenetic information is instrumental for analyzing the macroecological patterns, and more specifically, for studying the role of trait and niche evolution in *Pines* to better understand the emergence of these macroecological patterns. Several studies have analyzed trait evolution of single sections within the pine phylogeny, yet no study has conducted an extensive approach including all recognized pine species. Here, I built a phylogeny consisting of all known pine species based on eight plastome genes and compiled a data set consisting of different morphological, physiological trait and niche variables to test the degree to which each trait correlates with phylogeny. My results indicate that a comparatively well-resolved phylogeny can be inferred from using single plastome genes and presents a good basis for further phylogenetic comparative methods. Additionally, my analysis also point to the non-independency of observed trait values and niche variables due to shared evolutionary history. I found high phylogenetic signal for the majority of analyzed traits. Thus, I discuss the importance to implement phylogenetic information and phylogenetic comparative methods to assess hypotheses in macroecological studies in pines.

1.2 Introduction

There is clear evidence that the earth's climate will continue to warm over the next century (IPCC, 2007) and these environmental changes will have drastic effects on the distribution and diversity of contemporary organisms (Brown, 1995). There is a need to understand the general principles and the underlying natural processes that shape these patterns in order to make predictions of these effects on the conservation of biodiversity and on future macroecological patterns (Hernandez et al., 2013). Therefore, macroecological studies examine relationships between species and their environment across spatial gradients in order to explain statistical patterns of abundance, distribution and diversity (Brown, 1995). Such macroecological studies converge data of different disciplines (ecology, systematics, evolutionary biology, paleobiology and biogeography) to scope for generalizations, not only for large spatial scales but also for large time scales (Brown, 1995). But one has to be aware that macroecological patterns are not independent of the evolution of lineages involved in generating these patterns (Hernandez et al., 2013). Therefore, the insertion of evolutionary history into macroecological studies is essential, not only for inferring large time scales but also for considering the dependency of trait states (resulting from the evolutionarily relatedness of species). Phylogenies track the characteristics of different evolutionary processes that shape the trait distribution on contemporary species (Pagel, 1999). Hence, combining phylogenies with trait information (which is "comparative biology") serves to understand the evolutionary past and to learn how present patterns have emerged (Pagel, 1999). The methods of analyzing trait or niche relationships over phylogenies are referred to as "phylogenetic comparative methods", often simply termed "comparative methods". Furthermore, the inclusion of phylogenies in macroecological studies is increasingly feasible due to the newly emerging and advanced methods in genetic sequencing and the easy access of gen sequences, which are stored in GenBank (Benson *et al.*, 2007).

Since species and their corresponding traits are not independent due to their shared common ancestry, related species tend to resemble each other more than they would resemble if drawn at random from a phylogenetic tree. This trait similarity among related species is called "phylogenetic signal" (Blomberg & Garland, 2002). An important and basic step in comparative methods is to measure the phylogenetic signal of the traits under survey, because we only gain insight into trait evolution if these traits show an association with the phylogeny (Nunn, 2011). If, however, there are no phylogenetic signals in traits, it might be appropriate to examine variation among these traits without controlling for phylogeny (Nunn, 2011). For this reason it is a key step to test for phylogenetic signal prior to studies of character evolution (Thomson *et al.*, 2013). Further, if traits reveal high phylogenetic signal, it is possible to predict trait values of a species that lacks trait measurements simply based on the knowledge of the species' position on the tree. Additionally, we can trace back the evolutionary history of a trait that has phylogenetic signal through ancestral state reconstruction (Nunn, 2011).

The genus Pinus is an excellent study organism to address macroecological and evolutionary questions, since their evolutionary history ranges over 150 My, because Pinus and related genera are rich in fossil records, and because pines have successfully adapted to almost every forest habitat on the Northern Hemisphere (Klymiuk & Stockey, 2012; Parks, 2012). Furthermore, the distribution ranges of all species are mapped and available, the genus is rich in highly varying traits regarding e.g. seed, cone, needle or bark characteristics, and all species have many gene sequences deposited in GenBank (Benson et al., 2007). Pines have diversified into two major subgenera by the end of the Mesozoic: into Pinus subgenus Strobus (with one fibrovascular bundle per needle) and Pinus subgenus Pinus (with two fibrovascular bundles per needle) (Richardson, 2000). Basically, these two subgenera followed two different evolutionary strategies: (1) species of the subgenus Strobus mostly have adapted to a range of physiologically stressful sites that are e.g. low in nutrients or water availability, or are very cold; (2) species of the subgenus Pinus have often radiated into fire-prone environments (Keeley, 2012). The evolution of pines, the largest genus among all conifers, resulted in ca. 113 extant species (depending on taxonomic concept) that occupy very small to very large distribution ranges on dry to wet, warm to frozen, nutrition rich to extremely poor soils. In response to this wide range of different habitats, the genus has evolved many different trait states and adaptations. The underlying evolutionary pathway can be traced by analyzing the phylogeny of pines and their trait states. Unsurprisingly, there exists a range of studies conducted on the genus Pinus that give insight into their evolutionary history (Millar, 1998), morphology (Little & Critchfield, 1969), genetics (Gernandt et al., 2005; Parks, 2012), life history (Grotkopp *et al.*, 2002), or character evolution (He *et al.*, 2012). These studies have compiled and used many different traits that are now available for further comparative analyses.

Critchfield and Little (1969) first studied the morphology of pines and came up with a phylogeny based on truly morphological characters. Later, Grotkopp et al. (2004) constructed composite estimates of a *Pinus* phylogeny based on supertree methods and presented a more comprehensive tree but still only an approximation of a pine phylogeny. After the revolution of genetics and the availability of DNA sequences, Gernandt et al. (2005) published the first genus-wide molecular taxonomy of *Pinus*. Their study was based on two chloroplast genes (matK and rbcL), including over 2800 aligned base pairs from 101 species. They were able to clarify most of the broad relationships within Pinus. They presented a well-supported and generally accepted taxonomic framework consisting of two subgenera (Pinus and Strobus), four sections (sections Pinus and Trifoliae in subgenus Pinus, sections Parraya and Quinquefoliae in subgenus Strobus, and 11 subsections (in section Trifoliae: subsection Australes, Ponderosae and Contortae; in section Pinus: subsection Pinus and Pinaster; in section Quinquefoliae: subsection Strobus, Krempfianae and Gerardianae; in section Parraya: subsection Cembroides, Balfourianae and Nelsoniae) (Gernandt et al., 2005). However, they failed in resolving the most species-rich clades at lower taxonomic levels and ended with numerous unresolved relationships. Through the use of next-generation sequencing, Parks (2012) was able to include nearly complete plastome sequences for almost all recognized pine-species. With these improvements he could not only present a phylogeny with support for the previous known framework (Wang et al., 1999; Gernandt et al., 2005; Eckert & Hall, 2006), but also with the most highly supported (and better resolved) topology to date for the worlds pine species (Parks, 2012). Nevertheless, both studies failed to include all known pine species (Gernandt's phylogeny included 101 spp, Park's phylogeny covered 107 spp), and the placement of a number of species into subclades had low posterior probability support (e.g. P. latteri or P. merkusii).

By now, only comparably few studies that use phylogenetic comparative methods have been conducted on pines despite their numerous advantages and excellent data availability. In this study, I present a phylogeny with improved fossil calibration and complete sampling for almost all recognized species, compared to previous studies (Gernandt *et al.*, 2005; Parks, 2012). Specifically, I ask the following questions: (1) can a well-resolved and -supported phylogeny be built from a lower number of gene sequences as opposed to using the complete plastome genome; and (2) to what degree do pine traits and niche characteristics show phylogenetic signal due to their evolutionary history.

To answer these questions, I built a phylogeny based on the most resolving gene sequences as identified by Parks (2012), and I analyzed a wide range of traits for phylogenetic signal. Such an inference builds a pre-requisite for further studies of trait evolution in pines. From these results, I was

able to deduce hypotheses regarding the evolution of traits in *Pinus*. There exists no such comprehensive analysis over the whole genus *Pinus* until now.

1.3 Material and Methods

1.3.1 Phylogenetic inference

I constructed a phylogeny consisting of 113 Pinus species and 10 outgroup species (Picea sitchensis, Cathaya argyrophylla, Abies firma, Keteleeria davidiana, Larix occidentalis, Pseudotsuga menziesii, Nothotsuga longibracteata, Tsuga sieboldii, Cedrus deodara, Pseudolarix amabilis). To infer the phylogeny I compiled eight available plastid gene regions (matK, rbcL, trnV, ycf2, accD, rpl20, rpoB and *rpoC1*) by downloading their DNA sequences from GenBank (Benson et al., 2007). I primarily used the sequences uploaded by Parks (2012) if they have been available and complemented them by adding sequences of other studies (supplementary material S1). With these sequences I ran an automated alignment using MAFFT (Katoh et al., 2002), manually checked it and removed ambiguously aligned nucleotides using Gblocks with default settings (Talavera & Castresana, 2007). I combined the single sequences into a matrix of 123 species (including the 10 outgroup species) and 5402 nucleotides. To derive the phylogeny through Bayesian inference in BEAST (Drummond & Rambaut, 2007), I first constructed the required input-file by using BEAUti (Drummond & Rambaut, 2007) and integrated a starting tree generated by MrBayes (Ronquist et al., 2012). I used imodeltest2 (Guindon & Gascuel, 2003; Darriba et al., 2012) to statistically select the best-fit models of nucleotide substitution for each partition based on Akaike's information criterion (AIC). The phylogeny with branch lengths proportional to time was derived by fossil calibrations following Leslie et al. (2012): Fossil Picea burtonii (Klymiuk & Stockey, 2012) was set to a minimum age of 133 My representing the divergence of Picea-Cathaya. Fossil Larix altoborealis (Lepage & Basinger, 1991) was set to a minimum age of 41 My representing the Larix-Pseudotsuga divergence. Fossil Tsuga swedaea (Lepage, 2003) was set to a minimum age of 41 My representing the Tsuga-Nothotsuga divergence. Following Leslie et al. (2012) I used priors with a lognormal probability distribution where the minimum age was set by the age of the fossil constraint and 95% confidence intervals of the probability distribution extend 20 million years (my) earlier than this minimum age. I used these settings for all of these calibration nodes excluding the Tsuga divergence because their seed cones first occur in the Eocene, but there are reports of their distinctive pollen grains form the Late Cretaceous (Leslie *et al.*, 2012). Therefore I extended here the confidence intervals of the prior age distribution to 100 my years to include Late Cretaceous Tsuga-like pollen grains (Leslie et al., 2012). Contrary to Leslie et al. (2012) I chose to include Pinus hokkaidoensis (Stockey & Ueda, 1986) to date the divergence of *Pinus* subsection *Strobus* and *Pinus* subsection *Pinus* despite the uncertainty regarding their phylogenetic placement discussed in Leslie et. al (2012). I set a minimum age of 83 My and a 95% confidence interval of the probability distribution of 2 My (Willyard et al., 2007; Leslie et al., 2012). I applied an uncorrelated molecular clock with a lognormal prior. I ran three analyses independently in BEAST for 700x10⁶ generations each. I evaluated the MCMC diagnostics in Tracer (Drummond & Rambaut, 2007) and checked for convergence of the three runs and that all ESS parameter values exceeded 150. I removed the first 52'501 trees as the burn-in period and inferred a maximum credibility tree using TreeAnnotator (Drummond & Rambaut, 2007). For all further analyses with comparative methods, I randomly selected 100 independent trees with logCombiner (Drummond & Rambaut, 2007) and generated an R-object (R Development Core Team, 2013) with these 100 fully resolved dated trees, with and without the outgroup species.

1.3.2 Trait data

I assembled a trait dataset that is comprised of morphological-, physiological- and genomic characters (supplementary material S2), as well as range characteristics (supplementary material S3). States for these traits were collected primarily from the following literature: Critchfield and Little (1966), Wakamiya *et al.* (1993), Richardson (2000), Grotkopp *et al.* (2002), Businsky (2004), Earle (2007), Farjon (Farjon, 2008, 2010), Eckenwalder (2009), Proches *et al.* (2012), and Meier (2013). Additional literature was used to complement trait information of single species (see supplementary material S2). I added the climate data in the form of statistical descriptions (min, max, mean, median from the species' distribution ranges) of the 19 bioclim variables from the WorldClim database (Hijmans *et al.*, 2005) and in the form of four axes of a principal component analysis (PC1 - PC4) originating from the statistical summarizes the integer and continuous traits while table 2 lists the factorial traits of the database I have compiled from the literature.

The compilation of the various traits of *Pines* from published literature resulted in a database consisting of 53 traits (supplementary material S2). I categorized the traits into three different groups based on the completeness to cover all pine species (supplementary material S4). The first group (greenish, see S4) presents traits that are available for all species, the second group (orangey, S4) is available for most species except a few, and the third (blueish, S4) is available only for some species.

1.3.3 Phylogenetic signal

In order to address the question whether significant phylogenetic signal exists in my dataset, I calculated for each trait Pagel's lambda (Pagel, 1999) as a measure of phylogenetic signal. I chose this measure because it has been shown (Münkemüller *et al.*, 2012) to provide a better effect size measure than e.g. Blomberg's K (Blomberg *et al.*, 2003) or Moran's I (Gittleman & Kot, 1990). Additionally, I tested whether the calculated lambda value was significantly different from lambda equals zero (no phylogenetic signal). For the discrete traits I used the package geiger (Harmon *et al.*, 2008) and the "ARD" model (an all-rates-different model, where each rate is a unique parameter) and for the

Table 1: Statistical summary of all numerical traits used in the analysis of phylogenetic signal. Type indicates whether the information is stored as continuous or integer data type. NAs indicates for how many species the trait information is missing. Unit indicates the measurement unit, where missing values (-) stand for unitless indices. The explanation of the abbreviated trait names is given in supplementary material S2.

Trait	Туре	Min.	Median	Mean	Max.	NAs	Unit
PC1	num	-9.71	0.37	0.00	4.84	0	
PC2	num	-6.32	0.44	0.00	2.60	0	
PC3	num	-3.03	0.09	0.00	3.85	0	
PC4	num	-2.60	0.14	0.00	2.40	0	
LAR	num	35.2	65.6	64.96	90.2	84	cm2/g
Cluster	int	1	3	3.478	5	0	-
SLA	num	60.6	101.8	99.23	132.3	84	cm2/g
Stomata	int	1	1	1.257	2	0	-
LeafPers	num	1.80	3	4.274	32.5	5	years
LeafDentate	num	0.0	0.5	0.6701	1.0	16	-
LeafLen	num	2.63	11	12.519	31.25	0	cm
LeafWid	num	0.06	0.12	0.121	0.3	0	cm
LMR	num	0.53	0.672	0.6527	0.787	84	g/g
LeafRigid	num	0.0	1.0	0.7216	1.0	16	-
ConeWid	num	1.5	5.0	5.675	17.5	0	cm
ConeLen	num	3.25	7.5	9.398	40.0	0	cm
DBH	num	15.0	110	125.3	365.0	0	cm
Height	num	500	3000	3365	8000.0	0	cm
Serotinous	int	0	0	0.2035	1	0	-
BarkClass	int	1	3	2.23	3	0	-
GrassStage	int	0	0	0.1171	1	2	-
BranchShedding	int	0	1	0.5258	1	16	-
Bark	num	0.6	3.024	3.039	7.62	59	cm
SeedLen	num	0.35	0.65	0.8277	2.5	0	cm
ResproutCapacity	int	0	0	0.1441	1	2	-
RGR	num	12.8	32.3	31.97	47.4	84	g/g/d
RGRmax	num	21.6	49.7	49.5	75.0	88	g/g/d
SeedWid	num	0.2	0.5	0.5442	1.2	30	cm
SeedMass	num	3.5	35.1	132.89	1278	33	cm
Mastl	num	1.00	3.5	3.344	10.0	52	years
WingLen	num	0.0	1.55	1.363	3.125	0	cm
WingWid	num	0.0	0.6	0.5533	1.5	42	cm
BirdDisp	int	0	0	0.3274	1	0	-
WindDisp	int	0	1	0.7876	1	0	-
animalDisp	int	0	0	0.3363	1	0	-
RodentDisp	int	0	0	0.1062	1	0	-
RangeSize	num	1.0	81.0	275	6079	0	cm
Cvalue	num	20.0	24.02	25.04	31.76	95	-
GenomeSize	num	22.1	29.6	29.28	36.9	35	pg-
z.score	num	-18.0	1.5	0.5186	13.4	54	-
invasiveness	int	0	1	0.619	1	92	-
maxAge	num	80.0	500.0	816.2	5000.0	78	years
MinGenTime	num	3.0	10	12.46	40.0	50	years
minAgeSeed	num	1.0	2	1.706	3.0	62	years
NAR	num	0.36	0.56	0.55	0.76	84	g/cm2/d
Gravity	num	0.34	0.45	0.4402	0.57	84	12%MC
DriedWeight	num	25.0	34.0	33.54	44.0	85	kg/m3
Rupture	num	7800	11480	11362	16300	84	MPa
Hardness	num	380	660	645.5	1110	84	Ν
MeanSeedMass	num	3.6	31.0	136.2	960.0	84	-
Elastic	num	135000	1461000	1498966	2327000	84	GPa
Strength	num	4460	6030	6311	8470	84	MPa
Shrinkage	num	1.10	1.65	1.719	2.9	87	T/R

Table 2: Statistical summary of allfactorial traits used in the analysis ofphylogenetic signal. The numbersindicate how many species belong tothe respective trait factor.

	21
crown surface	7
surface	41
no	41
unknown	2
Dispersal	
wind	89
animal	38
rodent	12
bird	37
Continent	
East America	15
West America	55
East Eurasien	33
West Eurasien	11
Hardiness Zone	
Hardiness Zone	6
Hardiness Zone	6 2
Hardiness Zone 1 2 3	6 2 5
Hardiness Zone 1 2 3 4	6 2 5 3
Hardiness Zone 1 2 3 4 5	6 2 5 3 10
Hardiness Zone 1 2 3 4 5 6	6 2 5 3 10 7
Hardiness Zone 1 2 3 4 5 6 7	6 2 5 3 10 7 13
Hardiness Zone 1 2 3 4 5 6 7 8	6 2 5 3 10 7 13 33
Hardiness Zone 1 2 3 4 5 6 7 8 9	6 2 5 3 10 7 13 33 18
Hardiness Zone 1 2 3 4 5 6 7 8 9 10	6 2 5 3 10 7 13 33 18 14

continuous traits I used the package phytools (Revell, 2012). I ran the analyses for each trait over all 100 phylogenies to allow for assessing the uncertainty originating from using a specific phylogeny.

1.4 Results

1.4.1 Phylogenetic inference

The inferred, dated phylogeny traced the origin of the genus *Pinus* to 143 My (133 - 162 My; 95% highest posterior probability) in the late Jurassic and early Cretaceous, with a crown age at 86 My (84 - 86 My) when the *Pinus* subgenera *Pinus* and *Strobus* diverged (Fig 1.) in the late Cretaceous. The diversification of subgenus *Pinus* ended in a higher number of extant species (71 spp) than the diversification of subgenus *Strobus* (42 spp). Both subgenera consist mostly of species formed during recent radiations (fewer than 50 My, mostly around the last 20 to 5 My). The phylogeny was highly supported within most of these deeper nodes by having posterior probabilities >0.90 (generally, more than 50% of the nodes show posterior probabilities >0.90). At the crown node of genus *Pinus* and the two outgroup species *Picea* and *Cathaya* there was a lower posterior probability value (0.58). The classification of *P. krempfii* into the section *Quinquefoliae* was highly supported (posterior probability of 1), but it remains unsure if this species is more closely related to *Gerardianae* or to *Strobus*. At lower taxonomic levels I obtained low posterior probabilities in most subsections and slight differences in the positioning for single species as compared to previous studies. Overall, the classification of species to subgenera, sections and subsections highly agreed with previously developed pine phylogenies.

1.4.1.1 subgenus Pinus

Within section *Trifoliae* the subsections *Australes* and *Ponderosae* were not well resolved. The crown node was highly supported, but the younger the nodes, the less supported they were. For example within subsection *Ponderosae*, the clade consisting of *P. torreyana*, *P. coulteri*, *P. sabiniana* and *P. jeffreyi* had a crown node that was highly supported by a posterior probability value of one. However, these morphologically very closely related species showed very low support values (0.1 - 0.3) at individual nodes.

In section *Pinus* most of the deeper nodes showed lower support than in section *Trifoliae*, and this was true for both subsections (*Pinus* and *Pinaster*). In my phylogeny, *P. latteri* and *P. merkusii* were clearly sister to the other species in subsection *Pinus*, a placement that was controversial in previous phylogenies.

1.4.1.2 subgenus Strobus

Within subgenus *Strobus*, I obtained both, well supported and insufficiently resolved groups. Subsection *Gerardianae* was clearly classified as a monophyletic group (posterior probability of 1), consisting of the species *P. bungeana*, *P. gerardiana* and *P. squamata*. *P. krempfii* also was placed in this subsection, although with less clear support (posterior probability of 0.72). Subsection *Strobus*

was classified with high support (posterior probability of 1.0), but more than half of the species belonging to this group were not well resolved.

In the section *Parraya*, the subsection *Cembroides* was classified with strong support for monophyly, but most splits below the subsection level were not well supported except for the splits between few sister species. On the contrary the subsections *Balfourianae* and *Nelsoniae* consisting of the four species *P. aristata*, *P. balfouriana*, *P. longaeva* and *P. nelsonii* were all well resolved.

1.4.2 Phylogenetic signal

Figure 2 illustrates the phylogenetic signal of individual traits grouped by functional or morphological characters (climate preferences, leaf traits, cone morphology, tree size, fire adaptation, seed morphology, seed wing morphology, dispersal mode, range size, genome size, invasiveness, life history traits and wood specific traits). The traits are presented in three different colors based on the frequency of covering the 113 species of pines in my phylogeny (green if traits are available for all species, orange if traits are available for most species, and blue for traits I had available only for some species). Generally and consistently among all trait groups, I found strong phylogenetic signal and this signal was statistically significant for almost all traits (non-significant p-values for a trait are indicated by °°). I obtained remarkably high phylogenetic signal for genome size (*Genome*; $\lambda \approx 0.95$), stomata type (*Stoma*), cluster of needles (*Clust*), and seed length (*SLen*) (all: $\lambda > 0.8$). On the contrary, species' range size (*Range*), leaf rigidity (*LRig*), mast year interval (*MastI*), invasiveness (*Inva*), and net assimilation rate (*NAR*) showed no phylogenetic signal. The signal in fire resistance, tree height and wing length showed low phylogenetic, yet statistically significant signal.

Among the climate preferences I got high phylogenetic signal for hardiness zone and PC1-3 (λ >0.65) and a lower signal for PC4 (λ ≈0.5). Leaf characters also showed high λ -values for most traits, with all traits having λ >0.8, except leaf width (*LWid*, λ >0.6). In this group low (no) and non-significant values were only found for leaf rigidity (*LRig*, λ ≈0.0) and leaf mass ratio (LMR, λ ≈0.3). In addition to the first two groups, several other trait groups showed for the majority or for all traits high phylogenetic signal (λ >0.5): cone morphology, seed morphology, dispersal mode, and wood specific traits. Several trait groups showed highly variable or moderately high λ -values: tree size, fire adaptation, seed wing morphology, invasiveness, and life history traits.

I found no difference in phylogenetic signals when comparing the different levels of completeness in trait availability among species. However, most of the wood specific traits showed high phylogenetic signal ($\lambda > \approx 0.5$), while the most life history traits revealed rather average signal strength ($\lambda \approx 0.5$). Surprisingly, the two traits representing invasiveness showed highly opposing phylogenetic signal (*Inva*, $\lambda < 0.1$; *Z*, $\lambda > 0.7$). Similarly, the two traits indicating bark thickness showed differing results, depending on being classified (*BarkC*, $\lambda > 0.5$) or tested as continuous variable (*Bark*, $\lambda < 0.3$). All but one (*Rodent*, $\lambda < 0.1$) of the dispersal mode characters revealed high phylogenetic signal ($\lambda \approx 0.7$).

Figure 1. Maximum clade credibility tree of the genus Pinus. 95% credible intervals for age estimates are shown in blue. Black dots indicate nodes with posterior probabilities above 0.95 and red dots indicate nodes with posterior probabilities under 0.90. The numbers are given for nodes with posterior probabilities above 0.90.

The phylogenetic signals of the 19 bioclimatic variables are summarized in supplementary material S5.

Figure 2. Boxplots showing the phylogenetic signal strength (Pagel's lambda) for each trait from 100 independent phylogenies. The traits are grouped by morphology or physiology. Traits that are available for all species are given in green color, traits available for most species are given in orange color, and traits only available for few species are given in blue color. From left to right the following trait groups are mapped: (1) climate preferences (PC1-4: axes of principal component analysis, HZone: HardinessZone,), (2) leaf morphology (LAR: relative leaf production rate, Clust: Cluster of needles, SLA: specific leaf area, Stomat: Stomata type, LPers: leaf persistence, LDen: leaf dentate, LLen: leaf length, LWid. leaf length, LMR: leaf mass ratio, LRig: leaf rigid), (3) cone morphology (CWid: cone width, CLen: cone length), (4) tree size (DBH: diameter at breast height, Height: max. tree height), (5) fire adaptation (Serot: serotiny, BarkC: bark classified into 3 thickness groups, GrassSt: grass stage, BranchS: branchshedding, Bark: bark thickness, Respr: resprouting, FireRes: fire resistance), (6) seed morphology (SLen: seed length, RGR: seedling relative growth rate, RGRmax: max seedling relative growth rate, SWid: seed width, SMass: seed mass, MastI: mast year interval), (7) wing morphology (WLen: wing length, WWid: wing width), (8) dispersal mode (Bird: dispersal by birds, Wind: wind dispersal, Anim: dispersal by animals, Rodent: dispersal by rodents), (9) range size (Range: species range size), (10) genome size (Cval: c value, Genome: genome size), (11) invasiveness (Z: z-score measure of potential invasiveness, inva: species' invasiveness), (12) life history traits (MxAge: maximum age, MnGenT: minimum generation time, MnAgeS: minimum age at seed production, NAR: net assimilation rate), (13) wood specific traits (Gra: specific gravity, DWeight: average dried weight, Rup: modulus of rupture, Hardn: Janka hardness, Str: crushing strength, Shrink: shrinkage).

1.5 Discussion

1.5.1 Phylogenetic inference

The presented maximum credibility tree for *Pinus* is highly similar to previously published phylogenies of the genus *Pinus* (Gernandt *et al.*, 2005; He *et al.*, 2012; Parks, 2012) and is completely congruent with the broad classification into the major clades at the level of subgenera (*Strobus*, *Pinus*), of sections (*Pinus*, *Trifoliae* in subgenus *Pinus*, and *Parraya* and *Quinquefoliae* in subgenus *Strobus*), and of subsections (in *Pinus*: *Australes*, *Ponderosa*, *Contortae*, *Pinus* and *Pinaster*, in *Strobus*:

Strobus, Krempfianae, Gerardianae and Cembroides). Therefore, the built phylogenies in my study provide an admissible basis for the further comparative methods.

Despite the low posterior probability in the split of the genus *Pinus* from the two genera *Picea* and *Cathaya*, the here presented phylogeny is congruent with the ones of He *et al.* (2012) and Leslie *et al.* (2012), but not with the phylogeny of Parks (2012). This difference most likely originates from using fossil calibration in all studies except in the study of Parks (2012), who did not date his phylogeny. In the selection of fossils, I followed most closely Leslie *et al.* (2012), who argued very carefully with regards to the use of the various fossils. The placement of the fossil *Picea burtonii*, which I have also used, is most likely responsible for the positioning of the genera *Picea* and *Cathaya* in close proximity to the genus *Pinus*.

In general, all earlier published phylogenies found similar uncertainties with regards to the positioning of lower taxonomic levels (Gernandt *et al.*, 2005; He *et al.*, 2012; Parks, 2012). The uncertainty regarding the true evolutionary relationships of these species groups could be due to simultaneous speciation event in time, rapid radiations, and conservative genome evolution, which often leads to insufficient morphological or molecular support (limited sequence variation) for their true branching pattern. On the other hand, it could also be due to conflicting evolutionary histories of different genes, resulting in ambiguous nodes (Nunn, 2011; Parks, 2012). Maybe adding the ycf1 gene, which Parks (2012) identified as a highly informative gene for the *Pinus* phylogeny, would have improved the resolution of some of these lower taxonomic levels. Yet, I chose not to include it, because many nucleotides differed strongly among species, which can lead to uncertainties or conflicts in the positioning of individual species. Further, caution is advised as the ycf1 gene might be a target of positive selection and reveal adaptive incidents rather than neutral genealogies (Parks, 2012). Since my phylogeny is comparable to Parks' (2012) topology and resolution, I believe that including this gene sequence would not much improve the pine phylogeny.

The topology of my phylogeny resembles more closely the one by Parks (2012) than the one by Gernandt *et al.* (2005). This is surprising on the one hand because I only used eight plastome genes, which is more similar in numbers to Gernandt *et al.*'s (2005) phylogeny (*matK* and *rbcL*) than to Parks (2012) who used the whole plastome genome. On the other hand, I used specifically genes recommended by Parks (2012) since he found them to resolve the *Pinus* phylogeny well. Also, my methodology to develop the phylogeny was more similar to the one used by Parks (MAFFT-based alignment of gene sequences, Bayesian inference) than by Gernandt *et al.* (2005) (manual alignment of gene sequences, most parsimonious tree). Additionally, the resolution of my phylogenies lying between Gerndants *et al.*'s (2005) and Parks' (2012) phylogeny is consistent with the statement of Parks (2012) saying that an extended sequence-matrix leads to increased proportion of highly resolved nodes.

1.5.1.1 subgenus Pinus

In section *Trifoliae*, the topology of my phylogeny closely resembles the one found by Parks (Parks, 2012). In subsection *Ponderosae* my results show a similar classification of single species as in Parks' (2012) phylogeny. Also, in subsection *Ponderosae*, the clade consisting of *P. torreyana*, *P. coulteri*, *P. sabiniana* and *P. jeffreyi* reveal the same low resolution as in the phylogeny of Parks (2012). Yet, both my and Parks' (2012) phylogenies show strong support to separate these four morphologically similar species as a monophyletic group. Similar to Gernandt *et al.* (2009), *P. yecorensis* is classified close to *P. douglasiana*, but not in a group together with *P. maximinoi*. In my results, *P. maximinoi* diverge earlier than Gernandt *et al.* (2009) have proposed. This latter species is not included in Parks' phylogeny. In my phylogeny, the subsection *Contortae* in section (*Trifoliae*) results in a highly supported monophyletic group similar to Parks (2012). However, in his phylogeny, the relationship of *P. banksiana* could not be clearly defined, while in my phylogeny this species is clearly placed sister to *P. clausa*.

In my results, *P. latteri* and *P. merkusii* are clearly sister to the other species group of subsection *Pinus*, which is contrary to Parks (2012), where these species are sister to subsection *Pinaster*. Parks (2012) discussed that most studies based on (cone) morphology place these species within subsection *Pinaster* (e.g. Frankis, 1993), while most molecular studies place these species as sister to subsection *Pinus*, albeit typically based on low to moderate support. Interestingly, Parks' (Parks, 2012) placement of these species as sister to subsection *Pinaster* had low support (posterior probability of 0.52), whereas the placement of these species as sister to subsection *Pinus* in my results shows a high support (posterior probability of 1).

1.5.1.2 subgenus Strobus

The resolution within section *Parraya* is similarly resolved in my phylogeny as in the one from Parks (2012). It is primarily the subsections *Balfourinae* and *Nelsoniae* that are well resolved whereas most of the species within subsection *Cembroides* are not well resolved. However, in the phylogeny of Gernandt *et al.* (2005) the split of *P. nelsonii* and subsection *Balfourianae* was not well supported, whereas in subsection *Cembroides* the strength of resolution was similarly low.

1.5.2 Phylogenetic signal

Generally, most of the traits show high phylogenetic signal in *Pinus*, which implies that more closely related species show more similar trait states than species randomly drawn from the tree, as expected under a Brownian motion model of evolution. Traits with a lambda value close to one, as for example genome size, are consistent with Brownian motion model of evolution (Nunn, 2011). Yet, the phylogenetic signal only assesses a pattern rather than an underlying evolutionary process by which closely related species tend to resemble each other (Nunn, 2011). Therefore, one can only make

assumptions about the process leading to the observed pattern. For example genome size correlates with the phylogeny to a remarkably high degree. The underlying process of this pattern could be due to the different evolutionary pathway of genome size in the two subgenera. The assumed size of ancestral genome in the genus *Pinus* averages 32 pg and has decreased within the species of subgenus *Pinus*, whereas it remained stable or increased within subgenus *Strobus* (Grotkopp *et al.*, 2004). Different studies detected a strong correlation between genome size and seed mass (Grotkopp *et al.*, 2004; Beaulieu *et al.*, 2007) or genome size and frost resistance (Grime *et al.*, 1985; Macgillivray & Grime, 1995). In these analyses, the inclusion of phylogenetic relatedness was key to make correct interpretations of the statistical results. The same also holds for studies analyzing correlated evolution of stomata type, leaf length, seed length, cluster of needles and relative leaf reproduction rate in *Pines*, as these traits show all high phylogenetic signals.

Nevertheless, the analyses to test evolutionary relatedness in the different traits in pines reveal both, conservatism and lability. Traits with low or absent phylogenetic signal like SLA, range size, leaf rigidity or mast year interval for example, do not correlate with the phylogenetic structure and are therefore independent from one another and can be analyzed without accounting for the relationship of species. But caution must be taken by assuming no correlation between these traits and the phylogeny because the low phylogenetic signal could be due to strong stabilizing selection (Nunn, 2011).

1.6 Conclusion

I conclude that it is not necessary to assemble whole plastome genomes to infer reasonably wellresolved pine phylogenies for further phylogenetic comparative analyses in the genus *Pinus*. Because of recent divergence, rapid radiation, and hybridization, which might lead to incomplete lineage sorting, not all species may clearly be distinguished by phylogenetic reconstructions even when using whole plastome sequences. To account for the uncertainty of evolutionary relationships of some species groups, one has to conduct the analyses over numerous inferred phylogenies (obtained through Bayesian methods) instead of assuming and seek one single best phylogeny of pines.

Phylogenetic comparative methods are crucial for analyses of trait relationships in pines as most traits show medium to high phylogenetic signal.

1.7 Acknowledgements

I would like to thank the several persons for support with this part of my Master's thesis. First of all, I thank Dr. Niklaus E. Zimmermann for being such a dedicated and motivated supervisor and his constructive criticisms and help throughout the whole process. Further, I highly profited from continuous support by Dr. Raphael Wüest and Glenn Litsios, both for building the phylogeny and for carrying out the subsequent analyses. I am very grateful to Dr. Sebastien Lavergne for his uncomplicated support and many advices for carrying out different analyses. Furthermore, I would

like to thank Prof. Dr. Elena Conti for her continuous support and discussing ideas related to my thesis and to Dr. Achilleas Psomas for his patient support related to all R questions. Finally, I highly profited from numerous discussions and input to the analyses from Dr. Michael Nobis, Dr. Signe Normand, Dr. Christina Roquet Ruíz, and Dr. Juriaan de Vos.

1.8 References

- Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. (2007) Correlated evolution of genome size and seed mass. *New Phytologist*, **173**, 422-437.
- Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Wheeler, D.L. (2007) GenBank. *Nucleic Acids Res*, **35**, D21-D25.
- Blomberg, S.P. & Garland, T. (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. *Journal of Evolutionary Biology*, **15**, 899-910.
- Blomberg, S.P., Garland, T. & Ives, A.R. (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. *Evolution*, **57**, 717-745.
- Brown, J.H. (1995) Macroecology. The University of Chicago Press, Chicago.
- Businsky, R. (2004) A revision of the Asian Pinus subsetion Strobus (Pinaceae). Willdenowia, 34, 209-257.
- Critchfield, W.B. & Little, E.L. (1966) *Geographic distribution of the pines of the world*. Miscellaneous Publication 991, Washington, D.C.
- Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, **9**, 772-772.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. *Bmc Evolutionary Biology*, **7**, 1969-1973.

Earle, A.J. (2007) The Gymnosperm Database. Available at: <u>http://www.conifers.ch</u> (accessed 29.10.2013).

Eckenwalder, J.E. (2009) Conifers of the world: the complete reference. Timber Press, Inc.

Eckert, A.J. & Hall, B.D. (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. *Molecular Phylogenetics and Evolution*, **40**, 166-182.

Farjon, A. (2008) A natural history of conifers. Timber Press, Inc.

- Farjon, A. (2010) A Handbook of the World's Conifers. BRILL.
- Frankis, M.P. (1993) Morphology and affinities of *Pinus brutia*. *International symposium on Pinus brutia* (ed by, pp. 11-18. Ankara.
- Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. (2005) Phylogeny and classification of Pinus. *Taxon*, **54**, 29-42.
- Gernandt, D.S., Hernandez-Leon, S., Salgado-Hernandez, E. & de la Rosa, J.A.P. (2009) Phylogenetic Relationships of Pinus Subsection Ponderosae Inferred from Rapidly Evolving cpDNA Regions. *Systematic Botany*, **34**, 481-491.
- Gittleman, J.L. & Kot, M. (1990) Adaptation Statistics and a Null Model for Estimating Phylogenetic Effects. *Systematic Zoology*, **39**, 227-241.
- Grime, J.P., Shacklock, J.M.L. & Band, S.R. (1985) Nuclear-DNA Contents, Shoot Phenology and Species Co-Existence in a Limestone Grassland Community. *New Phytologist*, **100**, 435-445.
- Grotkopp, E., Rejmanek, M. & Rost, T.L. (2002) Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. *American Naturalist*, **159**, 396-419.
- Grotkopp, E., Rejmanek, M., Sanderson, M.J. & Rost, T.L. (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. *Evolution*, **58**, 1705-1729.
- Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic Biology*, **52**, 696-704.
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & Challenger, W. (2008) GEIGER: investigating evolutionary radiations. *Bioinformatics*, **24**, 129-131.
- He, T.H., Pausas, J.G., Belcher, C.M., Schwilk, D.W. & Lamont, B.B. (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. *New Phytologist*, **194**, 751-759.
- Hernandez, C.E., Rodriguez-Serrano, E., Avaria-Llautureo, J., Inostroza-Michael, O., Morales-Pallero, B., Boric-Bargetto, D., Canales-Aguirre, C.B., Marquet, P.A. & Meade, A. (2013) Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. *Methods in Ecology and Evolution*, **4**, 401-415.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25**, 1965-1978.

IPCC (2007) Climate Change 2007 - the physical science basis. Cambridge University Press, Cambridge.

- Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res*, **30**, 3059-3066.
- Keeley, J.E. (2012) Ecology and evolution of pine life histories. Annals of Forest Science, 69, 445-453.

- Klymiuk, A.A. & Stockey, R.A. (2012) A Lower Cretaceous (Valanginian) Seed Cone Provides the Earliest Fossil Record for Picea (Pinaceae). *American Journal of Botany*, **99**, 1069-1082.
- Lepage, B.A. (2003) A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. *Botanical Journal of the Linnean Society*, **141**, 257-296.
- Lepage, B.A. & Basinger, J.F. (1991) A New Species of Larix (Pinaceae) from the Early Tertiary of Axel-Heiberg Island, Arctic Canada. *Review of Palaeobotany and Palynology*, **70**, 89-111.
- Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. *Proceedings of the National Academy of Sciences of the United States of America*, **109**, 16217-16221.
- Little, E.L. & Critchfield, W.B. (1969) *Subdivisions of the genus Pinus (pines)*. USDA Forest Service, Washington D.C.
- Macgillivray, C.W. & Grime, J.P. (1995) Genome Size Predicts Frost-Resistance in British Herbaceous Plants -Implications for Rates of Vegetation Response to Global Warming. *Functional Ecology*, **9**, 320-325.
- Meier, E. (2013) The Wood Database. Available at: http://www.wood-database.com (accessed 29.10.2013).
- Millar, C.I. (1998) Early evolution of pines. *Ecology and Biogeography of Pinus* (ed. by D.M. Richardson), pp. 69 91. Cambridge University Press, Cambridge, UK.
- Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K. & Thuiller, W. (2012) How to measure and test phylogenetic signal. *Methods in Ecology and Evolution*, **3**, 743-756.
- Nunn, C.L. (2011) The Comparative Approach in Evolutionary Anthropology and Biology The University of Chicago Press, United States of America.
- Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
- Parks, M.B. (2012) Plastome Phylogenomics in the Genus Pinus Using Massively Parallel Sequencing Technology. Oregon State University, Oregon.
- Proches, S., Wilson, J.R.U., Richardson, D.M. & Rejmanek, M. (2012) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. *Global Ecology and Biogeography*, **21**, 513-523.
- R Development Core Team (2013) R: A language and Environment for Statistical Computing.
- Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution*, **3**, 217-223.
- Richardson, D.M. (2000) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. *Systematic Biology*, **61**, 539-542.
- Stockey, R.A. & Ueda, Y. (1986) Permineralized Pinaceous Leaves from the Upper Cretaceous of Hokkaido. *American Journal of Botany*, **73**, 1157-1162.
- Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Systematic Biology*, **56**, 564-577.
- Thomson, R.C., Glor, R.E. & Moore, B.R. (2013) *Workshop in Applied Phylogenetics*. Available at: <u>http://treethinkers.org</u> (accessed 29.10.2013).
- Wakamiya, I., Newton, R.J., Johnston, J.S. & Price, H.J. (1993) Genome Size and Environmental-Factors in the Genus Pinus. *American Journal of Botany*, **80**, 1235-1241.
- Wang, X.R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. & Szmidt, A.E. (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. *American Journal of Botany*, 86, 1742-1753.
- Willyard, A., Syring, J., Gernandt, D.S., Liston, A. & Cronn, R. (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for pinus (vol 24, pg 90, 2007). *Molecular Biology and Evolution*, 24, 620-620.

2 The role of fire in triggering diversification rates in pine species

2.1 Abstract

Plants have been exposed to fire throughout their whole evolutionary history and the role of fire in driving natural selection and therefore its effects on the evolution of adaptation strategies in fire-prone areas has been widely examined and confirmed. Plants have evolved a range of different strategies to successfully colonize fire-prone areas, which has resulted in different life histories. The role of the different strategies on plants' diversification rate has been assessed in several studies either at specific fire-prone sites or in global studies based on few species belonging to different taxonomic groups. However, the role of fire as a driver of diversification in plants stays controversial and remains to be elucidated. Therefore, I investigated in a globally and taxonomically comprehensive assessment using *Pinus* the impact of fire on diversification. I demonstrate that it is likely not only the change in life histories that influences diversification rates but rather the evolution of environmental specialization to tolerate fire regimes, the associated degree of pleiotropic investment costs and its effects on life histories. My results provide a basis for understanding the role of disturbances on species diversification rate linked to the degree of their environmental specialization and the associated costs.

2.2 Introduction

Wildfires frequently occur all over the globe and act as a major force in shaping ecosystems (Pausas & Keeley, 2009). The raise of fire as an important force on earth's ecosystems dates back to the late Devonian, from when the first charcoal records were found (Scott, 2000), or possibly even further back to the Silurian origin of land plants (Keeley *et al.*, 2011). During this long time interval, spanning over 400 Ma, changing oxygen levels in the atmosphere have influenced the fire intensity and frequency (Scott, 2000; He *et al.*, 2012). At the beginning (ca. 400 Ma before present), fires occurred at rather low intensity in the form of surface fires due to the low oxygen content of the atmosphere, burning primarily the smaller living plants, the litter and soil layers (Scott, 2000). However, during the Cretaceous (89 - 96 Ma BP), crown fires substituted these less severe fires by burning also the crowns of the living trees (Scott, 2000; He *et al.*, 2012). The intensity and frequency of these different fire severities (also named "fire regimes") do not only depend on the oxygen levels in the atmosphere but also on the climate (mostly precipitation and temperature) and fuel characteristics (Johnson, 2001).

There is clear evidence that ongoing climate change will increase fire activities in the future, in both intensity and frequency in many places on the globe (Marlon *et al.*, 2009). This likely has a strong impact on the earth's ecosystems, as fire plays an important role in shaping ecosystem patterns and processes (Bowman *et al.*, 2009). Fire disturbances are an integral part of many of the world's biomes

and might be at least as important as climate in controlling the global biome distribution (Bond *et al.*, 2005). For example, fire reduces biomass, maintains open vegetation where climate would favor forests (Bond & Keeley, 2005; Bond & Scott, 2010) and preserves the formation and function of fire-prone communities (Bond & Keeley, 2005).

Fire disturbance also acts as an evolutionary pressure and its important role in driving natural selection was shown at different spatial and temporal scales (Pausas & Verdu, 2005; Gomez-Gonzalez *et al.*, 2011; Pausas & Schwilk, 2012; Budde *et al.*, 2013). Differences in fire regimes tend to select different dominant plant traits whereas similar fire regimes tend to select similar dominant plant traits (Bond & Keeley, 2005). Generally for trees and forests, one distinguishes between surface fire regimes and crown fire regimes, which act as different selective forces on tree's trait evolution (He *et al.*, 2012). It is important to mention here that plants in general are rather adapted to these fire regimes (including fire frequency, fire intensity and patterns of fuel consumption) than to fire per se (Agee, 1998; Keeley *et al.*, 2011). The evolution of a fire response trait (often considered as "key innovation") enables species to occupy a new ecological zone and to diversify in the absence of competing taxa, a process in which extinction or speciation rates might trigger diversification in a clade that has evolved such traits (Heard & Hauser, 1995). However, such single evolutionary novelties are never by themselves the single cause for influencing evolutionary rates as evolution and selective pressures always arise in a broader context (Hunter, 1998). In fact, multiple underlying mechanisms of such novel innovations can be causally connected to diversification (Heard & Hauser, 1995).

There are two widely recognized strategies of species fire responses, which both allow for persistence after fire on the population level but results in contrasting population dynamics (Agee, 1998; Verdu et al., 2007; Segarra-Moragues & Ojeda, 2010). "Evaders" (also termed "reseeders") store seeds in either soil or canopy and release them after fire disturbance, which ensures their persistence in standreplacing sites through rapid post-fire recruitment (Agee, 1998; Richardson, 2000; Verdu & Pausas, 2007). The life expectancy of evader-species is short (Lamont & Wiens, 2003) caused by frequently returning fire intervals (Segarra-Moragues & Ojeda, 2010). Therefore, these species show early reproduction and release a huge amount of seeds (Verdu et al., 2007), which leads to frequent and high natural selection (Segarra-Moragues & Ojeda, 2010). "Resisters" (also termed "resprouters") persist in fire-disturbed area through protection of the meristem from heat damage or through resprouting after the disturbance (Richardson, 2000). Resister species gain a higher maximum age (Lamont & Wiens, 2003) and therefore their age at first reproduction is higher than that of evaders. The population turnover in evader-species is higher than in resisters, thus evader-species should undergo more molecular substitution rates per time than resisters and thus end in higher diversification rates (Barraclough & Savolainen, 2001; Verdu et al., 2007; Smith & Donoghue, 2008; Segarra-Moragues & Ojeda, 2010). This correlation was assessed in different studies and resulted in different conclusions. It has been shown several times that fire triggers consistently diversification in reseders (Ojeda, 1998; Verdu & Pausas, 2007; Segarra-Moragues & Ojeda, 2010), or at least partially (Litsios et al., 2013). Yet, other studies also showed that fire had no influence on the diversification rate (Verdu *et al.*, 2007). Concisely, the influence of fire regimes on diversification rates still remains controversial.

The genus *Pinus* has evolved during the lower Cretaceous (~150 Ma) and has adapted to many different habitats over the whole Northern hemisphere (Richardson, 2000). Therefore, pines are linked to fire throughout their whole evolutionary history. Pines have diversified into two subgenera by the end of the Mesozoic, namely: subgenus *Strobus* (with one fibrovascular bundle per needle) and subgenus *Pinus* (with two fibrovascular bundles per needle) (Richardson, 2000). The diversification in these two subgenera was shaped by their different evolutionary strategies. The subgenus *Strobus* has adapted to abiotically stressful environments, whereas subgenus *Pinus* has diversified into fire prone environments (Keeley, 2012). The divergent evolutionary history of these two subgenera resulted in different numbers of extant species. Subgenus *Strobus* is comprised of 42 species whereas subgenus *Pinus* consists of 71 extant species.

He et al. (2012) described five widely recognized functional traits in pines that are defined as fire response traits, and which are under strong genetic control and are supposed to represent key innovations in the evolution of pines: (1) thick barks have evolved in association with low-intensity surface fires and have allowed species to survive the heat of surface fires (but in fact also to other forms of abiotic stress); (2) serotiny in pines is defined as the retention of mature cones that only open and release seeds with high temperatures generated by fire, which is an adaptation to severe crown fires; (3) branch shedding means that species shed their lower branches once their foliage has burnt off. By this it limits the ability of surface fires to climb into the canopy and is therefore typically linked to surface or low-intensity crown fire adaptation; (4) grass stage (delayed trunk development) is an adaptation to surface fires where the needles protect the apex against fire heat, representing also a (very) low-intensity surface fire adaptation; (5) resprouting capacity is an adaptation to sites of low productivity and comparably high fire frequency, and allows to rapidly regenerate pines after fire damages. The adapative value of these fire response traits are widely accepted and no longer considered as exaptations (adaptive traits that originated in response to some other environmental factor, and then were appropriated for their value in fire-prone landscapes) (Keeley et al., 2011; Budde et al., 2013; Dantas & Pausas, 2013; Hernandez-Serrano et al., in press). To summarize, pines evolved to fire prone environments through either the evading-strategy (serotinous cones) or the resistingstrategy (thick bark, branch shedding, grass stage, resprouting).

Given the congruent spatial and temporal interaction of fire and pines, this genus is an ideal study system to assess the effect of fire response traits on diversification rates. In detail, I ask the following questions: (1) to what degree do fire response traits affect diversification rates (speciation, extinction or character state transition rates), (2) is there a difference in the diversification rate between resisters

that show adaptation to low-intensity fires (thick bark, branch shedding, resprouting and grass stage) compared to evaders that show adaptation to high-intensity crown-fires (serotinous cones). No study has yet analyzed such a large tree, and representing the largest genus among gymnosperms for trait evolution effects on diversification rates. To test these questions, I developed a phylogenetic tree using GenBank sequences for eight plastid gene regions, compiled and updated the trait data set of He *et al* (2012), and conducted comparative analyses over the whole pine genus and separately over the subgenus *Pinus* that radiated into fire prone areas.

2.3 Material and Methods

2.3.1 Phylogenetic inference

First, I downloaded eight available plastid gene regions (*matK*, *rbcL*, *trnV*, *ycf2*, *accD*, *rpl20*, *rpoB*, *rpoC1*) from GenBank (Benson *et al.*, 2007) for 113 *Pinus* species and 10 outgroup species (*Picea sitchensis*, *Cathaya argyrophylla*, *Abies firma*, *Keteleeria davidiana*, *Larix occidentalis*, *Pseudotsuga menziesii*, *Nothotsuga longibracteata*, *Tsuga sieboldii*, *Cedrus deodara*, *Pseudolarix amabilis* (see supplementray material S1 for accession numbers). I aligned these sequences by using MAFFT (Katoh *et al.*, 2002) and eliminated ambiguous alignments through Gblocks (Talavera & Castresana, 2007) with default settings. I inferred the phylogenetic relationships of the species in a Bayesian framework implemented in BEAST (Drummond & Rambaut, 2007). I ran four Markov Chain Monte Carlo analyses independently for 70x10⁷ generations, sampling phylogenies every 10³ steps. I checked the log-files of each run for convergence in Tracer (Drummond & Rambaut, 2007) and ensured that the effective sample size (ESS) of each parameter exceeded the value of 150. I excluded the first 25% of the trees as burn-in and randomly selected 100 dated trees using logCombiner (Drummond & Rambaut, 2007). The time calibrated trees were calculated following chapter 1 by including fossil calibration. To my knowledge, I sampled all known pine species. Therefore, the fully resolved and rooted phylogenies are assumed to include all extant species.

2.3.2 Diversification rate

I individually used the same five traits as He *et* al. (2012) and therefore compiled the following binary states for all 113 pine species: bark thickness >15 mm (yes/no), serotinous cones (yes/no), grass stage (yes/no), resprouting capacity (yes/no), and branch shedding (yes/no). The distribution of the five traits over the whole genus revealed that serotinous cones, grass stage and resprouting was only developed in species belonging to subspecies *Pinus*, whereas bark thickness and branch shedding was also developed in the subgenus *Strobus*. Therefore, I decided to run the following analyses over the whole phylogeny and separately for the subgenus *Pinus*, but not for the subgenus *Strobus* due to the absence of fire adaptation in this clade.

In order to detect asymmetrical rates of speciation, extinction, or character state change of each of the trait states, I used the BiSSE (Binary State Speciation and Extinction) (Maddison et al., 2007) approach as implemented in the R package diversitree (FitzJohn, 2012; R Development Core Team, 2013). This method simultaneously estimates based on likelihood method (ML) six parameters for each individual analysis, namely: (a) speciation rates (λ_0/λ_1) for each trait state, (b) extinction rate (μ_0/μ_1) for each trait state, and (c) transition rates (q_{01}/q_{10}) between states. Due to the data structure I used for the ML parameter estimation the "nlminb" optimization method for all traits except for resprouting (where I used the default settings). To take into account phylogenetic uncertainty I ran the analyses within a Bayesian framework for each tree of the entire subset of 100 ultrametric trees. I conducted the BiSSE analyses through Markov chain Monte Carlo (MCMC) simulation for 500 iterations using exponential priors for the rates over the whole phylogeny and separately for the subgenera Pinus. I determined the net diversification rate of each trait state by subtracting the specific extinction rate from the corresponding speciation rate. Further, I pooled the posterior distributions of all analyses that have been repeated over the 100 phylogenies and calculated from these pooled posteriors the 95% confidence interval to examine for overlap. Additionally, I tested for significance between the mean values of each of these pooled posterior distributions with a two-sided, unpaired ttest.

2.4 Results

2.4.1 Phylogenetic inference

The inferred phylogenetic trees showed comparable classifications to previous published phylogenies of pines (Gernandt *et al.*, 2005; Parks, 2012). The topology of the phylogenies were generally highly supported with the majority of nodes having posterior probabilities higher than 0.90. The nodes with low posterior probabilities were mostly found within recent speciation events, while the deeper nodes were better supported.

2.4.2 Diversification rate

2.4.2.1 genus Pinus

The probability densities to observe the inferred phylogenies with the existing trait distribution given the estimated values for the speciation-, extinction-, and diversification rate are illustrated in figure 1. Generally, I found significant differences in the estimated mean values of the density distributions of diversification rates when the analyses were conducted over the whole genus. Species with thick bark (average p-value for all 100 selected trees p<0.001, for difference in mean between thick/thin bark), branch shedding (p=0.002) or grass stage (p<0.001), all representing adaptations to low surface fires, showed significantly higher diversification rates than species without these adaptations. The higher

diversification rates could be traced to the significantly higher speciation rate in all three traits (bark: p=0.001, branch shedding: p=0.002, grass stage: p=0.008) and the comparatively smaller extinction rates (bark: p<0.001, branch shedding: p=0.138, grass stage: p<0.001), where branch shedding did not show significantly smaller rates. Contrarily, species with serotinous cones (p=0.008) or resprouting capacity (p=0.016) showed significantly lower diversification rates than species without these adaptations. The higher diversification rates resulted from the significantly lower speciation rates in both of these traits: serotiny (p=0.013) and resprouting (p=0.018). The extinction rate for species with serotinous cones was not significantly lower than for species without serotinous cones (p=0.07) whereas species with resprouting capacity had significantly higher extinction rates than species without resprouting capacity (p=0.001). However, despite partly showing clear differences between rates of different trait states and significant p-values of the means, none of these differences exceeded the 95% confidence intervals, which would indicate a clear evidence for difference in these rates (see Litsios *et al.*, 2013).

2.4.2.2 subgenus Pinus

Within the subgenus *Pinus* I found the same pattern as in the genus but with a more pronounced difference in diversification rates between trait states (Fig. 1). Species with a thick bark (p<0.001), branch shedding (p<0.001) showed significantly, or for grass stage (p=0.073) insignificantly, higher diversification rates than species with no adaptations to low surface fires on two of the three traits. I could trace this back to significantly higher speciation rates for fire-adapted species (while extinction rates did not differ clearly). I found an opposing pattern in pines that had evolved serotiny, which is an adaptation to severe crown fires. Species with serotinous cones diversified at significantly lower rates (p<0.001) than species with no serotinous cones. This difference in diversification among serotiny states could be traced back to significantly higher speciation rates of species without serotinous cones (p<0.001), while no significant difference was found in the posterior densities of the extinction rate among species with or without serotinous cones (p=0.09). Species with resprouting capacity, which is an adaptation to high surface fire frequency, tended to show a similar pattern as species with serotinous cones. Species with resprouting ability diversified at significantly slower rates than species with no resprouting capacity (p=0.016).

The transition rates between adapted and non-adapted states differed only significantly for grass stage (p<0.001, resprouting (p=0.003), and to a lesser extent in bark thickness <math>(p<0.001). The switch from species with grass stage to species without grass stage occurred at significantly higher rates than vice versa (p<0.001). A similar but weaker pattern was found for resprouting and bark thickness.

Again and similar to the analysis over the whole genus, despite the partly clear differences between rates of different trait states, none of these differences exceeded the 95% confidence intervals, which would indicate a clear evidence for difference in these rates (see Litsios *et al.*, 2013).

Bark thickness (>15mm) in genus *Pinus* bark < 15mm: **37**/113 bark > 15mm: **76**/113

Branch shedding in genus *Pinus* non branch shedding: **47**/113 branch shedding: **51**/113

Resprouting in genus Pinus non resprouting: 97/71 resprouting: 16/71

Bark thickness (>15mm) in genus *Pinus* bark < 15mm: 13/71

bark > 15mm: **58**/71

Branch shedding in subgenus *Pinus* non branch shedding: **22**/71 branch shedding: **43**/71

Resprouting in subgenus *Pinus* non resprouting: **55**/71 resprouting: **16**/71

Serotinous cones in genus Pinus non serotinous: 90/113 serotinous: 23/113

Serotinous cones in subgenus Pinus non serotinous: 48/71 23/71

serotinous:

Grass stage in subgenus Pinus no grass stage: 58/71 **13**/71 grass stage:

Figure 1: Posterior probability distributions for speciation- diversification- extinction- and transition rates for each analyzed fire response trait, from top to bottom: bark thickness, branch shedding, resprouting, serotinous cones and grass stage. Left panels show the posterior probability distribution for analyzes conducted over the whole genus Pinus and right panels show it for the subgenus Pinus. The numbers indicate the percentage of species representing the specific trait states. Blue colors indicate the non-adapted trait state (e.g. thin bark), while orange colors indicate the trait adaptation (e.g. thick bark). The thick lines represent the mean over all 100 trees, while the thin lines represent the probability distribution of each individual tree. The blue and orange bars below the probability distribution indicate the 95% credibility interval of the two respective distributions.

2.5 Discussion

2.5.1 Diversification rate in response to fire adaptations

In my study, I find clear differences in diversification rates in relation to the evolution of fire response traits, primarily in subgenus *Pinus*, and to a lesser extent in the analyses over the whole genus. This suggests that either these examined traits, other traits or characters evolved in parallel, or environmental gradients correlated to these traits have directly or indirectly influenced diversification rates, mainly through increased speciation rates. Previous studies that have analyzed the influence of evolving "evader" versus "resister" traits on diversification reveal conflicting results. In the genus *Erica* species that have evolved as evaders (seeders) show higher within-population genetic diversity and higher among-population differentiation, which is hypothesized to be the basis that leads to a higher speciation and diversification rate (Segarra-Moragues & Ojeda, 2010). Contrary, Verdu *et al.* (2007) show by comparisons of 45 phylogenetically paired congeneric taxa that the rate of molecular mutations within evaders is not higher than within resprouters, which is considered a resister trait. They conclude that seeders (evaders) do not diversify at higher rates than resprouters (resisters). Further, Litsios *et al.* (2013) demonstrate the importance of environmental heterogeneity for increased diversification.

In the subgenus Pinus, which has mainly adapted to a range of fire regimes (Keeley, 2012), I find phylogenetic evidences for higher diversification rates associated with traits indicating resister strategies (bark thickness, grass stage, branch shedding). This result supports the hypothesis that key innovations can trigger diversification rates (Heard & Hauser, 1995; Hunter, 1998). But interestingly, both serotiny and resprouting, other key innovations to adapt to fire-prone systems have an inverse effect on the diversification rate. Species with serotinous cones or resprouting capacity diversified at slightly lower rates than non-serotinous or non-resprouting species. Therefore, the general assumption of single novelties triggering diversification rate is not confirmed in the analysis of fire response traits in pines. Yet, key innovations do not directly influence evolutionary rates. Rather the underlying evolutionary mechanisms and demographic processes affect species diversification and one has to consider the broader context influencing evolutionary processes. Several previous studies show that evaders diversify at higher rates than resisters due to the context of divergent life history. Surprisingly, my results show ambiguous results, with three out of four resister traits having higher, and only one having slightly lower diversification rates than species without this adaptation. Furthermore, the only evader trait developed in pines (cone serotiny) shows lower diversification rates than species without this trait, which is again contrary to previously found results mainly in angiosperms. The hypothesis of the correlation between life history and diversification does not seem to hold for pines.

An explanation for the higher diversification rate of resisters than evaders could be that evaders represent a more specialized form of adaptation than the evolution of traits in response to low surface

fires. Resister populations persist recurring disturbances, therefore these species are forced to inhabit environments exhibiting a larger range of partly highly variable conditions (Litsios *et al.*, 2013), can rapidly adapt, and are less at risk to undergo extinction. On the contrary, evaders release after each fire disturbance, a huge amount of seeds from which only those germinate that are most suitable for the offered niche space. As a consequence, evaders may more likely be forced to specialize to particular environmental conditions and may thus be more prone to extinction if the environment undergoes huge changes, whereas resisters may have evolved more as generalists that can better survive considerable environmental changes (Litsios *et al.*, 2013; Ozinga *et al.*, 2013). The higher diversification rate of resisters would then be due to their lower extinction rate following environmental change, which is not the case in my study. The evolutionary extinction rates found in my study are not significantly different among trait types. Therefore, my results – despite following the general trend in overall diversification rates – are not in agreement with this hypothesis.

When comparing the results for the genus with those from the subgenus, we see a very similar, but statistically less significant pattern for each fire response trait. This might be due to the fact, that the fire response traits primarily were developed in the subgenus *Pinus*. The subgenus *Strobus* radiated rather into abiotic stressful sites, an effect which I did not analyze here. Therefore, the highest contrasts for developing these key innovations are visible within the *Pinus* subgenus. In subgenus *Strobus*, other adaptations have been developed that likely also influence diversification rates. Therefore, the signal can be expected to be weaker when comparing key innovations within subgenus *Pinus* against all other species of the whole genus.

2.5.2 Diversification rate in response to disturbance, stress and pleiotropic costs

The classification of the five fire response traits analyzed in these study into the two life history strategies "evader" and "resister" might not be the most suitable. In fact, I compare species that are adapted to fire-prone or low productive areas with non-adapted species inhabiting resource rich(er) and (more) productive sites where primarily competition for light is a limiting factor. This is a different approach of comparison than often considered in previous studies where the two life history strategies (evader and resister) are compared against each other within the same fire-prone area. Another possibility to classify and compare the influence of the development of fire response traits on diversification is to differentiate adaptation to varying disturbance intensities. In this case, serotiny and resprouting represent adaptations to severe disturbances and grass stage to very frequent disturbances. Serotinous cones represent an adaptation in response to severe crown fires, whereas resprouting ability is not only an adaptation to high frequency in surface fires, but allows to colonize sites with low productivity due to repeated droughts or with high grazing pressure, both representing severe (primarily frequent) disturbances. On the other hand, bark thickness and branch shedding stand for adaptations to low intensity and low frequency fires (low disturbances). My results indicate with two

out of three severe disturbance adaptations that species building adaptations to severe or frequent disturbance show a lower diversification rate due to a lower speciation rate than species without adaptations. On the contrary, species with adaptations to low disturbance reveal higher diversification rates due to higher speciation rates than non-adapted species.

This pattern perfectly aligns with the intermediate disturbance hypothesis (Connell, 1978), which has been postulated to also hold for speciation rates, as demonstrated by an experiment using an aquatic system (Kassen *et al.*, 2004). Moreover, Kassen and colleagues (2004) have hypothesized that this pattern also holds for abiotic stress, a fact that I did not test with my data, except that resprouting capacity is considered also an adaptation to low productivity (which stands for limitations in abiotic constraints, such as low nutrients, low water availability), and thick bark can also be considered to assist in resistance to drought. Figure 2 illustrates, how my results can be brought to a more general concept, building on Kassens' (2004) and my own results and ideas.

Figure 2. Model showing the course of diversification along an independent or simultaneously changing environmental gradient of resource availability and disturbances.

The combination of disturbance intensity/frequency gradients and abiotic stress gradients is well incorporated into the C-S-R plant strategy concept of Grime (1977), which is often also used to classify plants according to their tolerances of stress, disturbance and competition (representing the external factors limiting plants' biomass) in a triangular classification system (Figure 3). Kassen *et al.* (2004) found high diversification (resulting from rapid radiation) at intermediate rates of productivity and disturbance and decreasing diversity towards the extremes caused by pleiotropic fitness costs

associated with niche specialization. Therefore, they hypothesized that ecological gradients limit adaptive radiation (thus diversification).

Figure 3. The triangular illustration on the left side illustrates Grimes' (1977) model for the plant strategies describing the numerous equilibrium between competition, stress and disturbance in vegetation. "C" stands for a resource rich environment with light as the only limiting factor for species growth. "S" represents a shift to stressful and harsh habitats with low resource availability and "R" stands for increased disturbance in intensity and frequency. The right side illustration shows a hypothetical trend for diversification for the different environments and plant strategies.

Based on Grime's (1977) triangular classification plant's can evolve distinct life strategies based on the external factors limiting plant's biomass. They face an investment-allocation into competition (C), stress-tolerance (S) and ruderal (R) that stands for disturbances. In an optimal and productive environment with high resource availability and no disturbances (strategy "C" in Grime's model in figure 3), only competition (for light) is the limiting factor for species' biomass production. No other adaptations are necessary to compete well under these conditions. As the environment undergoes correlated or independent biotic or abiotic changes (indicated by the arrows from the "C-" to the "S-" and/or the "R-strategy" in figure 3), new ecological opportunities emerge, which leads to rapid radiation into newly available and unexploited niches. In this heterogeneous environment, divergent natural selection and high resource competition lead to high diversification (indicated by the orange shaded zone in figure 3). If the disturbances are more severe or if only very limited resources are available, species have to invest considerably into disturbance or stress avoidance, which leads to high pleiotropic fitness costs due to their specialization into specific niches that require a high degree of adaptation. Extreme disturbance and intense resource limitation leads to strongly diversifying selection favoring niche specialists that enable species to invade an otherwise unavailable habitat but at very high (pleiotropic) fitness costs. These adaptations might be so highly specialized that the diversification rate decreases due to detrimental effects on other important traits for fitness or traits involved in species' metabolic rates.

Therefore, and according to this new view, it is not the choice of the strategy (as evader or resister) that influences diversification. Rather, diversification is influenced by the capability of species to invade heterogeneous environments, and by the degree of specialization needed to adapt to biotically or abiotically disturbed habitats. The higher the degree of specialization, the higher are the pleiotropic investment costs leading to decreased diversification.

The here-proposed view relates to the often-used, classical productivity-diversity hypothesis (Grime, 1973; Almufti *et al.*, 1977; Tilman, 1982). This theory has raised controversy with regards to the shape of this relationship (Adler *et al.*, 2011), where some scientists have proposed a hump-shaped relationship with intermediate productivity relating to highest diversity values (e.g. Rosenzweig & Abramsky, 1993; Huston & Deangelis, 1994). However, some scientists have claimed that other shapes are also possible and have theoretical grounds (Abrams, 1995). My results indicate also that diversity peaks at intermediate, not maximal, resource availability. The results by Adler *et al.* (2011) also give support for this shape for at least some of their analyzed data series, but they also stress the fact that disturbance may play a role when such patterns are found.

2.5.3 Critical evaluation of the analysis pathway

The diversification rates of evader vs. resister traits contradict previous findings. This may indicate a different evolutionary pathway in pines, or it may point to other mechanisms or co-distributed traits or environmental variables that affect these evolutionary patterns (see FitzJohn, (2012). He warned of fallacies using the BiSSE analyses to assess the influence of single traits on diversification because the results can also be biased by a co-distributed trait over the phylogeny, which leads to the same observed patterns and therefore misleading conclusions. Some of the analyzed fire response traits could correlate with another, yet unassessed, trait responsible for changes in speciation rates. I therefore suggest that further studies should also assess trait syndromes (Verdu & Pausas, 2013) rather than only single traits. In doing so one could take into account not only the analyzed fire response traits as in this study, but also include maximum height, age to maturity, longevity and flammability (Budde *et al.*, 2013).

Overall, I assume that environmental variability is the main force influencing the observed diversification pattern in my study system, based on the above-described model and the results of Litsios *et al.* (2013). I therefore do not assume that a co-distributed trait influences the here observed differences in diversification rate. The influence of environmental gradients on diversification rate can be assessed by mapping climatic or ecological variables onto the phylogenies and to test for a possible correlation with each individual fire response trait or trait syndrome (Barraclough & Nee, 2001). A weakness of categorizing the individual traits or trait syndromes is the fact that it is based on subjective classifications. To overcome such problems of subjective choice, I suggest running the analyses for quantitatively measured traits in order to observe patterns of different effects of these traits on diversification rates. To test the hypothesis that diversification rate depends on the degree of resource limitation in a non-linear fashion, one might conduct the study on continuous traits, preferably on climate data representing stress tolerance (drought tolerance, cold tolerance etc.) using QuaSSE (FitzJohn, 2012). Therefore, this study should be extended to the second ecological stimulus (stress tolerance) of the subgenus *Strobus* by separating out the two main scenarios of ecological stimulus (fire and stress tolerance). One could also test the corresponding syndromes for their specific

influence on diversification. Because fire is an older stimulus, one would expect that fire has been a larger component of influencing diversification than stress tolerance.

Further, the here conducted analyses were based on insufficient iterations within the MCMC analyses and I did not sufficiently discard the burn-in period. This resulted in a (higher degree of) overlap of the credibility intervals of the poster densities, despite clear separation in speciation and diversification rates in many cases. Therefore, one needs to run further analyses for many more iterations in order to get an even more convincing result regarding the overlap and significance between trait states rate. Yet, given that the modes of the distributions do not overlap with the other distribution credibility interval, I can already claim that the found differences have a tendency to be higher or lower.

2.5.4 Phylogenetic inference

Barraclough and Nee (2001) stated two issues about using phylogenies for studying speciation. The first deals with the importance of accurate and complete sampling of species belonging to the group of interest. The second is about the status of species included in the phylogenies, which refers to that the number and identity of species depend on the judgment of the taxonomist who described them. The first issue is well covered in this study since I used a complete sampling of all described taxonomic species for the genus *Pinus*. The second issue might not be fully implemented as I simply assume that the single used sample of each taxonomic species does reflect an evolutionary entity. To avoid this fallacy, I could have used more than one sample for each species if it was available in GenBank. Further, the deeper nodes in the phylogenies are supported by high posterior probabilities, whereas the lower nodes showed partly low posterior probabilities. Due to these low posterior probabilities of some species groups I only can hypothesize that the taxonomically defined species in my study represents evolutionary units (Barraclough & Nee, 2001). I reduced all these phylogenetic uncertainties (both topology and branch lengths) by conducting the analyses over each of the 100 randomly sampled trees. Consequently, the inferred phylogenies seem to provide an admissible basis for the comparative analysis, and the ensemble approach of conducting all analyses over a sample of 100 random trees assures that the result is robust with regards to the uncertainties inherent in the developed pine phylogeny.

2.6 Conclusions and outlook

I conclude that fire response traits in pines do not trigger diversification rate simply by representing a key innovation. Rather, it seems to be the degree of environmental specialization required both for adapting to fire and to limited resource availability that affects diversification. My results provide strong support for the significance of biotic and abiotic stress in combination with disturbance rates in constraining diversification. I therefore propose to test the here found patterns by analyzing quantitative traits (using QuaSSE) and by combining these with analyses along disturbance gradients
(also using QuaSSE). If successful, it would allow contributing to the productivity-diversity hypothesis, specifically with regards to the nature of the shape of this relationship.

2.7 Acknowledgements

My special thank goes to Dr. Niklaus E. Zimmermann who has generously given time, advice, encouragement and lively discussions during the whole course of my Master's thesis and for carefully reviewing my scripts. I am particularly grateful to Prof. Dr. Elena Conti not only for accepting this topic, but also for her valuable guidance, feedbacks and supervision. My sincere thanks also goes to Dr. Sebastien Lavergne, Glenn Litsios and Dr. Rafael Wüest for their contribution of ideas, discussions, and prompt responding to technical challenges.

2.8 References

- Agee, J.K. (1998) Fire and pine ecosystems. *Ecology and Biogeography of Pinus* (ed. by D.M. Richardson), pp. 193 218. Cambridge University Press, Cambridge, UK.
- Barraclough, T.G. & Nee, S. (2001) Phylogenetics and speciation. Trends in Ecology & Evolution, 16, 391-399.
- Barraclough, T.G. & Savolainen, V. (2001) Evolutionary rates and species diversity in flowering plants. *Evolution*, **55**, 677-683.
- Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Wheeler, D.L. (2007) GenBank. *Nucleic Acids Res*, **35**, D21-D25.
- Bond, W.J. & Keeley, J.E. (2005) Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. *Trends in Ecology & Evolution*, **20**, 387-394.
- Bond, W.J. & Scott, A.C. (2010) Fire and the spread of flowering plants in the Cretaceous. *New Phytologist*, **188**, 1137-1150.
- Bond, W.J., Woodward, F.I. & Midgley, G.F. (2005) The global distribution of ecosystems in a world without fire. *New Phytologist*, **165**, 525-537.
- Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R. & Pyne, S.J. (2009) Fire in the Earth System. *Science*, **324**, 481-484.
- Budde, K.B., Heuertz, M., Hernandez-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdu, M. & Gonzalez-Martinez, S.C. (2013) In situ genetic association for serotiny, a fire-related trait, in Mediterranen maritime pine (*Pinus pinaster*). *New Phytologist*, in press.
- Connell, J.H. (1978) Diversity in Tropical Rain Forests and Coral Reefs High Diversity of Trees and Corals Is Maintained Only in a Non-Equilibrium State. *Science*, **199**, 1302-1310.
- Dantas, V.D. & Pausas, J.G. (2013) The lanky and the corky: fire-escape strategies in savanna woody species. *Journal of Ecology*, **101**, 1265-1272.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. *Bmc Evolutionary Biology*, **7**, 1969-1973.
- FitzJohn, R.G. (2012) Diversitree: comparative phylogenetic analyses of diversification in R. *Methods in Ecology and Evolution*, **3**, 1084-1092.
- Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. (2005) Phylogeny and classification of Pinus. *Taxon*, **54**, 29-42.
- Gomez-Gonzalez, S., Torres-Diaz, C., Bustos-Schindler, C. & Gianoli, E. (2011) Anthropogenic fire drives the evolution of seed traits. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 18743-18747.
- Grime, J.P. (1977) Evidence for Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. *American Naturalist*, **111**, 1169-1194.
- He, T.H., Pausas, J.G., Belcher, C.M., Schwilk, D.W. & Lamont, B.B. (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. *New Phytologist*, **194**, 751-759.
- Heard, S.B. & Hauser, D.L. (1995) Key evolutionary innovations and their ecological mechanisms. *Historical Biology*, **10**, 151-173.
- Hernandez-Serrano, A., Verdu, M., Gonzalez-Martinez, S.C. & Pausas, J.G. (in press) Fire structures pine serotiny at different scales. *American Journal of Botany*.
- Hunter, J.P. (1998) Key innovations and the ecology of macroevolution. Trends in Ecology & Evolution, 13, 31-36.
- Johnson, E.A. (2001) Forest fires behavior and ecological effects. Academic Press, San Diego.
- Kassen, R., Llewellyn, M. & Rainey, P.B. (2004) Ecological constraints on diversification in a model adaptive radiation. *Nature*, **431**, 984-988.
- Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res*, **30**, 3059-3066.
- Keeley, J.E. (2012) Ecology and evolution of pine life histories. Annals of Forest Science, 69, 445-453.
- Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J. & Bradstock, R.A. (2011) Fire as an evolutionary pressure shaping plant traits. *Trends in Plant Science*, **16**, 406-411.
- Lamont, B.B. & Wiens, D. (2003) Are seed set and speciation rates always low among species that resprout after fire, and why? *Evolutionary Ecology*, **17**, 277-292.
- Litsios, G., Wüest, R., Kostikova, A., Forest, F., Lexer, C., Linder, H.P., Pearman, P.B., Zimmermann, N.E. & Salamin, N. (2013) Effects of a fire response trait on diversification in replicated radiations. *Evolution*, <u>in</u> <u>press</u>.

- Maddison, W.P., Midford, P.E. & Otto, S.P. (2007) Estimating a binary character's effect on speciation and extinction. *Systematic Biology*, **56**, 701-710.
- Marlon, J.R., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F.S., Lavoie, M., Long, C., Minckley, T., Richard, P.J.H., Scott, A.C., Shafer, D.S., Tinner, W., Umbanhowar, C.E. & Whitlock, C. (2009) Wildfire responses to abrupt climate change in North America. *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 2519-2524.
- Ojeda, F. (1998) Biogeography of seeder and resprouter Erica species in the Cape Floristic Region Where are the resprouters? *Biological Journal of the Linnean Society*, **63**, 331-347.
- Ozinga, W.A., Colles, A., Bartish, I.V., Hennion, F., Hennekens, S.M., Pavoine, S., Poschlod, P., Hermant, M., Schaminee, J.H.J. & Prinzing, A. (2013) Specialists leave fewer descendants within a region than generalists. *Global Ecology and Biogeography*, **22**, 213-222.
- Parks, M.B. (2012) Plastome Phylogenomics in the Genus Pinus Using Massively Parallel Sequencing Technology. Oregon State University, Oregon.
- Pausas, J.G. & Verdu, M. (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. *Oikos*, **109**, 196-202.
- Pausas, J.G. & Keeley, J.E. (2009) A Burning Story: The Role of Fire in the History of Life. *Bioscience*, **59**, 593-601.
- Pausas, J.G. & Schwilk, D.W. (2012) Fire and plant evolution. In: *MEDECOS*, pp. 301-303. New Phytologist, Los Angeles, CA, USA.
- R Development Core Team (2013) R: A language and Environment for Statistical Computing.
- Richardson, D.M. (2000) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK.
- Scott, A.C. (2000) The Pre-Quaternary history of fire. *Palaeogeography Palaeoclimatology Palaeoecology*, **164**, 281-329.
- Segarra-Moragues, J.G. & Ojeda, F. (2010) Postfire Response and Genetic Diversity in Erica Coccinea: Connecting Population Dynamics and Diversification in a Biodiversity Hotspot. *Evolution*, **64**, 3511-3524.
- Smith, S.A. & Donoghue, M.J. (2008) Rates of molecular evolution are linked to life history in flowering plants. *Science*, **322**, 86-89.
- Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Systematic Biology*, **56**, 564-577.
- Verdu, M. & Pausas, J.G. (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. *Journal of Ecology*, **95**, 1316-1323.
- Verdu, M. & Pausas, J.G. (2013) Syndrome-Driven Diversification in a Mediterranean Ecosystem. *Evolution*, **67**, 1756-1766.
- Verdu, M., Pausas, J.G., Segarra-Moragues, J.G. & Ojeda, F. (2007) Burning phylogenies: Fire, molecular evolutionary rates, and diversification. *Evolution*, **61**, 2195-2204.

3 Supplementary material

- S1: Accession numbers of gene sequences
- S2: Trait Database
- S3: Distribution maps of Pinus species
- **S4**: Trait distribution over phylogeny
- S5: Phylogenetic signal of the 19 bioclimatic variables
- **S6**: Complete List of References

3.1 S1 - Accession numbers of gene sequences

species	Accession	Gene	Author
P. albicaulis	FJ899566	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. aristata	FJ899567	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnV,ycf2	(Parks <i>et al.,</i> 2009)
P. amamiana	JN854226	accD,matK,rbcL,rpl20,rpoC1,trnV,	(Parks <i>et al.,</i> 2012)
P. arizonica	JN854225	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnV	(Parks <i>et al.,</i> 2012)
P. armandii	FJ899568	accD,rbcL, rbcL,rpl20,rpoB,rpoC1,trnV	(Parks <i>et al.,</i> 2009)
P. armandii	AB161002	matK	(Gernandt <i>et al.,</i> 2005)
P. attenuata	FJ899569	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. ayacahuite	FJ899570	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. ayacahuite	AY497257	matK	(Gernandt <i>et al.,</i> 2005)
P. balfouriana	AY115799	matk	(Gernandt <i>et al.</i> , 2003)
P. balfouriana	AY115760	rDCL	(Gernandt <i>et dl.</i> , 2003)
P. baitouriana	AB019880	trnv	(Wang et al., 1999)
P. Danksiana	FJ899571 FF440517	accD,rbcL,rpoB,rpoCI,triv matK	(Parks et al., 2009) (Bouille et al. 2011)
P. bhutanica	DQ353719	rbcL	(Gernandt, 2007)
P. bhutanica	AY497262	matK	(Gernandt <i>et al.</i> , 2005)
P. brutia	JN854224	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. bungeana	JN854223	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. canariensis	FJ899572	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. canariensis	AB084494	matK	(Geada Lopez, 2002)
P. caribaea	JN854222	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. cembra	AB160985	matK	(Gernandt <i>et al.,</i> 2005)
P. cembra	FJ899574	accD,rbcL,rpl20,rpoB,rpoC1,trnv	(Parks <i>et al.,</i> 2009)
P. cembroides	JN854220	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. chiapensis	JN854219	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. clausa	JN854217	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. contorta	EU998740	accD,rbcL,rpl20,rpoB,rpoC1,trnv,	(Cronn <i>et al.</i> , 2008)
P. contorta	AY497266	matK	(Gernandt <i>et al.</i> , 2005)
P. cooperi	DQ353708	matK	(Gernandt, 2007)
P. cooperi	DQ353723	rbcL	(Gernandt, 2007)
P. coulteri	JN854215	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. cubensis	JN854214	accD, matk, rbcL, rpi20, rpoB, rpoC1, trnv, yct2	(Parks et al., 2012)
P. cultiliticola P. dalatonsis	JN054215	accD, matK, rbcL, rpi20, rpoB, rpoC1, trny, yci2	(Parks et al., 2012)
P densata	IN854211	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al., 2012)
P densiflora	IN85/210	accD matk rbcl_rpl20, p00, p00, p001, rnv, y012	(Parks et al. 2012)
P devoniana	IN854208	accD matK rbcl_rpl20,rpoB rpoC1 trpy vcf2	(Parks et al. 2012)
P. discolor	IN854207	accD matK rbcl rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al., 2012)
P. douglasiana	JN854205	accD.matK.rbcL.rpl20.rpoB.rpoC1.trnv.vcf2	(Parks <i>et al.</i> , 2012)
P. durangensis	AY497276	matK	(Gernandt et al., 2005)
P. durangensis	AY497240	rbcL	(Gernandt <i>et al.</i> , 2005)
P. durangensis	DQ159460	trnV	(Eckert & Hall, 2006)
P. echinata	JN854204	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. edulis	JN854203	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. elliottii	JN854202	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. engelmannii	JN854201	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. fenzeliana	JN854212	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. flexilis	FJ899576	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2009)
P. flexilis	AY497258	matk	(Gernandt et al., 2005)
P. Tragilissima	JN854200	accu,matk,rbcL,rpl20,rpoB,rpoC1,ycf2	(Parks <i>et al.</i> , 2012)
P. gerarulana	EU998/41	accD, matk rbcl, rpl20, rpoB, rpoC1, trnv, yct2	(Darks at al 2012)
P. gldDid	JN854199	accD, matk, rbcL, rpi20, rpoB, rpoC1, trny, ycf2	(Parks et al., 2012)
P halenensis	IN85/1197	accD matk rbcl rpl20, rpoB, rpoC1, trny, ycl2	(Parks et al., 2012)
P hartwegii	IN854206	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al. 2012)
P heldreichii	IN854195	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al. 2012)
P. herrerae	AB080943	matk	(Geada Lopez, 2003)
P. herrerae	AB063386	rbcL	(Geada Lopez <i>et al.</i> , 2001)
P. herrerae	AB063602	trnv	(Geada Lopez et al., 2001)
P. herrerae	AM883768	гроВ	(Cowan, 2008)
P. hwangshanensis	JN854194	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. jeffreyi	JN854193	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. johannis	JN854192	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. juarezensis	AY115742	rbcL	(Gernandt <i>et al.,</i> 2003)
P. juarezensis	AY115770	matK	(Gernandt <i>et al.,</i> 2003)
P. kesiya	JN854191	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. koraiensis	AY228468	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Noh <i>et al.,</i> 2007)
P. krempfii	EU998742	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Cronn <i>et al.,</i> 2008)

species	Accession	Gene	Author
P. lambertiana	EU998743	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Cronn <i>et al.,</i> 2008)
P. latteri	JN854190	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. lawsonii	JN854188	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. leiophylla	JN854218	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. longaeva	EU998744	matK,rbcL,rpl20,rpoB,rpoC1,trnv	(Cronn <i>et al.,</i> 2008)
P. luchuensis	AB097780	matK	(Geada Lopez & Harada, 2003)
P. luchuensis	AB097772	rbcL	(Geada Lopez & Harada, 2003)
P. lumboltzii	ABU97788	triv	(Geada Lopez & Harada, 2003)
P. IUIIIIIOIIZII P. maestrensis	110034100 AB080030	accD, matk, i bcc, i pi20, i p0B, i p0C1, yci2	(Farks et ul., 2012)
P. maestrensis	AB063371	rbcl	(Geada Lopez, 2003)
P. maestrensis	AB063587	trnV	(Geada Lopez, 2002)
P. massoniana	JN854185	accD.matK.rbcL.rpl20.rpoB.rpoC1.trnv.vcf2	(Parks <i>et al.</i> , 2012)
P. nelsonii	EU998746	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Cronn <i>et al.</i> , 2008)
P. nigra	JN854179	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. occidentalis	JN854177	accD,matK,rbcL,rpl20,rpoB,rpoC1,ycf2	(Parks et al., 2012)
P. oocarpa	AB081084	matK	(Geada Lopez, 2003)
P. oocarpa	DQ353726	rbcL	(Gernandt, 2007)
P. oocarpa	AM883774	rpoB	(Cowan, 2008)
P. oocarpa	AB063598	trnv	(Geada Lopez <i>et al.</i> , 2001)
P. palustris	JN854176	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. parviflora	FJ899581	matK,rpl20,rpoB,rpoC1.ycf2	(Parks <i>et al.</i> , 2009)
P. parviflora	EU269033		(Gernandt, 2008)
P. patula	JN854175	accD,matk,rbcL,rpi20,rpoB,rpoC1,trnv,yct2	(Parks et al., 2012)
P. peuce	FJ899582	acco,rocc,rpizo,rpob,rpoc1,triv,yciz	(Parks et al., 2009)
P. peuce P. pipastor	E1000502	accD matk rbcl rpl20 rpoP rpoC1 trpy vcf2	(Barks at al. 2009)
	IN85/117/	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al. 2009)
P ninea	IN854174	accD matK rbcl_rpl20,rpoB,rpoC1,trnv,ycl2	(Parks et al. 2012)
P. ponderosa	JN854172	accD.matK.rbcL.rpl20.rpoB.rpoC1.trnv.vcf2	(Parks et al., 2012)
P. praetermissa	DQ353711	matK	(Gernandt, 2007)
P. praetermissa	DQ353727	rbcL	(Gernandt, 2007)
P. pringlei	JN854189	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. pseudostrobus	JN854178	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. pumila	JN854168	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. pungens	JN854167	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. quadrifolia	JN854166	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. radiata	JN854165	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. remota	JN854164	accD,matK,rbcL,rpi20,rpoB,rpoC1,trnv,yct2	(Parks et al., 2012)
P. resinusa	FJ899550	accD, matk, rbcL, rpl20, rpoB, rpoC1, trnv, ycl2	(Parks et al., 2009)
P. rigiua P. roxhurghii	IN854162	accD matK rbcL rpl20 rpoB rpoC1 trpy vcf2	(Parks et al. 2012)
P rzędowskii	FI899557	accD matK rbcl rpl20, p00, p001, croß rpoC1 vcf2	(Parks et al. 2009)
P. sabiniana	IN854161	accD.matK.rbcl.rpl20.rpoB.rpoC1.trny.vcf2	(Parks et al., 2003)
P. serotina	JN854160	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. sibirica	FJ899558	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. squamata	FJ899559	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. strobiformis	JN854159	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. strobus	FJ899560	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2009)
P. sylvestris	JN854158	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. tabuliformis	AY555717	rbcL	(Song <i>et al.</i> , 2003)
P. tabuliformis	AB161015	matK	(Gernandt <i>et al.</i> , 2005)
P. tabuliformis	AIVI883727	гров	(Lowan, 2008)
P. tabuiiiorinis	AB019884	LIIV	(Wallg et al., 1999)
P. Laeua P. taiwanensis	IN854157	accD matK rbcL rpl20 rpoB rpoC1 trpy vcf2	(Parks et al., 2009) (Parks et al. 2012)
P teocote	ΔR097773	rhcl	(Geada Lonez & Harada 2003)
P. teocote	AB097789	trny	(Geada Lopez & Harada, 2003)
P. teocote	AB097783	matK	(Geada Lopez & Harada, 2003)
P. thunbergii	FJ899562	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. torreyana	FJ899564	accD,rbcL,rpl20,rpoB,rpoC1,trnv	(Parks et al., 2009)
P. torreyana	AY497273	matK	(Gernandt <i>et al.</i> , 2005)
P. tropicalis	JN854156	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. virginiana	JN854155	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. virginiana	AB080923	matK	(Geada Lopez, 2003)
P. wallichiana	JN854154	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. washoensis	DQ353706	matK	(Gernandt, 2007)
P. Washoensis	DQ353721	rbcL	(Germanot, 2007)
P vunnanensis	JIN654152	accD, matK, rbcL, rpl20, rpoB, rpoC1, trnv, ycf2	(Parks et al., 2012)
i yumunensis	11034131		(1 4113 CL 41., 2012)

species	Accession	Gene	Author
P. kwangtungensis	JN854153	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. lambertiana	EU998743	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Cronn <i>et al.</i> , 2008)
P. latteri	JN854190	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. lawsonii	JN854188	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. leiophylla	JN854218	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. longaeva	EU998744	matK,rbcL,rpl20,rpoB,rpoC1,trnv	(Cronn <i>et al.</i> , 2008)
P. luchuensis	AB097780	matk	(Geada Lopez & Harada, 2003)
P. luchuensis	ABU97772	rDCL trov	(Geada Lopez & Harada, 2003)
P lumholtzii	IN854186	accD matK rbcl_rpl20 rpoB rpoC1 vcf2	(Deathal Lopez & Halada, 2003) (Parks <i>et al.</i> 2012)
P. maestrensis	AB080939	matK	(Geada Lopez, 2003)
P. maestrensis	AB063371	rbcL	(Geada Lopez, 2002)
P. maestrensis	AB063587	trnV	(Geada Lopez, 2002)
P. massoniana	JN854185	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. nelsonii	EU998746	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Cronn <i>et al.,</i> 2008)
P. nigra	JN854179	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. occidentalis	JN854177	accD,matK,rbcL,rpl20,rpoB,rpoC1,ycf2	(Parks <i>et al.</i> , 2012)
P. oocarpa	AB081084	matK	(Geada Lopez, 2003)
P. oocarpa	DQ353726	rbcL	(Gernandt, 2007)
P. oocarpa	AIVI883774	rpoB	(Cowan, 2008) (Gooda Longz <i>et al.</i> 2001)
P nalustris	IN854176	accD matK rbcl_rpl20 rpoB rpoC1 trpy vcf2	(Deathall Lopez et al., 2001)
P. parviflora	FI899581	matK.rpl20.rpoB.rpoC1.vcf2	(Parks et al., 2009)
P. parviflora	EU269033	rbcL	(Gernandt. 2008)
P. patula	JN854175	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. peuce	FJ899582	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. peuce	AY497254	matK	(Gernandt et al., 2005)
P. pinaster	FJ899583	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2009)
P. pinceana	JN854174	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. pinea	JN854173	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. ponderosa	JN854172	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. praetermissa	DQ353711	matk	(Gernandt, 2007)
P. praetermissa	DQ353727	FDCL	(Gernandt, 2007)
P nseudostrobus	IN854178	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al. 2012)
P. pumila	JN854168	accD.matK.rbcL.rpl20.rpoB.rpoC1.trnv.vcf2	(Parks et al., 2012)
P. pungens	JN854167	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. quadrifolia	JN854166	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. radiata	JN854165	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. remota	JN854164	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.,</i> 2012)
P. resinosa	FJ899556	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. rigida	JN854163	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. roxburghii	JN854162	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. rzedowskii	FJ899557	accD, matK, rbcL, rpi20, rpoB, rpoC1, yct2	(Parks et al., 2009)
P serotina	IN854160	accD matK rbcl rpl20, rpoB rpoC1, trny, ycf2	(Parks et al. 2012)
P. sibirica	FI899558	accD matK rbcL rpl20, rpoB, rpoC1, trny, ycf2	(Parks et al., 2009)
P. sguamata	FJ899559	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2009)
P. strobiformis	JN854159	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. strobus	FJ899560	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. sylvestris	JN854158	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. tabuliformis	AY555717	rbcL	(Song <i>et al.</i> , 2003)
P. tabuliformis	AB161015	matK	(Gernandt <i>et al.</i> , 2005)
P. tabuliformis	AM883727	rpoB	(Cowan, 2008)
P. tabuinormis	AB019884	LIIV	(Wallg <i>et al.</i> , 1999)
P taiwanensis	IN854157	accD matK rbcl rpl20, rpoB rpoC1, trny, ycf2	(Parks et al. 2009)
P. teocote	AB097773	rhcl	(Geada Lopez & Harada, 2003)
P. teocote	AB097789	trny	(Geada Lopez & Harada, 2003)
P. teocote	AB097783	matK	(Geada Lopez & Harada, 2003)
P. thunbergii	FJ899562	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
P. torreyana	FJ899564	accD,rbcL,rpl20,rpoB,rpoC1,trnv	(Parks <i>et al.,</i> 2009)
P. torreyana	AY497273	matK	(Gernandt <i>et al.,</i> 2005)
P. tropicalis	JN854156	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
P. virginiana	JN854155	accD,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)
P. virginiana	AB080923	matk	(Geada Lopez, 2003)
r. wallichiana	JIN854154	accu, matk, ruct, rpi20, rpo8, rpoC1, trnv, yct2	(Faiks et ul., 2012) (Corpordt 2007)
P washoensis	DQ353700	matk	(Gernandt 2007)
P. vecorensis	JN854152	accD.matK.rbcL.rpl20.rpoB.rpoC1.trpy.vcf2	(Parks et al., 2012)
P. yunnanensis	JN854151	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks <i>et al.</i> , 2012)

species	Accession	Gene	Author
Abies firma	JQ512507	rbcL	(Shin & Kim, 2012)
Abies firma	FJ899565	matK,rpoB,rpoC1,ycf2	(Parks et al., 2009)
Cathaya argyrophylla	AB547400	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Lin <i>et al.,</i> 2010)
Cedrus deodora	AB480043	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Lin <i>et al.,</i> 2010)
Keteleeria davidiana	AP010820	accD,matK,rbcL,rpl20,rpoB,rpoC1,ycf2	(Wu et al., 2009)
Larix occidentalis	FJ899578	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2009)
Nothotsuga	AF145459	rbcL	(Wang & Sang, 1999)
Nothotsuga	AF143437	matK	(Wang & Sang, 1999)
Picea sitchensis	EU998739	accD,matK,rbcL	(Cronn <i>et al.,</i> 2008)
Pseudolarix amabilis	AF143432	matK	(Wang et al., 2000)
Pseudolarix amabilis	AB019829	rbcL	(Wang <i>et al.,</i> 1999)
Pseudolarix amabilis	AB019903	trnv	(Wang <i>et al.,</i> 1999)
Pseudotsuga menziesii	JN854170	accD,matK,rbcL,rpl20,rpoB,rpoC1,trnv,ycf2	(Parks et al., 2012)
Tsuga sieboldii	JQ512629	rbcL	(Shin & Kim, 2012)
Tsuga sieboldii	JQ512505	matK	(Shin & Kim, 2012)

References

- Bouille, M., Senneville, S. & Bousquet, J. (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. *Tree Genetics & Genomes*, **7**, 469-484.
- Cowan, R. (2008) DNA Barcoding of Land Plants. unpublished.
- Cronn, R., Liston, A., Parks, M., Gernandt, D.S., Shen, R. & Mockler, T. (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. *Nucleic Acids Research*, **36**
- Eckert, A.J. & Hall, B.D. (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. *Molecular Phylogenetics and Evolution*, **40**, 166-182.
- Geada Lopez, G. (2002) Phylogeny of Diploxylon Pinus. unpublished.
- Geada Lopez, G. (2003) Phylogeny of the Norh American Pines. unpublished.
- Geada Lopez, G. & Harada, K. (2003) Evolutionary Relationships in Pines. unpublished.
- Geada Lopez, G., Kamiya, K. & Harada, K. (2001) Phylogenetic relationships of Diploxylon pines based on plastid sequence data. *unpublished*.
- Gernandt, D.S. (2007) Absolute age estimates for Pinus and Pinaceae. unpublished.
- Gernandt, D.S. (2008) Pinus Phylogeny. unpublished.
- Gernandt, D.S., Liston, A. & Pinero, D. (2003) Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. *Systematic Botany*, **28**, 657-673.
- Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. (2005) Phylogeny and classification of Pinus. *Taxon*, **54**, 29-42.
- Lin, C.P., Huang, J.P., Wu, C.S., Hsu, C.Y. & Chaw, S.M. (2010) Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. *Genome Biology and Evolution*, **2**, 504-517.
- Noh, E.W., Lee, J.S., Choi, Y.I., Han, M.S., Yi, Y.S. & Han, S.U. (2007) direct submission. *Biotechnology Division, Korea Forest Research Institute.*
- Parks, M., Cronn, R. & Liston, A. (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. *BMC Biology*, **7**, 84, doi: 10.1186/1741-7007-7-84.
- Parks, M., Cronn, R. & Liston, A. (2012) Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). *BMC Evolutionary Biology*, **12**, 100, doi: 10.1186/1471-2148-12-100.
- Shin, H.W. & Kim, K.J. (2012) direct submission. School of life sciences and biotechnology, Korea University.
- Song, B.H., Wang, X.Q., Wang, X.R., Ding, K.Y. & Hong, D.Y. (2003) Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. *Molecular Ecology*, **12**, 2995-3001.
- Wang, X.Q. & Sang, T. (1999) The re-evaluation of the systematic positions of Nothotsuga and Hesperopeuce. *unpublished.*
- Wang, X.Q., Tank, D.C. & Sang, T. (2000) Phylogeny and divergence times in Pinaceae: Evidence from three genomes. *Molecular Biology and Evolution*, **17**, 773-781.
- Wang, X.R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. & Szmidt, A.E. (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany, 86, 1742-1753.
- Wu, C.S., Lai, Y.T., Lin, C.P., Wang, Y.N. & Chaw, S.M. (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: Selection toward a lower-cost strategy. *Molecular Phylogenetics and Evolution*, **52**, 115-124.

3.2 S2 - Trait database

		clim	ate variables	tre	e characteris	tics		
Species	PC1	PC2	PC3	PC4	HZone	Range	DBH	Height
Pinus_albicaulis	-4.96	-0.34	-0.20	-2.02	2	394	200	2050
Pinus_aristata	3.11	-6.12	1.12	0.06	3	65	120	2000
Pinus_amamiana	-4.06	1.02	-0.89	0.66	9	2	200	3000
Pinus_arizonica	0.46	2.19	-0.23	1.45	8	90	120	3550
Pinus_armandii	-0.52	0.00	2.36	0.11	7	286	150	4250
Pinus_attenuata	-1.05	0.56	-1.13	-2.15	7	57	80	3000
Pinus_ayacahuite	3.19	1.74	1.03	-0.29	7	62	200	5000
Pinus_balfouriana	-1.95	0.91	-1.11	-1.91	5	10	255	2350
Pinus_banksiana	-6.76	-1.18	1.91	1.30	2	2102	80	2700
Pinus_bhutanica	-0.80	0.04	3.72	-1.14	9	40	65	2500
Pinus_brutia	-1.43	0.48	-1.52	-1.30	7	141	210	3000
Pinus_bungeana	-2.33	0.10	1.79	1.22	5	20	165	3000
Pinus_canariensis	0.24	1.85	-0.63	-2.32	9	1	225	4250
Pinus_caribaea	4.75	-1.27	-0.97	-0.65	10	81	100	4500
Pinus_cembra	-3.20	-2.83	0.86	-1.99	1	87	150	2500
Pinus_cemproides	0.24	2.31	-0.56	1.65	8	205	50	2250
Pinus_childpensis	4.12	0.57	0.40	-0.55	10	31	130	2100
Dinus contorta	2.0U 5 01	-1.94	-1.54	-0.02	י ד	45	200	2100
Pinus coneri	-3.21 N.& N	1 79	0.81	0.30	י ד	1555 27	200	3000
Pinus coulteri	-0.72	2 56	_1 /7	-0 57	י 2	22	100	2500
Dinus cuhensis	-0.75 A 11	-0 83	-1.47 -1 52	-0.37	0 11		100	2500
Pinus culminicola	-0 14	2 23	-1.50	-0.08	7	1	37 5	750
Pinus dalatensis	4 71	0.27	1 32	-0.29	, 10	3	150	4000
Pinus densata	-0.26	-0.11	2.38	-0.01	6	111	130	3000
Pinus densiflora	-0.65	-3.15	1.43	0.95	5	321	165	3500
Pinus devoniana	2.36	2.14	0.80	0.15	9	88	100	3000
Pinus discolor	0.24	2.31	-0.56	1.65	8	205	50	1500
Pinus douglasiana	3.17	1.77	1.06	0.53	10	32	100	4500
Pinus durangensis	0.64	1.92	0.58	0.71	8	68	100	4000
Pinus echinata	-0.23	-2.98	-2.82	0.86	6	560	140	4100
Pinus edulis	-2.61	1.45	-1.08	1.97	5	262	115	2050
Pinus elliottii	1.67	-2.58	-2.18	1.16	9	151	95	3600
Pinus engelmannii	0.46	2.30	-0.13	1.45	8	110	95	3100
Pinus fenzeliana	1.85	-2.86	0.34	0.87	9	7	100	5000
Pinus flexilis	-4.53	0.65	-0.30	0.50	3	335	185	2300
Pinus fragilissima	4.06	-3.73	3.63	-1.51	9	8	120	3000
Pinus_gerardiana	-4.42	0.44	0.49	-1.37	7	42	100	2500
Pinus_glabra	1.24	-3.09	-2.94	1.02	8	129	100	3750
Pinus_greggii	0.52	1.90	-0.21	-0.13	8	22	80	2500
Pinus_halepensis	-0.90	0.53	-1.84	-0.89	8	279	100	3000
Pinus_hartwegii	1.81	1.65	1.22	-0.68	8	51	100	3000
Pinus_heldreichii	-2.05	-2.00	-1.52	-2.27	5	25	200	3000
Pinus_herrerae	1.33	1.99	0.85	0.40	10	50	100	3500
Pinus_hwangshanensi	0.67	-3.32	0.42	0.95	7	36	100	4500
Pinus_jeffreyi	-1.80	1.49	-1.38	-1.14	8	104	200	5500
Pinus_johannis	0.39	2.17	-1.32	1.70	8	34	50	500
Pinus_juarezensis	-1.09	2.52	-1.76	0.14	8	11	50	1500
Pinus_kesiya	3.24	-0.13	1.99	0.42	9	162	100	4500
Pinus_koraiensis	-5.26	-1.03	2.95	2.40	3	427	125	5000
Pinus_krempfii	3.75	0.40	0.29	-1.13	10	4	225	4000
Pinus_kwangtungensi	1.09	-0.39	1.76	0.09	5	2	150	3000
Pinus_lambertiana	-1.84	1.16	-1.17	-1.63	7	116	365	8000
Pinus_latteri	4.84	-0.04	1.17	0.39	9	50	200	3000
Pinus_lawsonii	2.70	2.02	1.09	-0.13	10	41	77.5	3000
Pinus_leiophylla	0.70	2.32	0.09	0.96	9	170	87.5	3500
rinus_iongaeva	-3.77	1.35	-1.59	0.60	4	39	350	1600
Pinus_luchuensis	3.83	-6.32	-2.33	-0.89	9	4	80	2250
rinus_iumholtzii	1.44	1.99	0.74	0.58	8	/4	/0	2000
Pinus_maestrensis	4.11	-0.83	-1.58	-0.39	11	6	100	3000
Pinus_massoniana	0.98	-2.50	0.51	1.06	/	602	150	4500
	2.38	2.50	0.54	1.4/	10	1	55	1/50
rinus_markusii	2.3b	2.14	0.80	0.15	10	88 102	100	5000 3750
	4.17	0.20	0.98	0.44	10	102	200	3/50
	-3.18 2 1 1	1.72	-1.92	0.80	D 0	120	90 100	2000
Pinus_monticolo	2.11	-0 Vo 1.30	0.74	-0.17	9	200	100	3250
Pinus morrisonicola	-2.20	-0.40 _5 79	-0.09	-2.39	4 0	522	150	2500
Pinus mugo	-2 77	-1 98	0.88	-1 19	0 1	2/9	100	1500
inus_inugu	-2.77	-1.50	0.10	-1.13	T	243	100	1300

		clim	ate variables	;		tree characteristics			
Species	PC1	PC2	PC3	PC4	HZone	Range	DBH	Height	
Pinus_nelsonii	0.71	2.20	-0.82	0.73	8	8	30	1000	
Pinus_nigra	-2.01	-0.22	-1.35	-1.20	5	404	194.5	5000	
Pinus_occidentalis	4.38	-0.29	-1.21	-0.15	10	21	135	4250	
Pinus_oocarpa	3.80	1.41	0.67	0.03	9	189	125	4500	
Pinus palustris	1.02	-3.12	-2.84	1.13	8	282	120	4700	
Pinus parviflora	-0.51	-4.51	0.47	0.32	5	108	125	2500	
Pinus patula	1.22	1.52	0.78	-0.79	8	15	100	4000	
Pinus peuce	-2.84	-1.33	-0.72	-2.38	5	5	100	3000	
Pinus pinaster	-1.30	0.17	-1.52	-1.29	8	213	150	4000	
Pinus pinceana	0.50	2.56	-0.84	0.96	9	20	30	1200	
Pinus pinea	-0.87	0.51	-1.68	-1.12	8	156	125	2750	
Pinus nonderosa	-3 30	1 21	-0.71	0.39	3	851	265	7350	
Pinus praetermissa	2.91	1.39	0.77	0.52	9	44	30	2000	
Pinus pringlei	3.48	2.03	0.91	0.08	9	38	100	2500	
Pinus pseudostrobus	3 14	1 44	0.51	0.00	9	141	125	4750	
Pinus numila	-9.72	-1.06	3 44	1 45	1	3617	125	600	
Pinus nungens	-1.85	-3.00	_1 73	0.95	6	8/	70	2250	
Pinus quadrifolia	-1.05	2.50	-1.75	0.55	8	11	60	1550	
Pinus_quadintona	-1.09	2.52	-1.70	2 /1	0	11	210	1550	
Pinus_romota	-0.78	2.00	-0.44	-2.41	0	3	210	2020	
	0.57	1.07	-1.57	1.01	0 2	44	40	300	
Pinus_resinosa	-4.59	-2.53	0.09	0.74	3	787	125	3750	
Pinus_rigida	-2.30	-3.23	-1.50	0.82	4	306	115	3000	
Pinus_roxburghii	0.80	-0.78	1.67	-0.18	9	97	75	5500	
Pinus_rzedowskii	3.58	2.33	0.54	0.42	10	10	90	4000	
Pinus_sabiniana	-0.92	1.66	-1.60	-0.83	8	65	125	3750	
Pinus_serotina	0.82	-2.79	-2.43	1.34	8	183	60	2000	
Pinus_sibirica	-7.59	-1.10	2.16	1.64	1	3384	180	4000	
Pinus_squamata	-2.21	0.86	3.85	-1.22	8	2	60	2000	
Pinus_strobiformis	0.00	2.16	-0.29	1.33	8	148	125	3250	
Pinus_strobus	-3.99	-2.78	-0.33	0.61	1	1182	190	6350	
Pinus_sylvestris	-4.54	-1.31	0.90	-0.53	1	6079	160	4000	
Pinus_tabuliformis	-3.00	0.44	2.18	1.42	5	290	120	2750	
Pinus_taeda	0.59	-3.07	-3.02	0.94	7	431	155	4500	
Pinus_taiwanensis	4.06	-3.73	3.63	-1.51	8	8	110	5000	
Pinus_teocote	1.63	1.95	0.54	0.18	8	132	77.5	2500	
Pinus_thunbergii	0.49	-4.20	0.68	0.63	6	122	200	3750	
Pinus_torreyana	0.14	2.42	-0.67	-1.96	8	4	150	3150	
Pinus_tropicalis	4.43	-0.81	-0.71	-0.02	10	9	100	3000	
Pinus_virginiana	-1.07	-3.04	-2.35	0.90	6	304	75	3000	
Pinus_wallichiana	-2.60	0.16	1.82	-1.37	8	168	150	7000	
Pinus_washoensis	-3.22	2.05	-1.50	-0.25	6	3	100	6000	
Pinus_yecorensis	2.65	1.31	0.34	1.09	10	21	95	3000	
Pinus yunnanensis	0.87	0.11	2.31	-0.22	8	173	100	3000	

-			le	af morpho	logy			
Species	Length	Width	Cluster	Persist	Stomata	SLA	LAR	LM
Pinus_albicaulis	5.125	0.125	5	8	1	NA	NA	N
Pinus_aristata	3.625	0.09	5	18.5	2	NA	NA	N
Pinus_amamiana	0.5 12 75	0.09	5	3	2	NA	NA	IN N
Pinus_arizonica	12.75	0.135	5	3.5	1	NA NA	NA	IN N
Pinus_armandii	10.75	0.125	5	3	2	NA NA	NA NA	IN N
Pinus_attenuata	12.25	0.125	3 F	4	1			IN N
Pinus_dydCdnuite	13.25	0.085	5	3	2	INA NA	NA NA	IN N
Pinus_banksiana	2.8/5	0.12	5	30	2	122		
Pinus_Danksiana	3.125	0.175	2	3	1	132.	//.	0.50
Pinus_Dhutanica	19.5	0.1	5 1	2	2			IN N
Pinus_bingoono	14 7 75	0.125	2	5	1	NA NA		IN N
Pinus_Dungeana	7.75	0.2	2	25	1	02 /	NA 64	0 60
	20 25	0.175	2	2.5	1	00 /	52	0.03
	20.25	0.10	5	5	1	99.4 60.6	55. 25	0.55
Pinus_cembra	1.75	0.125	5	5	2	60.6	35. NA	0.58
Pinus_cembroides	4.25	0.085	3	5	1	NA	NA	IN
Pinus_chiapensis	9	0.09	5	3	2	NA	NA	IN
Pinus_clausa	6.5	0.125	2	4	1	NA	NA	N
Pinus_contorta	5	0.135	2	6.5	1	117.	69.	0.59
Pinus_cooperi	8	0.115	5	3	1	NA	NA	N
Pinus_coulteri	22.5	0.205	3	4	1	85.6	53.	0.62
Pinus_cubensis	6.825	0.105	2	3	1	NA	NA	N
Pinus_culminicola	4	0.11	5	4	2	NA	NA	N
Pinus_dalatensis	7.25	0.08	5	3	2	NA	NA	Ν
Pinus_densata	11	0.125	2	3	1	NA	NA	Ν
Pinus_densiflora	9.25	0.1	2	3	1	NA	NA	Ν
Pinus_devoniana	31.25	0.135	5	3	1	NA	NA	Ν
Pinus_discolor	4.25	0.1	3	NA	2	NA	NA	Ν
Pinus_douglasiana	27.75	0.095	5	2.75	1	NA	NA	Ν
Pinus_durangensis	19.25	0.1	5	2.75	1	NA	NA	Ν
Pinus_echinata	8.75	0.1	2	5	1	NA	NA	Ν
Pinus_edulis	3.125	0.12	2	7.5	1	NA	NA	Ν
Pinus elliottii	19.5	0.135	3	3	1	114	66.	0.58
Pinus engelmannii	28.75	0.175	3	3	1	NA	NA	Ν
Pinus fenzeliana	11	0.125	5	NA	2	NA	NA	Ν
Pinus flexilis	6.125	0.1	5	6	1	86.1	48.	0.56
Pinus fragilissima	18	0.11	2	3	1	NA	NA	Ν
Pinus gerardiana	7.75	0.2	3	3	1	NA	NA	Ν
Pinus glabra	6.25	0.095	2	3	1	130	90.	0.6
Pinus greggii	11.75	0.11	3	4	1	NA	NA	N
Pinus halepensis	10.25	0.075	2	3	1	104	65.	0.6
Pinus hartwegii	13.5	0.135	5	3	1	NA	NA	N
Pinus heldreichii	7 875	0.15	2	6	- 1	NA	NA	N
Pinus herrerae	16.25	0.15	2	3	1	NΔ	NΔ	N
Dinus hwangshanensi	13.5	0.00	2	35	1	NA	NA	N 1
Dinus joffrovi	19.5	0.00	2	5.5	1	87	52	0.6
Pinus_jenneyi Dinus_johannis	19.23	0.17	2		1	N/A	NA	0.00
	4	0.105	5		2	NA NA	NA NA	N
	4	0.1	2	4	2			N N
Pillus_Kesiya	0.75	0.00	5	2	1	NA NA	NA	יו א
Pinus_koralensis	9.75	0.1	5 1	5	2			יו א
Pinus_kreinpin Dinus_kreinpin	4.75	0.5	2		1	NA NA	NA	יו א
Pinus_kwangtungensi	5.25	0.125	5	INA 4	2		INA 44	
Pinus_lambertiana	6.25	0.115	5	4	1	68.7	41.	0.5
Pinus_latteri	20	0.15	2	1.8	1	NA	NA	r N
Pinus_lawsonii	1/	0.125	4	3	1	NA	NA	P N
Pinus_leiophylla	10.5	0.09	5	3	1	NA	NA	N
Pinus_longaeva	2.625	0.1	5	32.5	2	NA	NA	N
Pinus_luchuensis	13.25	0.085	2	3	1	NA	NA	Ν
Pinus_lumholtzii	25.75	0.135	3	2	1	NA	NA	Ν
Pinus_maestrensis	12.5	0.105	2	3	1	NA	NA	Ν
Pinus_massoniana	16.5	0.1	2	2	1	NA	NA	Ν
Pinus_maximartinezii	8.75	0.06	5	2	2	NA	NA	Ν
Pinus_maximinoi	25.75	0.08	5	2.75	1	NA	NA	Ν
Pinus_merkusii	19.25	0.1	2	2	1	NA	NA	Ν
Pinus_monophylla	4.625	0.17	1	9	1	NA	NA	Ν
Pinus_montezumae	21.25	0.105	5	3	1	NA	NA	Ν
Pinus_monticola	7.5	0.085	5	4	2	NA	NA	Ν
Pinus_morrisonicola	6.5	0.08	5	4	2	NA	NA	N
Pinus_mugo	4.75	0.185	2	8.5	1	NA	NA	Ν
		0.4.65	2	2		107	~-	

	leaf morphology											
Species	Length	Width	Cluster	Persist	Stomata	SLA	LAR	LMF				
Pinus_nelsonii	6.25	0.075	3	3	1	NA	NA	NA				
Pinus_nigra	11.25	0.15	2	4	1	88.1	65.	0.742				
Pinus_occidentalis	16.75	0.13	4	3	1	NA	NA	NA				
Pinus_oocarpa	20.25	0.12	4	2.5	1	NA	NA	NA				
Pinus_palustris	28.75	0.15	3	2	1	74.5	58.	0.787				
Pinus_parviflora	5.25	0.085	5	4.5	2	NA	NA	NA				
Pinus patula	20	0.08	3	3	1	121.	85.	0.702				
Pinus peuce	8.25	0.06	5	4	2	NA	NA	NA				
Pinus pinaster	16.25	0.175	2	3	1	86.9	59.	0.682				
Pinus pinceana	8.75	0.1	3	3	2	NA	NA	NA				
Pinus pinea	10.75	0.16	2	4	1	75.1	50.	0.672				
Pinus ponderosa	18.75	0.15	3	4.5	1	96.6	59.	0.612				
Pinus praetermissa	12.5	0.065	5	3	1	NA	NA	NA				
Pinus pringlei	21.5	0.125	3	3	- 1	NΔ	NΔ	NA				
Pinus nseudostrobus	25	0.125	5	3	1	NΔ	NA	NA				
Pinus numila	5 25	0.103	5	4	2	NΔ	NΔ	ΝΔ				
Pinus nungens	6.25	0.125	2	3	1	NΔ	NΔ	NΔ				
Pinus quadrifolia	3 5	0.125	5	1	2	NA	NA	NA				
Dinus radiata	3.J 11 E	0.125	2	2 5	2	110	70	0 676				
	2 75	0.135	2	5.5	1	110. NA	79. NA	0.070				
	3.75 14 E	0.095	2	2	1	102	74					
Pinus_resinosa	14.5	0.12	2	4	1	102.	74	0.725				
Pinus_rigiua	10.25	0.135	3	3	1	101.	74.	0.735				
Pinus_roxburgnii	26.25	0.145	3	2.5	1	NA	NA	IN A				
Pinus_rzedowskii	8	0.07	5	3	2		NA	NA				
Pinus_sabiniana	23.25	0.15	3	4	1	/8.6	48.	0.613				
Pinus_serotina	17.5	0.14	3	3	1	NA	NA	NA				
Pinus_sibirica	8.5	0.145	5	4.5	2	NA	NA	NA				
Pinus_squamata	13	0.09	5	NA	1	NA	NA	NA				
Pinus_strobiformis	8	0.095	5	5	2	NA	NA	NA				
Pinus_strobus	8	0.085	5	3	1	118.	80.	0.679				
Pinus_sylvestris	5.5	0.15	2	3	1	112.	83	0.736				
Pinus_tabuliformis	11.5	0.125	2	3	1	NA	NA	NA				
Pinus_taeda	14.75	0.175	3	3	1	104.	69.	0.663				
Pinus_taiwanensis	12.5	0.085	2	3	1	NA	NA	NA				
Pinus_teocote	12.5	0.12	3	3	1	NA	NA	NA				
Pinus_thunbergii	10	0.15	2	3.5	1	110.	75.	0.681				
Pinus_torreyana	22	0.2	5	4	1	73.7	40.	0.545				
Pinus_tropicalis	25	0.15	2	2.5	1	NA	NA	NA				
Pinus virginiana	6	0.125	2	4	1	108.	76.	0.704				
Pinus wallichiana	19.5	0.1	5	3.5	2	NA	NA	NA				
Pinus washoensis	12.5	0.15	3	6	1	NA	NA	NA				
Pinus vecorensis	27.5	0.1	5	3	- 1	NA	NA	NA				
Pinus vunnanensis	15 5	0.11	2	3	1	NΔ	NΔ	ΝΔ				

	cone size		wing	size	dispersal mode			
species	Width	Length	Width	Length	Bird	Wind	Animal	Rodent
Pinus_albicaulis	5.5	6.55	0	0	1	0	1	1
Pinus_aristata	5	8.5	NA	1.15	1	1	1	0
Pinus_amamiana	3.5	6	NA	0.075	1	0	1	0
Pinus_arizonica	4.75	7.5	0.6	1.6	0	1	0	0
Pinus_armandii	6.5	11	NA	0.25	1	0	1	0
Pinus_attenuata	4.75	12	0.6	1.55	0	1	0	0
Pinus_ayacahuite	11	31.25	1	2.375	1	1	1	0
'inus_balfouriana	5	7.75	NA	1.3	0	1	0	0
Pinus_banksiana	1.5	4.625	NA	1.1	0	1	0	0
'inus_bhutanica	6	16	0.85	1.925	0	1	0	0
'inus_brutia	6.5	8.5	0.95	1.7	1	1	1	0
Pinus_bungeana	4.5	5.625	NA	0.4	1	0	1	0
Pinus_canariensis	5.8	14.25	NA	2.55	0	1	0	0
Pinus_caribaea	5	9.25	0.65	1.63	0	1	0	0
Pinus_cembra	5	6.75	0	0	1	0	1	1
Pinus_cembroides	4.5	4	0	0	1	0	1	0
Pinus_chiapensis	5.5	12	NA	2.25	0	1	0	0
Pinus_clausa	3.2	6	NA	1.75	1	1	1	1
Pinus contorta	2.5	4	NA	1.1	1	1	1	0
Pinus cooperi	5	7.5	NA	2.25	0	1	0	0
vinus_coulteri	17.5	26.25	1.4	2.4	0	1	0	0
Pinus cubensis	4.25	5.5	0.55	1.475	0	1	0	0
Pinus culminicola	4	3.625	0	0	1	0	1	0
Pinus dalatensis	7	13.875	NĂ	2.125	0	1	0	Ő
Pinus densata	5.5	5	NA	1.75	0	1	0	0
Pinus densiflora	2	4 375	0.6	1 4 2 5	0	1	0	0
Pinus devoniana	11 5	25	1 25	2 825	0	1	0	0
Pinus_discolor	11.5	35	ΝΔ	0.075	1	0	1	1
linus_douglasiana	5	8.5	0.8	2 1 7 5	0	1	0	0
linus_durangonsis	5	75	0.0	1 5 7 5	0	1	0	0
linus_uurangensis	25	7.5	0.75	1.375	0	1	0	0
	2.5	5.5 4 2E		1.425	1	1	0	0
inus_euuns	4.5	4.25		2.075	1	1	1	0
linus_eniottii	5	12		2.075	1	1	1	0
nus_engennannii	8	12	0.85	2.15	0	1	0	0
inus_tenzellana	4.5	10	0	0	1	0	1	0
	5	10.75	0	0	1	0	1	0
inus_fragilissima	6.5	7.5	0.6	1.8	0	1	0	0
inus_gerardiana	9.5	16.75	NA	0.45	1	0	1	0
'inus_glabra	2.5	5.5	NA	1.275	0	1	0	0
'inus_greggii	6	11.5	0.675	1.675	0	1	0	0
'inus_halepensis	4	8	1	1.975	0	1	0	0
Pinus_hartwegii	6.5	10	0.95	1.675	0	1	0	0
Pinus_heldreichii	5	7.75	NA	2	0	1	0	0
'inus_herrerae	2.75	3.625	0.4	0.65	0	1	0	0
'inus_hwangshanensi	3.75	4.5	0.55	1.75	0	1	0	0
'inus_jeffreyi	11.5	17.5	1	2.2	1	1	1	1
'inus_johannis	3	4.5	NA	0.075	1	0	1	1
Pinus_juarezensis	5.75	4.25	NA	0.15	1	0	1	1
Pinus_kesiya	3.5	6	0.7	1.575	0	1	0	0
vinus_koraiensis	7	10.75	0	0	1	0	1	1
Pinus_krempfii	4	7	0.45	1.26	0	1	0	0
pinus_kwangtungensi	4.25	6	0.6	0.9	0	1	0	0
Pinus lambertiana	11.5	40	1.35	2.5	0	1	0	0
Pinus latteri	6.5	8	NA	1.75	0	1	0	0
Pinus lawsonii	5	6.5	0.55	1.35	Ő	1	ñ	n
Pinus leionhvlla	4 75	6	0.55	1.325	ñ	1	ñ	n
Pinus longaeva	5	7 875	NA	1 1 2 5	1	1	1	n
	יב ס ד ב	/ 175		1 05	۰ ۱	1	- -	0
nius_iuciiueiisis Dinus_lumboltzii	2.75	4.123		1.05	0	1	0	0
	3.73 A DE	4./J		1 /75	0	1	0	0
linus_macsoniana	4.20 275	5.5 5 75	0.55	1 0 7 5	0	1	0	0
	3./5	5./5	0.6	1.025	0	T	U	U
rinus_maximartinezii	11	21	0	1 0 2 5	1	0	T	0
	6	7.5	0.6	1.825	0	1	U	U
rinus_merkusii	6	/.75	0	2.1/5	0	1	0	0
rinus_monophylla	5.75	5.5	0	0	1	0	1	0
'inus_montezumae	7.5	14.5	0.95	2.15	0	1	0	0
Pinus_monticola	3.5	17.5	NA	2.225	0	1	0	0
Pinus_morrisonicola	5.5	8.5	0.65	1.75	0	1	0	0
o:	3 2 5	4	NA	1.2	0	1	0	0
Pinus_mugo	5.25							

	cone size		wing	size	dispersal mode			
species	Width	Length	Width	Length	Bird	Wind	Animal	Rodent
Pinus_nelsonii	4.75	9.75	0	0	1	0	1	0
Pinus_nigra	3	7	NA	1.85	0	1	0	0
Pinus_occidentalis	5	7.25	0.5	1.375	0	1	0	0
Pinus_oocarpa	6	5.5	0.6	1.35	0	1	0	0
Pinus_palustris	10	21.25	1.1	3.125	0	1	0	0
Pinus_parviflora	4	7	0.86	1.075	1	1	1	0
Pinus_patula	5.25	8	0.65	1.625	0	1	0	0
Pinus_peuce	2.5	11.5	0	1.575	1	1	1	0
Pinus_pinaster	6.5	14.25	0.85	2.6	1	1	1	0
Pinus_pinceana	4.75	7.5	0	0	1	0	1	0
Pinus_pinea	9	10.5	NA	1	1	1	1	1
Pinus_ponderosa	4	9.25	0.7	1.8	1	1	1	0
Pinus_praetermissa	7	5.875	0.65	1.625	0	1	0	0
Pinus_pringlei	4.75	6.5	0.7	1.55	0	1	0	0
Pinus_pseudostrobus	9.5	12	0.85	2.2	0	1	0	0
Pinus_pumila	2.75	3.875	0	0	1	0	1	0
Pinus_pungens	5	7.25	NA	1.925	0	1	0	0
Pinus_quadrifolia	5.75	5	0	0	1	0	1	1
Pinus_radiata	8	10.25	0.85	1.975	0	1	0	0
Pinus_remota	4.5	3.25	0	0	1	0	1	0
Pinus_resinosa	2.6	5.125	NA	1.575	0	1	0	0
Pinus_rigida	7	6	NA	1.75	0	1	0	0
Pinus_roxburghii	9.5	13.75	0.9	2.25	0	1	0	0
Pinus_rzedowskii	7.25	12.5	1.5	2.625	0	1	0	0
Pinus_sabiniana	17.5	20.5	NA	1	0	1	0	0
Pinus_serotina	8	8	NA	1.75	0	1	0	0
Pinus_sibirica	5	8.75	0	0	1	0	1	0
Pinus_squamata	5.5	9	NA	1.5	0	1	0	0
Pinus_strobiformis	9	20.5	0	0	1	0	1	1
Pinus strobus	6	14	NA	2.275	0	1	1	1
Pinus sylvestris	4.5	4.5	0.55	1.25	0	1	0	0
Pinus tabuliformis	6.25	6.25	0.6	1.375	0	1	0	0
Pinus taeda	9	8.75	NA	1.85	0	1	0	0
Pinus taiwanensis	3.75	5.75	NA	1.5	0	1	0	0
Pinus teocote	3.75	5.5	0.7	1.375	0	1	0	0
Pinus thunbergii	3.75	5.125	NA	1.25	0	1	0	0
Pinus torrevana	12.5	13.75	NA	1.125	0	1	0	0
Pinus tropicalis	4.75	7	0.55	1.3875	0	1	0	0
Pinus virginiana	2.7	5.625	NA	1.775	0	1	0	0
Pinus wallichiana	3.5	23.75	0.9	2.375	0	1	0	0
Pinus washoensis	6.5	8.5	NA	1.6	0	1	0	0
Pinus vecorensis	5	10.25	NA	2.05	0	1	0	0
Pinus vunnanensis	4	7.25	0.5	1.375	0	1	0	0

	fire response											
species	Serotiny	BarkC	Grass Stage	Branch	Bark	Resprout	FireRes					
Pinus_albicaulis	0	1	0	0	1.27	0	1					
Pinus_aristata	0	2	0	0	1.575	0	0					
Pinus_amamiana	0	1	0	0	1.5	0	0					
Pinus_arizonica	0	3	0	1	5	0	1					
Pinus_armandii	0	1	0	0	1.5	0	0					
Pinus_attenuata	1	1	0	0	0.965	0	1					
Pinus_ayacahuite	0	3	0	0	NA	0	0					
Pinus_baltouriana	0	2	0	1	1.575	0	1					
Pinus_banksiana	1	1	0	1	1.27	0	1					
Pinus_bhutanica	0	1	0	0	NA	0	0					
Pinus_brutia	1	3	0	0	4.445	0	1					
Pinus_bungeana	0	1	0	0	NA	0	0					
Pinus_canariensis	1	3	0	0	3	1	1					
Pinus_caribaea	0	3	0	1	NA	1	1					
Pinus_cembra	0	1	0	0	NA	0	C					
Pinus cembroides	0	1	0	1	1.27	0	1					
Pinus chiapensis	0	2	0	0	NA	0	1					
Pinus clausa	1	1	0	0	1.016	0	1					
Pinus contorta	- 1	1	0	0	1 016	0	1					
	0	2	0	1	1.010 NA	0	1					
Pinus_coultori	0	5 1	0	1	1 75	0	1					
Pinus_countern	1	2	0	0	1.75	0	1					
Pinus_cubensis	U	3	U	1	NA	U	1					
Pinus_culminicola	0	1	0	0	NA	0	C					
Pinus_dalatensis	0	3	0	0	NA	0	C					
Pinus_densata	0	3	0	1	NA	0	(
Pinus_densiflora	0	1	0	0	NA	0	1					
Pinus_devoniana	0	3	1	1	NA	0	1					
Pinus_discolor	0	1	0	0	NA	0	0					
Pinus douglasiana	0	3	1	1	NA	0	1					
Pinus durangensis	0	3	1	1	NA	0	1					
Pinus echinata	0	2	0	1	2 083	1	-					
Pinus edulis	0 0	2	0	0	1 575	0	-					
Pinus elliottii	0	2	1	1	3 0/18	0	1					
Pinus_enottii	0	2	1	1	3.040	0	1					
Pinus_engennamm Dipus_fonzoliono	0	1	1	1	4.445 NA	0	1					
	0	1	0	0		0	L					
Pinus_flexilis	0	3	0	1	3.81	0	1					
Pinus_tragilissima	0	3	0	1	3	0	(
Pinus_gerardiana	0	1	0	0	NA	0	(
Pinus_glabra	0	3	0	0	3.09	0	(
Pinus_greggii	1	3	0	0	NA	0	1					
Pinus_halepensis	1	3	0	0	3.81	0	1					
Pinus_hartwegii	0	3	1	1	NA	1	(
Pinus heldreichii	0	3	1	1	3.2	0	C					
Pinus_herrerae	0	3	0	1	NA	0	C					
Pinus hwangshanensi	0	1	0	0	NA	0	Ć					
Pinus jeffrevi	0	3	0	1	7.62	0	(
Pinus johannis	n	1	0	n N	NIA	0	r c					
	0	т Т	0	U		0	()					
	0	3 7	0	1	NA NA	0	(
Fillus_Kesiyd	0	3	0	1	INA NA	0	-					
Pinus_koraiensis	U	3	U	1	NA	U	1					
Pinus_krempfii	0	1	0	0	NA	0	(
Pinus_kwangtungensi	0	1	0	0	0.6	0	(
Pinus_lambertiana	0	3	0	1	6.985	0	(
Pinus_latteri	0	3	1	1	3.81	0	1					
Pinus_lawsonii	0	3	0	1	NA	0	(
Pinus_leiophylla	1	3	0	1	6.985	1	-					
Pinus longaeva	0	1	0	0	NA	0	(
Pinus luchuensis	0	3	0	0	NA	0	(
Pinus lumholtzii	0	3	0	1	NA	0	(
Pinus maestrensis	ñ	2	ñ	1	NΔ	ñ						
Pinus massoniana	0	2	0	1	NA	1						
	0	J 1	0	0 T		- -						
	U	1	U	U	NA	U	(
Pinus_maximinoi	U	1	U	U	NA	U						
Pinus_merkusii	0	3	1	1	3.81	0						
Pinus_monophylla	0	2	0	0	1.905	0						
Pinus_montezumae	0	3	1	1	NA	0	(
Pinus_monticola	0	3	0	1	3.175	0	(
Pinus_morrisonicola	0	1	0	0	NA	0	(
Pinus mugo	0	1	0	0	3	0	(
rinus_mugu												

	fire response										
species	Serotiny	BarkC	Grass Stage	Branch	Bark	Resprout	FireRes				
Pinus_nelsonii	0	1	0	0	NA	0	0				
Pinus_nigra	0	2	0	0	3.1	0	0				
Pinus_occidentalis	0	3	0	0	NA	1	0				
Pinus_oocarpa	1	3	0	1	NA	1	1				
Pinus_palustris	0	3	1	0	2.794	0	1				
Pinus_parviflora	0	1	0	1	NA	0	1				
Pinus_patula	1	3	0	NA	NA	1	0				
Pinus_peuce	0	1	0	NA	NA	0	0				
Pinus_pinaster	1	3	0	NA	3.175	0	0				
Pinus_pinceana	0	1	0	1	NA	0	0				
Pinus_pinea	0	3	0	NA	3.3	0	1				
Pinus_ponderosa	0	3	0	1	7.62	0	1				
Pinus_praetermissa	0	3	0	1	NA	0	0				
Pinus_pringlei	1	3	0	1	NA	1	0				
Pinus_pseudostrobus	0	3	0	1	NA	0	1				
Pinus_pumila	0	1	0	1	NA	0	0				
Pinus_pungens	1	1	0	NA	1.905	0	1				
Pinus_quadrifolia	0	1	0	NA	1.524	0	0				
Pinus_radiata	1	3	0	NA	4.445	0	1				
Pinus_remota	0	2	0	NA	NA	0	0				
Pinus_resinosa	0	3	0	NA	4.445	0	1				
Pinus_rigida	1	3	0	1	3.048	1	1				
Pinus roxburghii	1	3	0	NA	3.5	1	1				
Pinus rzedowskii	0	2	0	NA	NA	0	1				
Pinus sabiniana	0	2	0	NA	1.75	0	1				
Pinus serotina	1	1	0	1	1.575	1	1				
Pinus sibirica	0	2	0	NA	1.651	0	0				
Pinus squamata	0	3	0	NA	NA	0	0				
Pinus strobiformis	0	1	0	1	1.05	0	0				
Pinus strobus	0	3	0	0	3.175	0	1				
Pinus sylvestris	0	3	0	1	3.175	0	0				
Pinus tabuliformis	0	1	0	1	NA	0	0				
Pinus taeda	0	3	0	1	3.505	0	0				
Pinus taiwanensis	0	1	0	0	NA	0	0				
Pinus teocote	0	3	0	1	NA	1	0				
Pinus thunbergii	0	3	0	1	NA	0	0				
Pinus torrevana	1	2	0	0	1	0	0				
Pinus tropicalis	0	3	1	0	NA	0	1				
Pinus virginiana	1	1	0	1	1.27	1	0				
Pinus wallichiana	0	3	0	0	NA	0	0				
Pinus washoensis	0	3	0	0	7.62	0	0				
Pinus vecorensis	0	3	0	1	NA	0	Ő				
Dinus yunnanonsis	1	3	1	0	NΔ	1	0				

	seed character									
species	Length	Width	Mass	RGR	RGRmax	Mast				
Pinus_albicaulis	0.9	0.55	150.7	NA	NA	_ 4				
Pinus_aristata	0.55	0.35	22.1	NA	NA	5.5				
Pinus_amamiana	1.1	0.5	NA	NA	NA	NA				
Pinus_arizonica	0.6	0.4	43	NA	NA	2.5				
Pinus_armandii	1.15	0.8	262.8	NA	NA	5				
Pinus_attenuata	0.6	0.4	16.4	NA	NA	1				
Pinus_ayacahuite	1.15	0.75	48	NA	NA	1.5				
Pinus_baitouriana	0.85	0.5	22.9	NA 20.6	NA	5.5				
Pinus_banksiana	0.4	0.2	3.7	38.0	NA NA	3.5				
Pinus_phutanica	0.7	0.45		NA	NA NA	IN/-				
Pinus_prutia	0.75	0.5	38.9	NA	NA NA					
Pinus_Dungeana	0.925	0.55	117.8		NA 47	11/				
Pinus_canarienses	1.2	0.05	101.5	33.7	47	5.5				
Pinus_canbaea	0.575	0.3	17.3	28.7	NA 22	5.5				
Pinus_cembraidas	1.25	0.7	204.5	12.0	22	4.5				
Pinus_cemproides	1.5	0.8	545 16 1	NA NA	NA NA	0.3				
	0.05	0.3	10.1	NA NA	NA NA	1 0				
Pinus_clausa Pinus_contorta	0.5	0.2	25	26.5	51 Q	1.5				
Pinus_contorta	0.45	0.3	5.5	30.3 NA	21.5					
Pinus_coultori	0.4	0.4	210	22	10.2	117				
	1.5	0.00	213	52	43.Z	4.3 NI 4				
Finus_cubensis Dinus_culminicala	0.0	0.325								
Pinus_cummicola Pinus_dalatonsis	0.0	0.45 NA	25	NA NA	NA NA					
Pinus donsata	0.7	NA NA	NA NA	NA	NA NA	N/-				
Pinus_densiflora	0.525	0.4	8 7	NA	NA NA	117				
Pinus deveniana	0.5	0.4	22	NA						
Pinus_devoluana	0.7	0.0	33 NA	NA	NA NA	N/				
Rinus douglasiana	0.575	0 2 2 5	NA	NA		N/				
Pinus_uougiasiana Dinus durangensis	0.575	0.325	11 G	NA	NA NA	11				
Pinus_uurangensis Dinus ochinata	0.025	0.423	41.0	NA	NA NA	61				
Pinus_eciliata	1 25	0.4	268 5	NA	NA NA	2 1				
Pinus_eduns Dinus elliottii	0.65	0.75	208.5	31.6	NA NA	J				
	0.05	0.4	JJ.2 //1	51.0 NA		2 1				
Pinus fenzeliana	0.05	0.48	41	NA	NA NA	5 N/				
Pipus flovilis	1.1	0.05	110.9	20.4	21.6	11/				
Pinus fragilissima	0.55	0.5	115.8 NA	20.4 NA	21.0	N				
Pinus gerardiana	2 25	0.5	/12 3	NA		21				
Pinus glabra	0.6	0.35	912.5	36.6	53.6	J.,				
Pinus groggii	0.65	0.35	1/1	50.0 NA	55.0 NA	NZ				
Pinus balanansis	0.05	0.55	14.1	20.2	51.2	11/				
Pinus_hartwegii	0.5	0.45	19.7 ΝΔ	58.5 ΝΔ	51.5 ΝΔ	N/				
Dinus haldraichii	0.55	0.5	23.7	NA		N/				
Pinus berrerae	0.05	0.5	23.7	NA		N/				
Pinus_hwangshanonsi	0.33	0.25	NA	NA	NA NA	NI/				
Pinus_inffrovi	1 55	0.6	11/1 5	26.6	29.5	11/				
Pinus_jenneyi Pinus_johannis	1.55	0.0	270.9	20.0	58.5 NA	NI				
	1 475	0.7	575.8 NA	NA		N/				
Pinus_Juarezensis	1.475	0.7	16.9	NA NA		11/				
Pinus koraionsis	1 55	0.4	10.5	NA		-				
Pinus_krompfii	1.55	0.8	407.J	NA	NA NA	NI/				
Pinus_kienipin Dipus_kwapgtupgopsi	0.4	NA NA	INA NA	NA NA	NA NA	IN/ NI/				
Pinus lambortiana	15		10A 225 1	19.4	20.2	INA				
Pinus_lattori	1.5	0.8	223.1 NA	10.4	29.2	NI/				
	0.45	0.4	NA NA	NA	NA NA					
Pinus_lawsonii Pinus_loionbylla	0.45	NA NA	11 Q	NA NA		IN/ NI/				
	0.4	0.4	11.8 NA	NA	NA NA	N/				
Pinus_luchuonsis	0.05	0.4	INA NA	NA NA	NA NA	IN/				
Pinus_lumboltzii	0.33	NA NA	NA NA	NA	NA NA	N/				
Pinus maastronsis	0.4	0 2 2 5	NA NA	NA	NA NA	N/				
Dinus massoniana	0.0	0.325 NA				IN/				
nus_massumations	0.525	INA NA	1070	INA NA	INA NA	11/				
	2.35		12/8		NA NA	4.				
	0.55	0.35		NA NA	ÍNA NA	IN/				
rinus_merkusii	0.05	0.45	34.3 402 4	NA NA	NA NA	1.				
Pinus_monophylla	1.55	1	403.4	NA	NA	1.				
rinus montezumae	0.6	0.45	27.4	NA	NA	N/				
Dinus monti!-		NΔ	16.9	NA	NA					
Pinus_monticola	0.05	0.4	10.5	N1 A	N I A					
Pinus_monticola Pinus_morrisonicola	0.8	0.4	NA	NA	NA	NA				

			seed character							
species	Length	Width	Mass	RGR	RGRmax	Mastl				
Pinus_nelsonii	30	1000	482	NA	NA	2.5				
Pinus_nigra	194.5	5000	19.2	29.3	60.1	3.5				
Pinus_occidentalis	135	4250	NA	NA	NA	NA				
Pinus_oocarpa	125	4500	15.5	NA	NA	NA				
Pinus_palustris	120	4700	86.5	32.3	34.2	6				
Pinus_parviflora	125	2500	116.3	NA	NA	4.5				
Pinus_patula	100	4000	8.3	41.9	70.3	1				
Pinus_peuce	100	3000	51.6	NA	NA	1				
Pinus_pinaster	150	4000	50.4	38.9	49.7	1				
Pinus_pinceana	30	1200	254	NA	NA	NA				
Pinus_pinea	125	2750	757.9	25.7	38.6	6				
Pinus_ponderosa	265	7350	38.1	30	41.7	3.5				
Pinus_praetermissa	30	2000	NA	NA	NA	NA				
Pinus_pringlei	100	2500	14	NA	NA	NA				
Pinus_pseudostrobus	125	4750	NA	NA	NA	NA				
Pinus_pumila	15	600	78.8	NA	NA	3				
Pinus_pungens	70	2250	12.6	NA	NA	NA				
Pinus_quadrifolia	60	1550	379	NA	NA	NA				
Pinus_radiata	210	3650	31	45.8	71.1	1				
Pinus remota	40	900	NA	NA	NA	NA				
Pinus_resinosa	125	3750	9.1	27.7	56	5				
Pinus_rigida	115	3000	7.2	36.2	58.8	6.5				
Pinus_roxburghii	75	5500	104.3	NA	NA	3				
Pinus_rzedowskii	90	4000	56	NA	NA	4				
Pinus_sabiniana	125	3750	706	20.3	27	3				
Pinus_serotina	60	2000	8.2	NA	NA	1				
Pinus sibirica	180	4000	NA	NA	NA	NA				
Pinus_squamata	60	2000	NA	NA	NA	NA				
Pinus_strobiformis	125	3250	268.3	NA	NA	3.5				
Pinus_strobus	190	6350	17.2	28.7	38.7	6.5				
Pinus sylvestris	160	4000	7.5	42.4	71.7	3.5				
Pinus tabuliformis	120	2750	36	NA	NA	NA				
Pinus taeda	155	4500	25.6	33.9	75	8				
Pinus taiwanensis	110	5000	9.7	NA	NA	NA				
Pinus teocote	77.5	2500	NA	NA	NA	NA				
Pinus thunbergii	200	3750	14.7	35.7	47.8	1				
Pinus torreyana	150	3150	933.5	18.6	NA	1				
Pinus tropicalis	100	3000	35	NA	NA	NA				
Pinus virginiana	75	3000	8.2	38.2	69.9	1				
Pinus wallichiana	150	7000	49.8	NA	NA	2.5				
Pinus washoensis	100	6000	62.3	NA	NA	NA				
Pinus yecorensis	95	3000	NA	NA	NA	NA				
Pinus vunnanensis	100	3000	NA	NA	NA	NA				

species Cval Genome Z Inva. made		life history characters								
Pinus_arista NA 20.9 -6.1 NA 1267 20 2 NA Pinus_arista NA NA NA NA NA NA NA Pinus_arista NA NA NA NA NA NA Pinus_artenutia 22.09 26.8 NA NA 20 2 NA Pinus_partenutia 22.09 26.8 NA NA 20 2 NA Pinus_bantancia NA NA 22.1 1.6 1 246 3 1.0 NA Pinus_bantancia NA	species	Cval	Genome	Z	Inva	mxAge	mnGen	mnAgeSeed	NAR	
Prinus_arristata NA	Pinus_albicaulis	NA	30.9	-6.1	NA	1267	20	2	NA	
PINUS_arizontia NA NA NA NA NA NA PINUS_arizontia NA 25.5 36.6 NA NA 20 2 NA PINUS_artenuata 22.09 26.8 NA NA 80.5 1 NA PINUS_baffordiran NA 25.0 2 NA NA NA 5 NA NA PINUS_baffordiran NA 22.2 11.6 1 24.6 3 1 0.5 1 NA PINUS_baffordiran NA 22.2 11.6 1 24.6 NA	Pinus_aristata	NA	29.1	-2.9	NA	2435	20	2	NA	
Pinus_armani NA 22.2 1.5 NA NA NA Pinus_artenuata 22.03 26.8 11.1 NA 80 5 1 NA Pinus_artenuata 22.09 26.8 11.1 NA 80 5 1 NA Pinus_bankisana NA 29.9 -3 NA 2500 20 2 NA Pinus_bankisana NA 29.9 -3 NA	Pinus_amamiana	NA			NA	NA 400		NA	NA	
Imus Jatemusta 22.09 26.8 11.1 NA B0 L 1 NA Prinus Jatomirana NA 29.9 -3 NA 2500 20 2 NA Prinus Jatomirana NA 22.9 -3 NA 2500 20 2 NA Prinus Jatomirana NA 22.9 1.6 1 24.6 3 1 0.57 Prinus Jatomirana NA 32.4 NA	Pinus_anzonica Pinus_armandii	NΑ	20.2	-9.6	NΑ	400 ΝΔ	20	NA 2	NΑ	
Prims_sparachuite Prims_shiftory Primshiftory Prims_shiftory Primsh	Pinus attenuata	22.09	26.8	-5.0 11 1	NA	80	20	2	NA	
Pinus, balfouriana NA 29.9 -3 NA 2500 20 22 NA Pinus, bantsiana NA 22.11.6 1 24.6 3 1 0.57 Pinus, buntanica NA NA NA NA NA NA NA Pinus, buntanica NA 33.4 NA NA NA NA Pinus, cantanea NA 33.4 NA NA NA NA Pinus, cantanea NA 25.5 1.3 NA NA NA 12 NA Pinus, cantanea NA 25.5 1.3 NA NA NA NA NA Pinus, cantanea NA 25.5 1.3 NA <	Pinus avacahuite	NA	36	8.7	NA	NA	5	NA	NA	
Pinus, butanica NA	Pinus balfouriana	NA	29.9	-3	NA	2500	20	2	NA	
Prinus, brutanica NA NA NA NA NA NA NA Prinus, bungeana NA 33.4 NA NA NA NA Prinus, caribaea NA 33.4 NA NA NA NA Prinus, caribaea NA 32.4 1.8 NA NA 12 NA Prinus, citapaena NA 32.9 -10.1 1000 20 3 0.36 Prinus, citapaensis NA 32.9 -10.4 NA NA NA NA Prinus, citagenesis NA 32.9 -10.4 NA NA NA Prinus, coupersis NA 32.9 -10.4 NA NA NA Prinus, coupersis NA NA NA NA NA NA NA NA Prinus, coupersis NA NA NA NA NA NA NA NA Prinus, coupersita NA NA NA	Pinus_banksiana	NA	22.2	11.6	1	246	3	1	0.57	
Pinus_bungean NA 33 8.1 NA NA NA NA Pinus_bungean NA 33.4 1.8 NA Pinus_canpression NA 32.5 1.3 NA NA 120 NA 0.54 Pinus_canpression NA 32.3 NA	Pinus_bhutanica	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_bungeana NA 33.4 NA	Pinus_brutia	NA	33	8.1	NA	NA	7	1	NA	
Pinus_cananiensis NA 33.4 -1.3 NA NA 15 2 0.0 Pinus_cembra NA 32 -9.1 0 1000 20 3 0.36 Pinus_cembra NA 32.3 NA NA NA NA NA NA Pinus_clausa 19.4 23.4 11.5 NA NA NA NA NA Pinus_contorta NA	Pinus_bungeana	NA	33.4	NA	NA	NA	NA	NA	NA	
Prints_carinolacia NA 2.5. 1.3. NA NA 1.2 NA 0.3. Prints_chaperbia NA 33.9 -10.4 NA	Pinus_canariensis	NA	33.4	-1.8	NA	NA	15	2	0.6	
Prins_Cembroides NA 32 9-1. 0 NA	Pinus_caribaea	NA	25.5	1.3	NA	NA 1000	12	NA 2	0.54	
Pinus_chiapensis NA 323 NA NA NA 12 NA NA Pinus_chapensis 19.94 23.4 11.5 NA 100 5 1 NA Pinus_contoria NA 23.4 11.5 NA	Pinus_cembroides	NΑ	32 9	-9.1	ΝΔ	ΝΔ	20	ΝΔ	0.50 NA	
Pinus_clausa 19.94 23.4 11.5 NA 100 5 1 NA Pinus_contorta NA 22.1 13.4 1 628 4 1 0.54 Pinus_coperi NA NA<	Pinus chiapensis	NA	32.3	-10.4 NA	NA	NA	10	NA	NA	
Pinus_contorta NA 22.1 13.4 1 628 4 1 0.54 Pinus_cooperi NA NA NA NA NA NA NA Pinus_cubensis NA NA NA NA NA NA NA NA Pinus_cubensis NA NA NA NA NA NA NA NA Pinus_datensis NA NA NA NA NA NA NA NA Pinus_densitor NA	Pinus clausa	19.94	23.4	11.5	NA	100	5	1	NA	
Pinus_cooperi NA	Pinus_contorta	NA	22.1	13.4	1	628	4	1	0.54	
Pinus_coulteri 28.33 31.5 -3.7 0 NA 8 2 0.66 Pinus_culminicola NA	Pinus_cooperi	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_cubensis NA	Pinus_coulteri	28.33	31.5	-3.7	0	NA	8	2	0.66	
Pinus_culminicola NA	Pinus_cubensis	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_dalatensis NA	Pinus_culminicola	NA	30.1	NA	NA	NA	NA	NA	NA	
Pinus_densifiora NA	Pinus_dalatensis	NA	NA	NA	NA	NA	NA	NA	NA	
Prinus_devolution NA 20 2 NA	Pinus_densata	NA NA		NA 2	NA	NA	NA 20	NA 2	NA NA	
Pinus_discolor NA	Pinus_deveniana	NA NA	20.4		NA NA	NA	20	2		
Pinus_douglasiana NA	Pinus_discolor	NA	27.7 NA	NA	NA	NA	NA	3	NA	
Pinus_durangensis NA 26.5 -2.6 NA NA 8 NA NA Pinus_edulis 21.73 24.8 5.6 NA 324 5 1 NA Pinus_edulis NA 32.9 1.01 NA 1101 25 3 NA Pinus_enzellottii 22.36 24.9 5.4 1 NA 84 1 0.51 Pinus_ferzellana NA </td <td>Pinus douglasiana</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Pinus douglasiana	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_echinata 21.73 24.8 5.6 NA 324 5 1 NA Pinus_ellottii NA 32.9 -10.1 NA 1101 25 3 NA Pinus_engelmannii NA 22.36 24.9 5.4 1 NA 8 1 0.51 Pinus_enzeliana NA <t< td=""><td>Pinus_durangensis</td><td>NA</td><td>26.5</td><td>-2.6</td><td>NA</td><td>NA</td><td>8</td><td>NA</td><td>NA</td></t<>	Pinus_durangensis	NA	26.5	-2.6	NA	NA	8	NA	NA	
Pinus_edulis NA 32.9 -10.1 NA 1101 25 3 NA Pinus_engelmannii 22.36 24.9 5.4 1 NA 8 1 0.51 Pinus_engelmannii NA 26.6 -5 NA NA 28 3 NA Pinus_frazilisi 29.58 32.7 -4.1 0 1697 20 3 0.45 Pinus_grazilisima NA <t< td=""><td>Pinus_echinata</td><td>21.73</td><td>24.8</td><td>5.6</td><td>NA</td><td>324</td><td>5</td><td>1</td><td>NA</td></t<>	Pinus_echinata	21.73	24.8	5.6	NA	324	5	1	NA	
Pinus_elliottii 22.36 24.9 5.4 1 NA 8 1 0.51 Pinus_fenzellanannii NA	Pinus_edulis	NA	32.9	-10.1	NA	1101	25	3	NA	
Pinus_engelmannii NA 26.6 -5 NA NA NA NA NA NA Pinus_flexilis 29.58 32.7 -4.1 0 1697 20 3 0.45 Pinus_fragilissima NA NA NA NA NA NA NA NA Pinus_grandiana NA 24 8.1 NA NA 10 2 0.56 Pinus_greggi NA 24 NA NA 7 2 0.6 Pinus_halepensis NA 32.3 9.2 1 NA 7 2 0.6 Pinus_halepensis NA 33.5 NA NA 963 NA NA NA Pinus_hangshanensi NA NA NA NA NA NA NA NA NA Pinus_joarezensis NA NA NA NA NA NA NA NA Pinus_ioarienisis NA 32.9	Pinus_elliottii	22.36	24.9	5.4	1	NA	8	1	0.51	
Prinus_Tenzenian NA	Pinus_engelmannii	NA	26.6	-5	NA	NA	28	3	NA	
Prinus_Inexins 29.38 32.7 -4.1 0 1697 20 3 0.43 Pinus_geradiana NA	Pinus_fenzeliana			NA	NA		NA 20	NA	NA 0.45	
Prinus_pragrama NA	Pinus_flexilis	29.58 NA	32.7	-4.1 NA		1697	20	3 NA	0.45 NA	
InitialDistInitDistInitDistInitDistInitDistInitDistInitDistInitDistInitDistDistInitDist <th< td=""><td>Pinus_magnissima Pinus_gerardiana</td><td>NΑ</td><td>36.9</td><td>-13.7</td><td>NΑ</td><td>300</td><td>28</td><td>NA</td><td>NA</td></th<>	Pinus_magnissima Pinus_gerardiana	NΑ	36.9	-13.7	NΑ	300	28	NA	NA	
Pinus_greggiiNA24NANANANASNANAPinus_halepensisNA32.39.21NA720.6Pinus_haldepensisNANANANANANANANAPinus_halderichiNA33.5NANANA963NANANAPinus_halderichiNA33.5NANANANANANANAPinus_halderichiNA32.5NANANANANANAPinus_hanshanensiNANANANANANANANAPinus_johanisNA32.9NANANANANANAPinus_kesiyaNA29.311NANANANANAPinus_keraptinNANANANANANANAPinus_keraptinNANANANANANANAPinus_kangtungensiNANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_lawsoniiNANANANANANANANANAPinus_lopagaevaNANANANANANANANAPinus_lopinglaNANANANANANANANAPinus_lopinglaNANANANA<	Pinus glabra	NA	24	8.1	NA	NA	10	2	0.56	
Pinus_halepensisNA32.39.21NA720.6Pinus_hartwegiiNANANANANAAAAAPinus_heldreichiiNA33.5NANA963NANANAPinus_herreraeNA24.6NANANANANANANAPinus_invangshanensiNANANANANANANANANAPinus_invangshanensiNANANANANANANANAPinus_igeffreyi24.9129.22.4NA813810.57Pinus_iguarezensisNANANANANANANANAPinus_kresiyaNA29.311NANANANANAPinus_kresipiaNANANANANANANANAPinus_kresnpfiiNANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_lawsoniiNANANANANANANANANAPinus_longaevaNANANANANANANANANAPinus_longaevaNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_mastimartinezii <t< td=""><td>Pinus greggii</td><td>NA</td><td>24</td><td>NA</td><td>NA</td><td>NA</td><td>5</td><td>NA</td><td>NA</td></t<>	Pinus greggii	NA	24	NA	NA	NA	5	NA	NA	
Pinus_hartwegiiNANANANANA450NANANANAPinus_heldreichiiNA33.5NANANANANANAPinus_herreraeNA24.6NANANANANANAPinus_inwangshanensiNANANANANANANANAPinus_jeffreyi24.9129.22.4NA813810.57Pinus_johannisNA32.9NANANANANANAPinus_kesiyaNANANANANANANAPinus_kesiyaNA33.2-9.9NANA152NAPinus_krempfiiNANANANANANANANAPinus_lambertiana31.7634.2-1508004030.55Pinus_latteriNANANANANANANANAPinus_longaevaNANANANANANANAPinus_londaevaNANANANANANANAPinus_maestrensisNANANANANANAPinus_maestrensisNANANANANANAPinus_maestrensisNANANANANANAPinus_mastoniaNANANANANANAPinus_maestrensisNANA	Pinus_halepensis	NA	32.3	9.2	1	NA	7	2	0.6	
Pinus_heldreichiiNA33.5NANA963NANANANAPinus_herreraeNA24.6NANANANANANANAPinus_herreraeNANANANANANANANAPinus_biffreyi24.9129.22.4NA813810.57Pinus_johannisNA32.9NANANANANANAPinus_kesiyaNA29.311NANANANANAPinus_koraiensisNA33.2-9.9NANANANANAPinus_koraiensisNANANANANANANANAPinus_koraingensiNANANANANANANANAPinus_latteriNANANANANANANANAPinus_leiophyllaNANANANANANANANAPinus_luchuensisNANANANANANANANAPinus_mastoriniciNANANANANANANANAPinus_luchuensisNANANANANANANANAPinus_mastoriniciNANANANANANANAPinus_mastoriniciNANANANANANANAPinus_lophyllaZ7.632.8-15NA	Pinus_hartwegii	NA	NA	NA	NA	450	NA	NA	NA	
Pinus_herreraeNA24.6NANANANANANANAPinus_hwangshanensiNANANANANANANANANAPinus_jeffreyi24.9129.22.4NA813810.57Pinus_johannisNA32.9NANANANANANAPinus_juarezensisNANANANANANANANAPinus_kesiyaNA29.311NANANANANAPinus_keraigensisNA33.2-9.9NANANANANAPinus_krempfiiNANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_lawsoniiNANANANANANANANAPinus_leiophyllaNANANANANANANAPinus_longaevaNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensisNANANANANANANA <t< td=""><td>Pinus_heldreichii</td><td>NA</td><td>33.5</td><td>NA</td><td>NA</td><td>963</td><td>NA</td><td>NA</td><td>NA</td></t<>	Pinus_heldreichii	NA	33.5	NA	NA	963	NA	NA	NA	
Pinus_hwangshanensiNANANANANANANANAPinus_jeffreyi24.9129.22.4NA813810.57Pinus_johannisNA32.9NANANANANANANAPinus_juarezensisNANANANANANANANANAPinus_kesiyaNA29.311NANANANANANAPinus_krempfiiNANANANANANANANANAPinus_krempfiiNANANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANANAPinus_logngaevaNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_mastrensisNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_mastrensisNANANANANANANANAPinus_mastrensisNANANANANANANANAPinus_mastrensisNANANANANANANANAPinus_	Pinus_herrerae	NA	24.6	NA	NA	NA	10	NA	NA	
Pinus_lettreyi24.9129.22.4NA813810.57Pinus_johannisNA32.9NANANANANANANANAPinus_juarezensisNANANANANANANANANANAPinus_kesiyaNA29.311NANANANANANAPinus_koraiensisNA33.2-9.9NANANANANAPinus_krempfiiNANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANANAPinus_lawsoniiNANANANANANANANANAPinus_longaevaNANANANANANANANANAPinus_lumholtziiNANANANANANANANANAPinus_mastrensisNANANANANANANANANAPinus_mastimatineziiNANANANANANANANAPinus_maximatineziiNANANANANANANAPinus_montezumaeNA27.3NANANANANANAPinus_montezumaeNA27.3NANANANA </td <td>Pinus_hwangshanensi</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Pinus_hwangshanensi	NA	NA	NA	NA	NA	NA	NA	NA	
Prinus_jurarezensisNANANANANANANANANANAPinus_juarezensisNANANANANANANANANANAPinus_kesiyaNA33.2-9.9NANANANANANAPinus_koraiensisNANANANANANANANANAPinus_koraiensisNANANANANANANANAPinus_koraiensisNANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANAPinus_leiophyllaNANANANANANANAPinus_leiophyllaNANANANANANANAPinus_louchuensisNANANANANANANAPinus_maestrensisNANANANANANANAPinus_mastimartineziiNANANANANANANAPinus_mastimartineziiNANANANANANANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_montezumaeNANANANANANANANAPinus_montezumaeNANANA </td <td>Pinus_jettreyi</td> <td>24.91 NA</td> <td>29.2</td> <td>2.4 NA</td> <td>NA</td> <td>813</td> <td>8</td> <td>1</td> <td>0.57</td>	Pinus_jettreyi	24.91 NA	29.2	2.4 NA	NA	813	8	1	0.57	
Pinus_luarezensisNANANANANANANANAPinus_koraiensisNA29.311NANA51NAPinus_koraiensisNA33.2-9.9NANANANANANAPinus_krempfiiNANANANANANANANANANAPinus_kwangtungensiNANANANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANAPinus_leiophyllaNANANANANANANAPinus_longaevaNANANANANANANAPinus_luchuensisNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensisNANANANANANANAPinus_mastrensiiNANANANANANANAPinus_mastrensiiNANANANANANANAPinus_montezumaeNA27.3NANANANANAPinus_montezumaeNA29.331.53.1NANANANAPinus_montezumaeNANANANANANANA <td></td> <td>NA NA</td> <td>52.9 NA</td> <td>NA NA</td> <td>NA NA</td> <td>NA</td> <td>NA NA</td> <td>NA NA</td> <td></td>		NA NA	52.9 NA	NA NA	NA NA	NA	NA NA	NA NA		
Pinus_koraiensisNA33.2-9.9NANANA152NAPinus_krempfiiNANANANANANANANANANAPinus_kwangtungensiNANANANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANAPinus_lawsoniiNANANANANANANANAPinus_leiophyllaNA24.8NANANANANANAPinus_longaevaNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_maestrensisNANANANANANANAPinus_maximartineziiNAS1.2-18NANANANAPinus_maximinoiNANANANANANANAPinus_maximinoiNANANANANANANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANA	Pinus kesiva	NA	29.3	11	NA	NA	5	1	NA	
Pinus_krempfiiNANANANANANANANANANANAPinus_kwangtungensiNANANANANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANANAPinus_lawsoniiNANANANANANANANAPinus_leiophyllaNA24.8NANANANANANAPinus_longaevaNANANANANANANANAPinus_luchuensisNANANANANANANAPinus_lumholtziiNANANANANANANAPinus_maestrensisNANANANANANANAPinus_maximartineziiNAS1.2-18NANANANAPinus_maximinoiNANANANANANANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANAN	Pinus koraiensis	NA	33.2	-9.9	NA	NA	15	2	NA	
Pinus_kwangtungensiNANANANANANANANANAPinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANANAPinus_lawsoniiNANANANANANANANAPinus_leiophyllaNA24.8NANANANANANAPinus_longaevaNANANANANANANANAPinus_luchuensisNANANANANANANAPinus_lumholtziiNANANANANANANAPinus_maestrensisNANANANANANANAPinus_maximartineziiNAS1.2-18NANANANAPinus_maximinoiNANANANANANANAPinus_merkusiiNAS1.2-18NANANANAPinus_maximinoiNANANANANANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_morticolaNANANANANANANAPinus_morticolaNANANANANANANAPinus_morticola <td< td=""><td>Pinus_krempfii</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></td<>	Pinus_krempfii	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_lambertiana31.7634.2-1508004030.5Pinus_latteriNANANANANANANANANANAPinus_lawsoniiNANANANANANANANANANAPinus_leiophyllaNA24.8NANANANANANANAPinus_longaevaNANANANANANANANAPinus_luchuensisNANANANANANANAPinus_lumholtziiNANANANANANANAPinus_maestrensisNANANANANANANAPinus_mastimartineziiNANANANANANAPinus_maximinoiNANANANANANAPinus_monophylla27.3632.8-8.3NA900202Pinus_monticola29.331.53.1NANANANAPinus_mortisonicolaNANANANANANAPinus_mortisonicolaNANANANANANAPinus_mortisonicolaNANANANANANAPinus_mortisonicolaNANANANANANAPinus_mortisonicolaNANANANANANAPinus_mortisonicolaNA25.95.7NANA	Pinus_kwangtungensi	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_latteriNANANANANANANANANAPinus_lawsoniiNANANANANANANANANANAPinus_leiophyllaNA24.8NANANANANANANAPinus_longaevaNANANANANANANANANAPinus_luchuensisNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_maestrensisNANANANANANANANAPinus_mastimartineziiNANANANANANANANAPinus_maximinoiNANANANANANANANAPinus_monophylla27.3632.8-8.3NANANANANAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANA	Pinus_lambertiana	31.76	34.2	-15	0	800	40	3	0.5	
Pinus_lawsoniiNANANANANANANANANAPinus_leiophyllaNA24.8NANANANANANANAPinus_longaevaNANANANANANANANANAPinus_luchuensisNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_maestrensisNANANANANANANANAPinus_mastimartineziiNANANANANANANANAPinus_maximartineziiNA31.2-18NANANANANAPinus_maximinoiNANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_muricataNA24.5101NA510.76	Pinus_latteri	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_leiophyllaNA24.8NANANANANANAAPinus_longaevaNANANANANANANANANANAPinus_luchuensisNANANANANANANANANANAPinus_lumholtziiNANANANANANANANANAPinus_maestrensisNANANANANANANANAPinus_massonianaNANANANANANANANAPinus_maximartineziiNA31.2-18NANANANANAPinus_maximinoiNANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNANANANANANANAPinus_muricataNA25.95.7NANA152NA	Pinus_lawsonii	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_longaevaNANANANASuccNANANAPinus_luchuensisNANANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_maestrensisNANANANANANANANAPinus_massonianaNANANANANANANANAPinus_maximartineziiNA31.2-18NANANANANAPinus_maximinoiNANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_monticola29.331.53.1NANANANANAPinus_mortisonicolaNANANANANANANAPinus_mugoNA25.95.7NANA152NAPinus_muricataNA24.5101NA510.76	Pinus_leiophylla	NA	24.8	NA	NA	NA F000	NA	3	NA	
Pinus_ludiheitsisNANANANANANANAPinus_lumholtziiNANANANANANANANAPinus_maestrensisNANANANANANANANANAPinus_massonianaNANANANANANANANANAPinus_maximartineziiNA31.2-18NANANANANANAPinus_maximinoiNANANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_montezumaeNA27.3NANANANANANAPinus_morticola29.331.53.1NA707101NAPinus_morticolaNANANANANANANANAPinus_moticolaNA25.95.7NANA152NAPinus_muricataNA24.5101NA510.76	Pinus_longaeva	NA NA	NA NA	NA NA	NA	5000	NA NA	NA NA	NA NA	
Pinus_namestrensisNANANANANANANAPinus_massonianaNANANANANANANANAPinus_massonianaNANANANANANANANANAPinus_maximartineziiNA31.2-18NANANANANANAPinus_maximinoiNANANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_montezumaeNA27.3NANANANANANAPinus_morticola29.331.53.1NA707101NAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNA25.95.7NANA152NAPinus_muricataNA24.5101NA510.76	Pinus lumboltzii	NΔ	NA	NΑ	NΔ	NΑ	NA	NΑ	NΔ	
Pinus_massonianaNANANANANANANAPinus_maximartineziiNA31.2-18NANANANANAPinus_maximinoiNANANANANANANANAPinus_maximinoiNANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_montezumaeNA27.3NANANANANANAPinus_morticola29.331.53.1NA707101NAPinus_mortisonicolaNANANANANANANAPinus_mortisonicolaNA25.95.7NANA152NAPinus_muricataNA24.5101NA510.76	Pinus maestrensis	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_maximartineziiNA31.2-18NANA13NANAPinus_maximinoiNANANANANANANANANAPinus_merkusiiNA33.35.8NANA10NANAPinus_monophylla27.3632.8-8.3NA900202NAPinus_montezumaeNA27.3NANANANANANAPinus_monticola29.331.53.1NA707101NAPinus_morrisonicolaNANANANANANANAPinus_morgoNA25.95.7NANA152NAPinus_muricataNA24.5101NA510.76	Pinus_massoniana	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_maximinoi NA	Pinus_maximartinezii	NA	31.2	-18	NA	NA	13	NA	NA	
Pinus_merkusii NA 33.3 5.8 NA NA 10 NA NA Pinus_monophylla 27.36 32.8 -8.3 NA 900 20 2 NA Pinus_montezumae NA 27.3 NA NA NA NA NA NA Pinus_montezumae NA 27.3 NA NA NA NA NA NA Pinus_monticola 29.3 31.5 3.1 NA 707 10 1 NA Pinus_morrisonicola NA NA NA NA NA NA Pinus_mugo NA 25.9 5.7 NA NA 15 2 NA Pinus_muricata NA 24.5 10 1 NA 5 1 0.76	Pinus_maximinoi	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_monophylla 27.36 32.8 -8.3 NA 900 20 2 NA Pinus_montezumae NA 27.3 NA	Pinus_merkusii	NA	33.3	5.8	NA	NA	10	NA	NA	
Pinus_montezumae NA 27.3 NA	Pinus_monophylla	27.36	32.8	-8.3	NA	900	20	2	NA	
Pinus_monucola 29.3 31.5 3.1 NA 707 10 1 NA Pinus_morrisonicola NA	Pinus_montezumae	NA	27.3	NA	NA	NA	NA	NA	NA	
Pinus_monsonicola NA	Pinus_monticola	29.3	31.5	3.1	NA	/07	10	1	NA	
Pinus muricata NA 24.5 10 1 NA 5 1 0.76		NA NA	NA 25 0	NA 5 7	NA NA	NA NA	NA 15	NA 2	NA NA	
	Pinus muricata	NA	24.5	10	1	NA	5	1	0.76	

	life history characters								
species	Cval	Genome	Z	Inva	mxAge	mnGen	mnAgeSeed	NAR	
Pinus_nelsonii	NA	36.1	-9.2	NA	NA	17	NA	NA	
Pinus_nigra	NA	26.9	1.8	1	NA	15	2	0.48	
Pinus_occidentalis	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_oocarpa	NA	25.2	NA	NA	NA	5	NA	NA	
Pinus_palustris	23.04	25.9	-6.4	0	460	20	NA	0.67	
Pinus_parviflora	NA	31.9	NA	NA	NA	NA	NA	NA	
Pinus_patula	NA	24.8	8.2	1	NA	10	NA	0.6	
Pinus_peuce	NA	34	5.5	NA	NA	10	2	NA	
Pinus_pinaster	NA	30.9	8.3	1	NA	6	1	0.66	
Pinus_pinceana	NA	32	NA	NA	NA	NA	NA	NA	
Pinus_pinea	NA	30.4	-15.5	NA	150	15	1	0.57	
Pinus_ponderosa	NA	25.9	0.7	1	980	15	2	0.58	
Pinus_praetermissa	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_pringlei	NA	25.8	NA	NA	NA	NA	NA	NA	
Pinus_pseudostrobus	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_pumila	NA	31.1	-4.1	NA	NA	23	NA	NA	
Pinus_pungens	NA	NA	NA	NA	232	NA	1	NA	
Pinus_quadrifolia	NA	NA	NA	NA	200	NA	NA	NA	
Pinus_radiata	23.12	26.4	10.1	1	NA	5	1	0.61	
Pinus_remota	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_resinosa	NA	28.5	-1.3	0	500	20	NA	0.46	
Pinus_rigida	NA	25.5	3.6	NA	351	8	1	0.53	
Pinus_roxburghii	NA	35.3	-1.3	NA	NA	15	2	NA	
Pinus_rzedowskii	NA	32.8	NA	NA	NA	NA	NA	NA	
Pinus_sabiniana	28.35	32.3	-8.9	0	NA	10	2	0.46	
Pinus_serotina	21.02	23.6	12.7	NA	NA	4	1	NA	
Pinus_sibirica	NA	NA	NA	NA	629	NA	3	NA	
Pinus_squamata	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_strobiformis	NA	35.4	-5.8	NA	599	15	NA	NA	
Pinus_strobus	29.04	31.3	5	1	450	5	1	0.43	
Pinus_sylvestris	NA	25.9	9.2	1	1244	5	1	0.6	
Pinus_tabuliformis	NA	29.3	NA	NA	NA	NA	1	NA	
Pinus_taeda	22.14	24.8	2.8	1	300	5	1	0.5	
Pinus_taiwanensis	NA	27.9	NA	NA	NA	NA	NA	NA	
Pinus_teocote	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_thunbergii	NA	27.3	10.4	NA	NA	6	1	0.56	
Pinus_torreyana	26.33	31.3	-10.4	0	150	12	2	0.48	
Pinus_tropicalis	NA	30.5	NA	NA	NA	NA	NA	NA	
Pinus_virginiana	20.35	22.5	11.8	NA	200	5	1	0.54	
Pinus_wallichiana	NA	30.2	1.2	NA	410	15	2	NA	
Pinus_washoensis	NA	26.8	NA	NA	NA	NA	2	NA	
Pinus_yecorensis	NA	NA	NA	NA	NA	NA	NA	NA	
Pinus_yunnanensis	NA	NA	NA	NA	NA	NA	NA	NA	

	wood characters							
species	Grav	DWeight	Rupture	Hardn	Elast	Str	shrink	
Pinus_albicaulis	NA	NA	NA	NA	NA	20	2	
Pinus_aristata	NA	NA	NA	NA	NA	20	2	
Pinus_amamiana	NA NA		NA NA	NA NA	NA NA	NA 15	NA NA	
Pinus_armandii	NA	NA	NA	NA	NA	20	2	
Pinus attenuata	NA	NA	NA	NA	NA	5	1	
Pinus avacahuite	NA	NA	NA	NA	NA	5	NĂ	
Pinus_balfouriana	NA	NA	NA	NA	NA	20	2	
Pinus_banksiana	0.4	31	9900	570	135000	3	1	
Pinus_bhutanica	NA	NA	NA	NA	NA	NA	NA	
Pinus_brutia	NA	NA	NA	NA	NA	7	1	
Pinus_bungeana	NA	NA	NA	NA	NA	NA	NA	
Pinus_canariensis		NA	NA 12240	NA 1110	NA	15	2	
	0.51 NA	NA NA	15540 NA	ΝΔ	1745000 NA	20	NA 2	
Pinus cembroides	NA	NA	NA	NA	NA	15	NA	
Pinus chiapensis	NA	NA	NA	NA	NA	10	NA	
Pinus_clausa	0.46	34	11600	730	1410000	5	1	
Pinus_contorta	0.38	29	9400	480	1340000	4	1	
Pinus_cooperi	NA	NA	NA	NA	NA	NA	NA	
Pinus_coulteri	NA	NA	NA	NA	NA	8	2	
Pinus_cubensis	NA	NA	NA	NA	NA	NA	NA	
Pinus_culminicola	NA	NA	NA	NA	NA	NA	NA	
Pinus_udidiensis Pinus_densata	NΑ	NA NA	NΑ	NΑ	NΑ	NΑ	NΑ	
Pinus densiflora	NA	NA	NA	NA	NA	20	2	
Pinus devoniana	NA	NA	NA	NA	NA	NA	NA	
Pinus_discolor	NA	NA	NA	NA	NA	NA	3	
Pinus_douglasiana	NA	NA	NA	NA	NA	NA	NA	
Pinus_durangensis	NA	NA	NA	NA	NA	8	NA	
Pinus_echinata	0.47	35	13100	690	1750000	5	1	
Pinus_edulis	0.5	37	7800	860	1140000	25	3	
Pinus_elliottii Dinus_engelmannii	0.54	41	16300	760	1980000	8	1	
Pinus_engennannin Pinus_fenzeliana	NA NA	NA	NA NA	NA NA	NA	Z0 NA	NA NA	
Pinus flexilis	0.37	28	9100	430	1170000	20	3	
Pinus fragilissima	NA	NA	NA	NA	NA	NA	NĂ	
Pinus_gerardiana	NA	NA	NA	NA	NA	28	NA	
Pinus_glabra	0.41	32	10400	660	1230000	10	2	
Pinus_greggii	NA	NA	NA	NA	NA	5	NA	
Pinus_halepensis	NA	NA	NA	NA	NA	7	2	
Pinus_haldraiahii	NA	NA	NA	NA	NA	NA	NA	
Pinus_herrerae						NA 10	NA NA	
Pinus hwangshanensi	NA	NA	NA	NA	NA	NA	NA	
Pinus jeffreyi	0.37	28	9300	500	1240000	8	1	
Pinus_johannis	NA	NA	NA	NA	NA	NA	NA	
Pinus_juarezensis	NA	NA	NA	NA	NA	NA	NA	
Pinus_kesiya	0.45	38	12610	670	1776000	5	1	
Pinus_koraiensis	NA	NA	NA	NA	NA	15	2	
Pinus_krempfii	NA	NA	NA	NA	NA	NA	NA	
Pinus_kwangtungensi Pinus_lambertiana	0.34	NA 25	8200	1NA 380	NA 1190000	NA 40	NA 2	
Pinus latteri	0.34 NA	NA NA	8200 NA	NA NA	1190000 NA	40 NA	NΔ	
Pinus lawsonii	NA	NA	NA	NA	NA	NA	NA	
Pinus_leiophylla	NA	NA	NA	NA	NA	NA	3	
Pinus_longaeva	NA	NA	NA	NA	NA	NA	NA	
Pinus_luchuensis	NA	NA	NA	NA	NA	NA	NA	
Pinus_lumholtzii	NA	NA	NA	NA	NA	NA	NA	
Pinus_maestrensis	NA	NA	NA	NA	NA	NA	NA	
Pinus_massoniana		NA	NA			NA 12		
Pinus maximinoi	NA NΔ	NA NΔ	NΑ	NA NΔ	NΑ	13 NA	NA NΔ	
Pinus merkusii	0.57	44	15750	870	2327000	10	NA	
Pinus_monophylla	NA	NA	NA	NA	NA	20	2	
Pinus_montezumae	NA	NA	NA	NA	NA	NA	NA	
Pinus_monticola	0.35	27	9700	420	1460000	10	1	
Pinus_morrisonicola	NA	NA	NA	NA	NA	NA	NA	
Pinus_mugo	NA	NA	NA	NA	NA	15	2	
Pinus_muricata	NA	NA	NA	NA	NA	5	1	

	wood characters								
species	Grav	DWeight	Rupture	Hardn	Elast	Str	shrink		
Pinus_nelsonii	NA	NA	NA	NA	NA	NA	NA		
Pinus_nigra	0.39	30	9340	660	1568000	NA	NA		
Pinus_occidentalis	NA	NA	NA	NA	NA	NA	NA		
Pinus_oocarpa	0.55	44	14720	950	2209000	NA	NA		
Pinus_palustris	0.54	41	14500	870	1980000	NA	NA		
Pinus_parviflora	NA	NA	NA	NA	NA	NA	NA		
Pinus_patula	0.45	36	11500	550	1463000	NA	NA		
Pinus_peuce	NA	NA	NA	NA	NA	NA	NA		
Pinus_pinaster	0.39	31	10590	390	1238000	566	1.8		
Pinus_pinceana	NA	NA	NA	NA	NA	NA	NA		
Pinus_pinea	NA	NA	NA	NA	NA	NA	NA		
Pinus_ponderosa	0.38	28	9400	460	1290000	NA	NA		
Pinus_praetermissa	NA	NA	NA	NA	NA	NA	NA		
Pinus_pringlei	NA	NA	NA	NA	NA	789	1.2		
Pinus_pseudostrobus	NA	NA	NA	NA	NA	NA	NA		
Pinus_pumila	NA	NA	NA	NA	NA	NA	NA		
Pinus_pungens	0.49	36	11600	730	1550000	NA	NA		
Pinus_quadrifolia	NA	NA	NA	NA	NA	692	1.9		
Pinus_radiata	0.41	32	11480	710	1458000	537	1.		
Pinus_remota	NA	NA	NA	NA	NA	NA	NA		
Pinus_resinosa	0.41	34	11000	560	1630000	NA	N		
Pinus_rigida	0.47	34	10800	620	1430000	NA	N		
Pinus_roxburghii	NA	NA	NA	NA	NA	NA	N		
Pinus_rzedowskii	NA	NA	NA	NA	NA	NA	N		
Pinus_sabiniana	NA	NA	NA	NA	NA	NA	N		
Pinus_serotina	0.51	38	11600	740	1750000	NA	N		
Pinus sibirica	NA	NA	NA	NA	NA	NA	NA		
Pinus_squamata	NA	NA	NA	NA	NA	NA	NA		
Pinus strobiformis	NA	NA	NA	NA	NA	NA	NA		
Pinus strobus	0.34	25	8600	380	1240000	NA	NA		
Pinus sylvestris	0.39	34	12080	540	1461000	727	1.		
Pinus tabuliformis	NA	NA	NA	NA	NA	640	1.1		
Pinus taeda	0.47	35	12800	690	1790000	814	1.4		
Pinus taiwanensis	NA	NA	NA	NA	NA	NA	NA		
Pinus teocote	NA	NA	NA	NA	NA	NA	NA		
Pinus thunbergii	NA	NA	NA	NA	NA	529	2.		
Pinus torrevana	NA	NA	NA	NA	NA	NA	N		
Pinus tropicalis	NA	NA	NA	NA	NA	NA	N		
Pinus virginiana	0.45	32	13000	740	1520000	565	N		
Pinus wallichiana	NA	NA	NA	NA	NA	NA	N		
Pinus washoensis	NA	NA	NA	NA	NA	NA	N		
Pinus vecorensis	NA	NA	NA	NA	NA	NA	N/		
Pinus vunnanensis	NΔ	NΔ	NA	NΔ	NΔ	NΛ	N/		

3.3 S3 - Species distribution maps

3.4 S4 – Trait distribution over phylogeny

traits for few species

3.5 S5 - Phylogenetic signal of 19 bioclim variables

3.6 S6 – Complete List of References

- Agee, J.K. (1998) Fire and pine ecosystems. *Ecology and Biogeography of Pinus* (ed. by D.M. Richardson), pp. 193 218. Cambridge University Press, Cambridge, UK.
- Barraclough, T.G. & Nee, S. (2001) Phylogenetics and speciation. Trends in Ecology & Evolution, 16, 391-399.
- Barraclough, T.G. & Savolainen, V. (2001) Evolutionary rates and species diversity in flowering plants. *Evolution*, **55**, 677-683.
- Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. (2007) Correlated evolution of genome size and seed mass. *New Phytologist*, **173**, 422-437.
- Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Wheeler, D.L. (2007) GenBank. *Nucleic Acids Res*, **35**, D21-D25.
- Blomberg, S.P. & Garland, T. (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. *Journal of Evolutionary Biology*, **15**, 899-910.
- Blomberg, S.P., Garland, T. & Ives, A.R. (2003) Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. *Evolution*, **57**, 717-745.
- Bond, W.J. & Keeley, J.E. (2005) Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. *Trends in Ecology & Evolution*, **20**, 387-394.
- Bond, W.J. & Scott, A.C. (2010) Fire and the spread of flowering plants in the Cretaceous. *New Phytologist*, **188**, 1137-1150.
- Bond, W.J., Woodward, F.I. & Midgley, G.F. (2005) The global distribution of ecosystems in a world without fire. *New Phytologist*, **165**, 525-537.
- Bouille, M., Senneville, S. & Bousquet, J. (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. *Tree Genetics & Genomes*, **7**, 469-484.
- Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R. & Pyne, S.J. (2009) Fire in the Earth System. *Science*, **324**, 481-484.
- Brown, J.H. (1995) Macroecology. The University of Chicago Press, Chicago.
- Budde, K.B., Heuertz, M., Hernandez-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdu, M. & Gonzalez-Martinez, S.C. (2013) In situ genetic association for serotiny, a fire-related trait, in Mediterranen maritime pine (*Pinus pinaster*). New Phytologist, in press.
- Businsky, R. (2004) A revision of the Asian Pinus subsetion Strobus (Pinaceae). Willdenowia, 34, 209-257.
- Connell, J.H. (1978) Diversity in Tropical Rain Forests and Coral Reefs High Diversity of Trees and Corals Is Maintained Only in a Non-Equilibrium State. *Science*, **199**, 1302-1310.
- Cowan, R. (2008) DNA Barcoding of Land Plants. unpublished.
- Critchfield, W.B. & Little, E.L. (1966) *Geographic distribution of the pines of the world*. Miscellaneous Publication 991, Washington, D.C.
- Cronn, R., Liston, A., Parks, M., Gernandt, D.S., Shen, R. & Mockler, T. (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. *Nucleic Acids Research*, **36**
- Dantas, V.D. & Pausas, J.G. (2013) The lanky and the corky: fire-escape strategies in savanna woody species. *Journal of Ecology*, **101**, 1265-1272.
- Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, **9**, 772-772.
- Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. *Bmc Evolutionary Biology*, **7**, 1969-1973.
- Earle, A.J. (2007) The Gymnosperm Database. Available at: <u>http://www.conifers.ch</u> (accessed 29.10.2013).
- Eckenwalder, J.E. (2009) Conifers of the world: the complete reference. Timber Press, Inc.
- Eckert, A.J. & Hall, B.D. (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. *Molecular Phylogenetics and Evolution*, **40**, 166-182.
- Farjon, A. (2008) A natural history of conifers. Timber Press, Inc.
- Farjon, A. (2010) A Handbook of the World's Conifers. BRILL.
- FitzJohn, R.G. (2012) Diversitree: comparative phylogenetic analyses of diversification in R. *Methods in Ecology and Evolution*, **3**, 1084-1092.

- Frankis, M.P. (1993) Morphology and affinities of *Pinus brutia*. *International symposium on Pinus brutia* (ed by, pp. 11-18. Ankara.
- Geada Lopez, G. (2002) Phylogeny of Diploxylon Pinus. unpublished.
- Geada Lopez, G. (2003) Phylogeny of the Norh American Pines. unpublished.
- Geada Lopez, G. & Harada, K. (2003) Evolutionary Relationships in Pines. unpublished.
- Geada Lopez, G., Kamiya, K. & Harada, K. (2001) Phylogenetic relationships of Diploxylon pines based on plastid sequence data. *unpublished*.
- Gernandt, D.S. (2007) Absolute age estimates for Pinus and Pinaceae. unpublished.
- Gernandt, D.S. (2008) Pinus Phylogeny. unpublished.
- Gernandt, D.S., Liston, A. & Pinero, D. (2003) Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. *Systematic Botany*, **28**, 657-673.
- Gernandt, D.S., Lopez, G.G., Garcia, S.O. & Liston, A. (2005) Phylogeny and classification of Pinus. *Taxon*, **54**, 29-42.
- Gernandt, D.S., Hernandez-Leon, S., Salgado-Hernandez, E. & de la Rosa, J.A.P. (2009) Phylogenetic Relationships of Pinus Subsection Ponderosae Inferred from Rapidly Evolving cpDNA Regions. *Systematic Botany*, **34**, 481-491.
- Gittleman, J.L. & Kot, M. (1990) Adaptation Statistics and a Null Model for Estimating Phylogenetic Effects. Systematic Zoology, **39**, 227-241.
- Gomez-Gonzalez, S., Torres-Diaz, C., Bustos-Schindler, C. & Gianoli, E. (2011) Anthropogenic fire drives the evolution of seed traits. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 18743-18747.
- Grime, J.P. (1977) Evidence for Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. *American Naturalist*, **111**, 1169-1194.
- Grime, J.P., Shacklock, J.M.L. & Band, S.R. (1985) Nuclear-DNA Contents, Shoot Phenology and Species Co-Existence in a Limestone Grassland Community. *New Phytologist*, **100**, 435-445.
- Grotkopp, E., Rejmanek, M. & Rost, T.L. (2002) Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. *American Naturalist*, **159**, 396-419.
- Grotkopp, E., Rejmanek, M., Sanderson, M.J. & Rost, T.L. (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. *Evolution*, **58**, 1705-1729.
- Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic Biology*, **52**, 696-704.
- Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & Challenger, W. (2008) GEIGER: investigating evolutionary radiations. *Bioinformatics*, **24**, 129-131.
- He, T.H., Pausas, J.G., Belcher, C.M., Schwilk, D.W. & Lamont, B.B. (2012) Fire-adapted traits of Pinus arose in the fiery Cretaceous. *New Phytologist*, **194**, 751-759.
- Heard, S.B. & Hauser, D.L. (1995) Key evolutionary innovations and their ecological mechanisms. *Historical Biology*, **10**, 151-173.
- Hernandez, C.E., Rodriguez-Serrano, E., Avaria-Llautureo, J., Inostroza-Michael, O., Morales-Pallero, B., Boric-Bargetto, D., Canales-Aguirre, C.B., Marquet, P.A. & Meade, A. (2013) Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. *Methods in Ecology and Evolution*, 4, 401-415.
- Hernandez-Serrano, A., Verdu, M., Gonzalez-Martinez, S.C. & Pausas, J.G. (in press) Fire structures pine serotiny at different scales. *American Journal of Botany*.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25**, 1965-1978.
- Hunter, J.P. (1998) Key innovations and the ecology of macroevolution. Trends in Ecology & Evolution, 13, 31-36.
- IPCC (2007) Climate Change 2007 the physical science basis. Cambridge University Press, Cambridge.
- Johnson, E.A. (2001) Forest fires behavior and ecological effects. Academic Press, San Diego.
- Kassen, R., Llewellyn, M. & Rainey, P.B. (2004) Ecological constraints on diversification in a model adaptive radiation. *Nature*, **431**, 984-988.
- Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res*, **30**, 3059-3066.
- Keeley, J.E. (2012) Ecology and evolution of pine life histories. Annals of Forest Science, 69, 445-453.
- Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J. & Bradstock, R.A. (2011) Fire as an evolutionary pressure shaping plant traits. *Trends in Plant Science*, **16**, 406-411.

- Klymiuk, A.A. & Stockey, R.A. (2012) A Lower Cretaceous (Valanginian) Seed Cone Provides the Earliest Fossil Record for Picea (Pinaceae). *American Journal of Botany*, **99**, 1069-1082.
- Lamont, B.B. & Wiens, D. (2003) Are seed set and speciation rates always low among species that resprout after fire, and why? *Evolutionary Ecology*, **17**, 277-292.
- Lepage, B.A. (2003) A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. *Botanical Journal of the Linnean Society*, **141**, 257-296.
- Lepage, B.A. & Basinger, J.F. (1991) A New Species of Larix (Pinaceae) from the Early Tertiary of Axel-Heiberg Island, Arctic Canada. *Review of Palaeobotany and Palynology*, **70**, 89-111.
- Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. *Proceedings of the National Academy of Sciences of the United States of America*, **109**, 16217-16221.
- Lin, C.P., Huang, J.P., Wu, C.S., Hsu, C.Y. & Chaw, S.M. (2010) Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. *Genome Biology and Evolution*, **2**, 504-517.
- Litsios, G., Wüest, R., Kostikova, A., Forest, F., Lexer, C., Linder, H.P., Pearman, P.B., Zimmermann, N.E. & Salamin, N. (2013) Effects of a fire response trait on diversification in replicated radiations. *Evolution*, <u>in press</u>.
- Little, E.L. & Critchfield, W.B. (1969) *Subdivisions of the genus Pinus (pines)*. USDA Forest Service, Washington D.C.
- Macgillivray, C.W. & Grime, J.P. (1995) Genome Size Predicts Frost-Resistance in British Herbaceous Plants -Implications for Rates of Vegetation Response to Global Warming. *Functional Ecology*, **9**, 320-325.
- Maddison, W.P., Midford, P.E. & Otto, S.P. (2007) Estimating a binary character's effect on speciation and extinction. Systematic Biology, 56, 701-710.
- Marlon, J.R., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F.S., Lavoie, M., Long, C., Minckley, T., Richard, P.J.H., Scott, A.C., Shafer, D.S., Tinner, W., Umbanhowar, C.E. & Whitlock, C. (2009) Wildfire responses to abrupt climate change in North America. *Proceedings of the National Academy of Sciences of the United States of America*, **106**, 2519-2524.
- Meier, E. (2013) The Wood Database. Available at: http://www.wood-database.com (accessed 29.10.2013).
- Millar, C.I. (1998) Early evolution of pines. *Ecology and Biogeography of Pinus* (ed. by D.M. Richardson), pp. 69 -91. Cambridge University Press, Cambridge, UK.
- Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K. & Thuiller, W. (2012) How to measure and test phylogenetic signal. *Methods in Ecology and Evolution*, **3**, 743-756.
- Noh, E.W., Lee, J.S., Choi, Y.I., Han, M.S., Yi, Y.S. & Han, S.U. (2007) direct submission. *Biotechnology Division, Korea Forest Research Institute*.
- Nunn, C.L. (2011) The Comparative Approach in Evolutionary Anthropology and Biology The University of Chicago Press, United States of America.
- Ojeda, F. (1998) Biogeography of seeder and resprouter Erica species in the Cape Floristic Region Where are the resprouters? *Biological Journal of the Linnean Society*, **63**, 331-347.
- Ozinga, W.A., Colles, A., Bartish, I.V., Hennion, F., Hennekens, S.M., Pavoine, S., Poschlod, P., Hermant, M., Schaminee, J.H.J. & Prinzing, A. (2013) Specialists leave fewer descendants within a region than generalists. *Global Ecology and Biogeography*, **22**, 213-222.
- Pagel, M. (1999) Inferring the historical patterns of biological evolution. Nature, 401, 877-884.
- Parks, M., Cronn, R. & Liston, A. (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. *BMC Biology*, **7**, 84, doi: 10.1186/1741-7007-7-84.
- Parks, M., Cronn, R. & Liston, A. (2012) Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). *BMC Evolutionary Biology*, **12**, , 100, doi: 10.1186/1471-2148-12-100.
- Parks, M.B. (2012) Plastome Phylogenomics in the Genus Pinus Using Massively Parallel Sequencing Technology. Oregon State University, Oregon.
- Pausas, J.G. & Verdu, M. (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. *Oikos*, **109**, 196-202.
- Pausas, J.G. & Keeley, J.E. (2009) A Burning Story: The Role of Fire in the History of Life. *Bioscience*, **59**, 593-601.
- Pausas, J.G. & Schwilk, D.W. (2012) Fire and plant evolution. In: *MEDECOS*, pp. 301-303. New Phytologist, Los Angeles, CA, USA.

- Proches, S., Wilson, J.R.U., Richardson, D.M. & Rejmanek, M. (2012) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. *Global Ecology and Biogeography*, **21**, 513-523.
- R Development Core Team (2013) R: A language and Environment for Statistical Computing.
- Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution*, **3**, 217-223.
- Richardson, D.M. (2000) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61, 539-542.
- Scott, A.C. (2000) The Pre-Quaternary history of fire. *Palaeogeography Palaeoclimatology Palaeoecology*, **164**, 281-329.
- Segarra-Moragues, J.G. & Ojeda, F. (2010) Postfire Response and Genetic Diversity in Erica Coccinea: Connecting Population Dynamics and Diversification in a Biodiversity Hotspot. *Evolution*, **64**, 3511-3524.
- Shin, H.W. & Kim, K.J. (2012) direct submission. School of life sciences and biotechnology, Korea University.
- Smith, S.A. & Donoghue, M.J. (2008) Rates of molecular evolution are linked to life history in flowering plants. *Science*, **322**, 86-89.
- Song, B.H., Wang, X.Q., Wang, X.R., Ding, K.Y. & Hong, D.Y. (2003) Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. *Molecular Ecology*, **12**, 2995-3001.
- Stockey, R.A. & Ueda, Y. (1986) Permineralized Pinaceous Leaves from the Upper Cretaceous of Hokkaido. *American Journal of Botany*, **73**, 1157-1162.
- Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Systematic Biology*, **56**, 564-577.
- Thomson, R.C., Glor, R.E. & Moore, B.R. (2013) *Workshop in Applied Phylogenetics*. Available at: http://treethinkers.org (accessed 29.10.2013).
- Verdu, M. & Pausas, J.G. (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. *Journal of Ecology*, **95**, 1316-1323.
- Verdu, M. & Pausas, J.G. (2013) Syndrome-Driven Diversification in a Mediterranean Ecosystem. *Evolution*, **67**, 1756-1766.
- Verdu, M., Pausas, J.G., Segarra-Moragues, J.G. & Ojeda, F. (2007) Burning phylogenies: Fire, molecular evolutionary rates, and diversification. *Evolution*, **61**, 2195-2204.
- Wakamiya, I., Newton, R.J., Johnston, J.S. & Price, H.J. (1993) Genome Size and Environmental-Factors in the Genus Pinus. *American Journal of Botany*, **80**, 1235-1241.
- Wang, X.Q. & Sang, T. (1999) The re-evaluation of the systematic positions of Nothotsuga and Hesperopeuce. *unpublished*.
- Wang, X.Q., Tank, D.C. & Sang, T. (2000) Phylogeny and divergence times in Pinaceae: Evidence from three genomes. *Molecular Biology and Evolution*, **17**, 773-781.
- Wang, X.R., Tsumura, Y., Yoshimaru, H., Nagasaka, K. & Szmidt, A.E. (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany, 86, 1742-1753.
- Willyard, A., Syring, J., Gernandt, D.S., Liston, A. & Cronn, R. (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for pinus (vol 24, pg 90, 2007). *Molecular Biology and Evolution*, 24, 620-620.
- Wu, C.S., Lai, Y.T., Lin, C.P., Wang, Y.N. & Chaw, S.M. (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: Selection toward a lower-cost strategy. *Molecular Phylogenetics and Evolution*, **52**, 115-124.