Konsistente Dokumentation, Analyse und Interpretation mesoalpin metamorpher Mineralparagenesen der Zentralalpen

Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern zur Erlangung der Doktorwürde

vorgelegt von

Dirk Rainer Schmatz

aus Deutschland

Leiter der Arbeit: Prof. Dr. M. Engi und Dr. J. E. Lieberman, Mineralogisch-petrographisches Institut der Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät auf Antrag des Herrn Prof. Dr. M. Engi angenommen.

Bern, den 22. April 1993

Der Dekan:

Prof. Dr. Tj. Peters

Vorwort

Während der langen Zeit des Rumbastelns an dieser Arbeit stellte ich mir immer wieder die Frage nach dem Sinn dieses Unterfangens, besonders in Zeiten, während denen es schlecht lief. Max Frisch, der ähnlichen Gedanken nachhing, nachdem er sein Architekturstudium abgebrochen hatte, schrieb 19?? einen Aufsatz, in dem er treffend schrieb:

... Andrerseits muss man sich gestehen, dass man in diesen Jahren auch etwas geleistet hat. Und wir bringen doch auch etwas mit. Ich meine nicht die Testate und das Wissen aus Büchern und Vorlesungen. Aber man hat an sich selber gearbeitet. Mit grossem Aufwand an Zeit und Seele. Auch all die Irrungen können nicht verloren sein; selbst wenn sie an sich albern sind, so bedeuten sie doch eine Strecke auf unserem Weg nach menschlicher Reife. Das ist es: wir sind weniger vorgedrungen in der Richtung auf einen Beruf im alltäglichen Sinn dieses Wortes, es ging uns weniger darum, einen Beruf zu besitzen als ein Mensch zu werden. Auch wenn wir dieses Ziel noch unmöglich erlangt haben können, so sind wir doch immerhin vorwärts gekommen ...

Diese Arbeit entstand unter der Leitung von Prof. Dr. Martin Engi und Dr. Joshua Lieberman. Martin und Josh, herzlichen Dank für Eure Beratung und Unterstützung.

Herzlicher Dank gilt auch allen folgenden Leuten, ohne deren Ratschläge oder tatkräftige Unterstützung diese Arbeit wohl nie zustande gekommen wäre.

Manfred Thüring, sowohl für Diskussionen am Aufschluss als auch für das Fachsimpeln über Kawasaki und Moto Guzzi oder für ermunternde Remote-login-Transatlantik-Gespräche. Helmut Horn, durch den das mächtige UNIX an seinem Kryptischen etwas verlor und sich die Core dumps im Rahmen hielten. Felix Würsten für die Hilfe an der Sonde und Ursula Irion für die feinen Znachts. Günter Böhm für die Mithilfe in der Bibliothek, die leckeren Frühstücke auf dem 6. Stock und die aufmunternden Gedanken über Gott und die Welt. Clemens Halmes, der begeisterte I^AT_EX-er, für Anregungen und Tips. Zaver Oetztürk, der mir in Sachen relationale Datenbanken die Augen öffnete. Kostas Petrakakis für die unerschrockene Programmierung von neuen MINSORT-Subroutinen. Jürg Megert und Vreni Jakob für die Herstellung erstklassiger Dünnschliffe für Mikroskop und Sonde. Ursula und Urs Mäder und Rob und Ingrid Berman für das herzliche Zuhause während meines Aufenthaltes in Ottawa und dem Petro-Team des Geological Survey of Canada für die kritische Beurteilung von **P**ARA**DIS**. Und allen Institutsmitgliedern, die irgendwie zum Entstehen dieser Arbeit beigetragen haben.

Besonders erwähnen möchte ich alle, die mich bei der Literatursuche tatkräftig unterstützten oder ohne Zögern ihre Sondendaten oder Sondenschliffe zur Verfügung stellten: Prof. M. Frey, Prof. V. Trommsdorff, Prof. H.R. Pfeifer, E. Klaper, R. Teutsch, E. Frank, P. Guntli, M. Liniger, B. Kamber, R. Oberhänsli, T. Thönen, N. Waber.

Ein besonderer Dank für die Unterstützung während der langen Zeit des Studierens gilt meinen Eltern und meiner Schwester Berit.

Diese Arbeit ist meiner Schwester Berit gewidmet.

Zusammenfassung

In dieser Arbeit wird eine Methodik vorgestellt, Phasengleichgewichte von metamorphen Paragenesen zu interpretieren, konsistent von der Dokumentation der petrographischen Primärdaten bis zur Auswertung der Druck- und Temperaturberechnungen. Untersucht werden mesoalpin metamorphe, metapelitische Paragenesen aus den Zentralalpen, einer Region, die als eine der geologisch bestuntersuchten der Welt gilt. Als Datenquellen dienten neben eigenen Daten vorwiegend Dissertationen, Diplomarbeiten und Publikationen der letzen 20 Jahre. Auf der Basis einer intern konsistenten thermodynamischen Datenbank werden die Druck- und Temperaturbedingungen abgeleitet, unter denen die Paragenesen equilibrierten. Die Resultate bilden die Grundlage für Isothermen- und Isobarenkarten der mesoalpinen Metamorphose.

Die Arbeit gliedert sich in 3 Teile:

1. Dokumentation: Sowohl die primären petrographischen und mineralchemischen Daten als auch die daraus abgeleiteten Resultate (P-T-Diagramme, T-X-Diagramme) werden mit Hilfe der speziell strukturierten, relationalen Datenbank, **P**RA**DIS**¹ dokumentiert und verwaltet. **P**RA**DIS** wurde nach den Grundsätzen der konzeptionellen Datenmodellierung entwickelt. Die Relationen sind normalisiert bis zur 3. Normalform und weisen eine ihrer Funktion entsprechend optimierte Speicherstruktur und Indexierung auf.

Die Datenbank **P**ARA**DIS** wurde auf einer SUN unter UNIX mit Hilfe von INGRES, einem kommerziellen Datanbankmanagementsystem, implementiert.

Zwei benutzerfreundliche 4GL-Applikationen, die sich der relationalen Sprache QUEL bedienen, dienen der Datenverwaltung (Abfrage, Eingabe, Modifikation und Löschen). Die Applikationen bestehen aus einer Abfolge von Bildschirmformularen und gestatten dem Benutzer über ein Menü die gewünschte Aktion. Ein integriertes FORTRAN-Programm dient der Analytik von P-T-Diagrammen.

Sämtliche Informationen, also sowohl geologische Primärdaten als auch daraus abgeleitete Resultate, können – mit Hilfe diverser vorgefertigter Reporte – in geeigneten Formaten an Graphikprogramme oder Geographische Informationssysteme ausgegeben werden.

2. Evaluation von Paragenesedaten: Als Anfang eines petrologischen Inventars der Zentralalpen wurden veröffentlichte und unveröffentlichte Arbeiten der letzten 20 Jahre nach Paragenesendaten abgesucht und auf ihre Verwertbarkeit für die Druck- und Temperaturberechnung geprüft. Es findet sich eine Liste der evaluierten Arbeiten und eine Auswahl von Arbeiten, die Eintrag in die Datenbank **P**ARADIS fanden und deren Daten im 3. Teil die Basis für die Druck- und Temperaturberechnungen boten. Leider sind es in erster Linie Unzulänglichkeiten in der Dokumentation, die eine Neuinterpretation vieler Paragenesedaten aus der Literatur verunmöglichten.

Über 80 der wichtigsten Arbeiten mit quantitativen Druck- und Temperaturabschätzungen der letzten 20 Jahre werden regionenweise vorgestellt und die darin angewendeten Methoden und Resultate kurz erläutert. Obwohl die unterschiedlichsten Methoden zur Anwendung kamen, zeigen die Resultate trotz regional grosser Streubreiten ein erstaunlich kohärentes Bild.

3. Analytik und Interpretation von Paragenesedaten: Die Datenbank **P**ARA**DIS** stellt die geologisch relevanten Informationen externen petrologischen Programmen (NORM, MIN-

 $^{^{1}\}mathbf{Para}$ genesen **D**aten Informations **S**ystem

SORT, PTAX oder TWEEQU) zur Verfügung und nimmt deren Resultate (z.B. P-T- oder T-X-Diagramme) wieder auf. In diesem Sinne sind die Interpretationen soweit konsistent mit den unterliegenden Daten, als es die (heutigen) thermodynamischen Modelle erlauben.

Das integrierte Programm INTERSECT findet alle Schnittpunkte der Gleichgewichtskurven in einem P-T-Diagramm und berechnet den Durchschnitt von P und T mit Standardabweichung, gewichtet nach der Grösse des Schnittwinkels und/oder nach den ΔS - und ΔV -Werten der sich schneidenden Reaktionen.

Von 57 Proben liegen neue Temperaturwerte, von 45 neue Drucke vor. Die Temperaturen der Literatur liegen im Durchschnitt systematisch um ca 32 ± 52 °C unter den mit PTAX neu berechneten Temperaturen; die Drucke aus der Literatur streuen enorm um die PTAX-Drucke (55 ± 1176 bar), eine systematische Abweichung ist aber nicht feststellbar.

Die mit dem GMT-System erstellte Isothermenkarte widerspiegelt das bekannte Bild des konzentrischen Isogradenmusters, mit der Temperaturzunahme von N nach S und dem Temperaturmaximum bei Bellinzona. Die Isobaren deuten ein markantes Druckmaximum auf der Höhe von Biasca an. Der Druckabfall gegen die Insubrische Linie hin wird interpretiert als Anpassung der Barometer an die tieferen Drucke nach Erreichen der Maximaltemperatur.

Inhaltsverzeichnis

Vo	orwort	t	1
Zu	Isamn	nenfassung	2
1	Ein	leitung	9
	1.1	Problematik	9
	1.2	Ziel der Arbeit	9
	1.3	Aufbau der Arbeit	10
I	Ко	nsistente Dokumentation von metamorphen Mineralparagenesen	11
2	Par	aDIS	13
	2.1	Konzeptionelle Datenmodellierung	13
	2.2	Datenarchitektur und Relationenmodell	14
	2.3	Logische Datenstrukturen	18
		2.3.1 Das konzeptionelle Strukturdiagramm	18
		2.3.2 Zugriffspfade	19
	2.4	Physische Datenstrukturen	20
		2.4.1 Indexe, Speicherstrukturen und DB-Optimierung	21
	2.5	Anwendungen	21
		2.5.1 Die Anwendung UNIVERSAL	21
		2.5.2 Die Anwendung SPOUT	22
3	Dat	en	27
	3.1	Datenanalyse	27
		3.1.1 Publikation, Autoren und Referenzen	27
		3.1.2 Handstück und Mineralien	28
		3.1.3 EMS-Analysen und -Messprofile	29
		3.1.4 Paragenesen und P-T-Interpretationen	29
		3.1.5 Plots	30
		3.1.6 Flüssigkeitseinschlüsse	32
тт	Б-	voluntion von Dorngonogodaton mogoalninge Mingeselvergegellachef	
tu	nger	n der Zentralalpen	33

4	Eva	luation	n von Paragenese-Daten aus der Literatur	35
	4.1	Anfore	lerungen an Paragenese-Daten	35
		4.1.1	Definition einer Paragenese	35

		4.1.2	Erkennung und Beschreibung einer Paragenese	36
	4.2	Anford	lerungen an Elektronenmikrosonde-Daten	37
	4.3	Datene	quellen	37
		4.3.1	Kriterien für die Literatur-Evaluation	38
		4.3.2	Fehlerquellen	39
	4.4	Evalui	erte Literatur	39
	4.5	Verwei	ndete Daten	48
5	Die	mesoa	lnine Metamorphose in den Zentralalpen	51
0	5.1	Histori	ischer Überblick	51
	5.2	Bisher	ige quantitative Druck- und Temperaturabschätzungen	52
	0.2	521	Lukmaniergebiet	52
		5.2.1 5.2.2	Olivone-nördliches V Mesolcina nordwestliche und mittlere Adula-	02
		0.2.2	Decke	54
		523	Nufenen- und Bedrettoregion	54
		5.2.0 5.2.4	Campolungo Alpe Sponda Leventina	54
		5.2.1 5.2.5	Val Calanca	55
		5.2.0 5.2.6	Südliches V Mesolcina V Bodengo	55
		5.2.0 5.2.7	Begion Bellinzona	55
		528	A armassiv	56
		5.2.0	Das Profil Brig-Crevola	56
		5.2.5 5.2.10	Das Profil Antronaniana–Locarno	57
		5.2.10 5.9.11	Zusammanfassung	57
II	IA	nalyse	e und Interpretation von Paragenesedaten mesoalpiner Mi-	50
II ne	I A eralv	nalyse ergese	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen	59
II ne 6	I A eralv Ana	analyse ergese dyse de	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten	59 61
II ne 6	I A eralv Ana 6.1	nalyse ergese dyse de Datenf	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	59 61 61
II ne 6	I A eralv Ana 6.1	analyse ergese dyse do Datent 6.1.1	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	59 61 61 61
II ne 6	I A eralv Ana 6.1	analyse ergese dyse de Datent 6.1.1 6.1.2	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	59 61 61 61 62
II ne 6	I A eralv Ana 6.1	analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten Huss und Werkzeuge	59 61 61 61 62 64
II ne 6	I A eralv Ana 6.1	analyse ergese dyse de Datend 6.1.1 6.1.2 6.1.3 6.1.4	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	59 61 61 62 64 65
II ne 6	I A eralvo Ana 6.1	analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	59 61 61 62 64 65 66
II ne 6	I A eralvo Ana 6.1	Analyse ergese Uyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten Huss und Werkzeuge	59 61 61 62 64 65 66 66
II ne 6	I A eralv Ana 6.1	analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten luss und Werkzeuge	59 61 61 62 64 65 66 66 67
11 ne 6	I A eralv Ana 6.1 6.2 Nuf	Analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten luss und Werkzeuge	 59 61 61 62 64 65 66 66 67 69
II ne 6	I A eralv Ana 6.1 6.2 Nuf 7.1	Analyse ergese Jyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Enenre Nuf183	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten luss und Werkzeuge	 59 61 61 62 64 65 66 66 67 69
II ne 6	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2	Analyse ergese Uyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf183 Fus46,	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten fluss und Werkzeuge	 59 61 61 62 64 65 66 66 67 69 70
II ne 6	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3	Analyse ergese Jyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf18: Fus46, Fus70,	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen	 59 61 61 62 64 65 66 67 69 70 73
II 6 7	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3 Das	Analyse ergese dyse de Datend 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf183 Fus46, Fus46, Fus70, Gebie	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten luss und Werkzeuge	 59 61 61 62 64 65 66 67 69 70 73 75
II 6 7 8	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3 Das 8.1	Analyse ergese Jyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf183 Fus46, Fus70, Gebie DS5: C	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten duss und Werkzeuge	 59 61 61 62 64 65 66 67 69 70 73 75 75
II ne 6 7 8	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3 Das 8.1 8.2	Analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf183 Fus46, Fus70, Gebie DS5: C DS6: C	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen	 59 61 61 62 64 65 66 67 69 70 73 75 75
II ne 6 7 8	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3 Das 8.1 8.2 8.3	Analyse ergese dyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Cenenre Nuf18; Fus46, Fus46, Fus70, Gebie DS5: C DS6: C RT159	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten fluss und Werkzeuge	 59 61 61 62 64 65 66 67 69 70 73 75 75 78
II ne 6 7 8	I A eralv Ana 6.1 6.2 Nuf 7.1 7.2 7.3 Das 8.1 8.2 8.3 8.4	Analyse ergese Jyse de Datenf 6.1.1 6.1.2 6.1.3 6.1.4 PTAX 6.2.1 6.2.2 Enenre Nuf183 Fus46, Fus70, Gebie DS5: C DS6: C RT159 DS10a	e und Interpretation von Paragenesedaten mesoalpiner Mi- llschaftungen der Zentralalpen er Paragenese-Daten fluss und Werkzeuge	 59 61 61 62 64 65 66 67 69 70 73 75 75 78 78

	8.6	RT140, RT150, DS4, Kl264, EK50	. 85
	8.7	Kl285: Granat-Glimmerschiefer	. 88
	8.8	Kl98: Granat-Glimmerschiefer	. 88
9	Luk	maniergebiet	91
	9.1	25: Metapelit	. 91
	9.2	12: Metapelit	. 91
	9.3	TT513: Granat-Glimmerschiefer	. 95
	9.4	77: Metapelit	. 98
	9.5	NW76: Granat-Glimmer-Gneis	. 98
	9.6	NW77: Staurolith-Disthen-Granat-Glimmerschiefer	. 98
	9.7	TT379: Granat-Glimmerschiefer	. 101
	9.8	TT480: Granat-Glimmerschiefer	. 103
	9.9	TT416: Granat-Glimmerschiefer	. 104
	9.10	TT479: Granat-Glimmerschiefer	104
	9.11	TT337: Granat-Glimmerschiefer	107
	0.12	38: Metanelit	107
	0.12	133: Metapolit	. 107
	9.10	NW20. Staurolith Disthen Cranat Climporchiofor	. 111
	9.14	NW 80: Stauronth-Distnen-Granat-Gimmerschiefer	· 111
	9.15		. 111
	9.16	NW142, $NW158$, $NW33$, $MF1755$ und $MF1746$. 111
	9.17	NW79, 121a, 14 und 10 $\dots \dots \dots$. 114
10	Alm	a Sponda	117
10	10.1	DQ7. Grant Disther Strenglith Glinen mehicfer	117
	10.1	DS7: Granat-Distnen-Stauronth-Gimmerschlerer	. 117
	10.2	DS8: Disthen-Staurolith-Granat-Glimmerschiefer	. 117
	10.3	A1349: Cordieritgestein mit Paragonit	. 121
	10.4	Al405: Granatfels	. 121
	10.5	AI378: Staurolith-Disthen-Glimmerschiefer	. 121
	10.6	AI518: Staurolith-Disthen-Glimmerschiefer mit Sillimanit	. 121
	T 7		105
11	Ver	gleich der PTAX-Resultate mit denen der Literatur	125
	11.1	Das Granat-Biotit-Thermometer	. 125
	11.2	Das Anorthit-Grossular-Barometer	. 125
	11.3	Diskussion	. 127
10	. т /		100
12		hermen- und Isobarenkarte der mesoalpinen Metamorphose	129
	12.1	Voraussetzungen	. 129
	12.2	Interpolation mit bikubischen Splines	. 130
	12.3	Probenauswahl und allgemeine Beobachtungen	. 130
		12.3.1 Isothermenkarte	. 131
		12.3.2 Isobarenkarte	. 131
4.0	.		105
13		kussion und Schlusstolgerungen	135
	13.1	Diskussion der Methodik	. 135
	13.2	Geologische Interpretation	. 137
T.;	torat	11P	120
	u crau	ui	TO 0

IV	A	nhang	155
\mathbf{A}	Tab	ellen	157
	A.1	Bisherige Temperaturabschätzungen	157
	A.2	Verwendete Handstücke	165
	A.3	Zusammenfassung und Gegenüberstellung der Resultate	167
	A.4	Beschreibung der neuen Proben	169
	A.5	Abkürzungen	175
	A.6	Sondenstandards	176
в	ING	GRES kurz vorgestellt	177
	B.1	INGRES, ein relationales DBMS	177
		B.1.1 Relationale Datenbanken	177
		B.1.2 Relationale Sprachen	178
	B.2	System-Struktur	178
		B.2.1 Das Backend	179
		B.2.2 Die Frontends	179
		B.2.3 Verteilte Datenbanken	180
\mathbf{C}	Das	relationale Modell	181
	C.1	Definition der Konstruktionselemente	181
	C.2	Relationale Datenstruktur	183
	C.3	Relationale Datenintegrität	184
		C.3.1 Die Integritätsregeln des relationalen Modells	184
		C.3.2 Erhalt der Integrität bei Löschung	184
	C.4	Relationale Datenmanipulation	185
Ta	belle	enverzeichnis	188
Cu	irricu	lum vitae	190
Fi	gure	nverzeichnis	190

Kapitel 1 Einleitung

1.1 Problematik

Ein wesentliches Ziel der geologischen Alpenforschung besteht in der Bestimmung der physikalischen Bedingungen, insbesondere Druck und Temperatur, denen ein Gestein während der Metamorphose unterworfen war.

Seit es die Elektronenmikrosonde erlaubt, Mineralchemismen quantitativ und genau zu bestimmen, fielen im Bereich der Zentralalpen eine Fülle von Daten an, die sich in einer Reihe von Publikationen zu diesem Thema niederschlugen. Der Mangel an thermodynamischen Mineraldaten ausreichender Qualität liess jedoch anfänglich nur grobe Abschätzungen von Druck und Temperatur zu.

Die angewendeten Methoden sind sehr unterschiedlich und beruhen auf einer Fülle von oft schwer zu bestimmenden Grössen. Es existieren beispielsweise viele Thermometer und Barometer, aus denen der Petrologe ein passendes auswählte, um damit die Druck- und Temperaturbedingungen seiner Proben zu berechnen. Viele dieser Thermo- und Barometer wurden verschieden kalibriert, benutzen verschiedene Mineral-Aktivitätsmodelle und basieren auf thermodynamischen Daten, welche selbst wieder mit verschiedenen Methoden bestimmt und nicht auf ihre Konsistenz hin geprüft wurden.

Geologische Überlegungen und Vergleiche mit der Literatur bilden jeweils einen letzten Filter, der «unrealistische» Werte zurückbehält.

- Aufgrund dieser inkonsistenten Kalibrationen und angewendeten Methoden können in den meisten Fällen P-T-Bestimmungen von verschiedenen Quellen der petrologischen Literatur nicht regional interpretiert und objektiv verglichen werden.
- Analytische Daten, die von Feldpetrologen gesammelt wurden, sind in der Regel nicht einheitlich dokumentiert. Eine Neuinterpretation von metamorphen Phasengleichgewichten durch nachfolgende Petrologen ist deshalb sehr schwierig oder gar unmöglich.

1.2 Ziel der Arbeit

Die Verfügbarkeit von immer besseren thermodynamischen Mineraldaten (inklusive Aktivitätsmodellen) eröffnet die Möglichkeit, auf der Basis von bestehenden mineralchemischen Daten Neuberechnungen von Druck und Temperatur vorzunehmen. Dabei sollten moderne Methoden zum Einsatz gelangen, die sich für die Bestimmung von P und T nicht wie bisher nur auf ein Thermometer bzw. Barometer stützen, sondern die möglichst viele der formulierbaren Gleichgewichte in einer Paragenese berücksichtigen. Wesentliche Ziele der voliegenden Arbeit sind:

- Beginn eines petrologischen Inventars der Zentralalpen. Wichtigste Voraussetzung für die Analyse und (Neu-)Interpretation von metamorphen Mineral-Paragenesen ist eine einheitliche und konsistente Dokumentation der petrographischen Primärdaten. Dies lässt sich erreichen, indem man sämtliche notwendigen Informationen in einer einzigen, gut organisierten Struktur unterbringt und an einer zentralen Stelle verwaltet. Zu diesem Zweck sollte eine speziell strukturierte Datenbank erstellt werden, die die petrologischen Daten dokumentieren und optimal zur Verfügung stellen kann.
- Evaluation der Paragenesedaten aus der Literatur. Bestehende Arbeiten sollen kritisch evaluiert und die brauchbaren Paragenesedaten extrahiert werden. Eigene Paragenesedaten von ausgewählten Proben sollten die Literaturquellen ergänzen und allfällige «Löcher» stopfen.
- Neuberechnung von Druck und Temperatur auf der Basis einer intern konsistenten Datenbank. Dazu sollten moderne petrologische Programme zur Anwendung kommen, die es erlauben, sämtliche formulierbaren Gleichgewichte in einer Paragenese zu berücksichtigen.
- Erstellen von Isothermen- und Isobarenkarten der mesoalpinen Metamorphose und Vergleich mit bisherigen Resultaten.

1.3 Aufbau der Arbeit

Die Arbeit gliedert sich in drei voneinander unabhängige Teile:

Teil 1: Dokumentation

Die Entwicklung der Datenbank **P**RA**DIS** nach der von VETTER (1990) beschriebenen Methode der konzeptionellen Datenmodellierung wird detailliert beschrieben. Es wird eingegangen auf die Datenarchitektur, das Relationenmodell, die logischen und die vom Datenbanksystem INGRES abhängigen physischen Datenstrukturen und die Anwendungsprogramme.

Teil 2: Evaluation von Paragenesedaten

Petrologische Literatur wird hinsichtlich der Verwertbarkeit für Druck- und Temperaturberechnungen geprüft. Im Rahmen eines historischen Überblicks findet sich eine Zusammenstellung der quantitativen Druck- und Temperaturbestimmungen in den Zentralalpen der letzten 20 Jahre.

Teil 3: Analytik und Interpretation von Paragenesedaten

Nach einer detaillierten Beschreibung der Arbeitsmethodik und der verwendeten Software wird in allen Proben P und T abgeschätzt. Eine Statistik gibt Auskunft über Abweichungen der Resultate von denen der Literatur. Eine Isothermen- und Isobarenkarte der mesoalpinen Metamorphose schliesst die Arbeit ab.

Teil I

Konsistente Dokumentation von metamorphen Mineralparagenesen

Kapitel 2 ParaDIS

Im folgenden wird das Datenmodell und die Implementation der Datenbank \mathbf{P} RADIS¹ unter INGRES, einem kommerziellen RDBMS², auf einer SUN 4 erläutert. Es wurde die Methodik der konzeptionellen Datenmodellierung von VETTER (1990) angewendet, die zunächst kurz vorgestellt wird.

2.1 Konzeptionelle Datenmodellierung

Für die Realisierung der Datenbank **P**ARA**DIS** wurde eine datenorientierte Vorgehensweise gewählt; im Unterschied zu einer funktionsorientierten Vorgehensweise stehen die Daten selbst im Mittelpunkt der Betrachtung. Dabei wird zunächst eine grobe, aber möglichst umfassende Datenarchitektur (d.h. ein sehr grobes, konzeptionelles Datenmodell) festgelegt. Diese Architektur wird nach und nach mit Details ergänzt, die im Rahmen der Entwicklung einzelner Anwendungen erarbeitet werden. So kommt nach und nach ein globales (d.h. anwendungsübergreifendes) konzeptionelles Datenmodell zustande, das folgende Vorteile aufweist (VETTER, 1990):

Ein konzeptionelles Datenmodell

- beinhaltet typenmässige, aber keine wertmässigen Aussagen über einen zu modellierenden Realitätsausschnitt.
- ist unabhängig von der DV-technischen Implementierung der Daten auf Speichermedien.
- ist neutral gegenüber Einzelanwendungen und deren lokaler Sicht auf die Daten.

Die Daten existieren unabhängig von ihrer Verwendung; die Datenmodelle lassen sich also auch dann definieren, wenn die Funktionen noch gar nicht bekannt sind. Ausserdem ist ein typenmässig definiertes Datenmodell recht stabil, weil die Datentypen im Verlauf der Zeit kaum einer Änderung unterliegen. Nur die Datenwerte ändern!

Ein datenorientiertes Vorgehen bedarf auch einer konzeptionellen Arbeitsweise. Dabei wird die Lösung für ein Problem vom Groben zum Detail entwickelt.

Zunächst konzentriert man sich auf die Entitätsmengen und Beziehungsmengen, die von Bedeutung sind. So entsteht eine Datenarchitektur. Die Details (Entitätsattribute, Beziehungsattribute) werden anschliessend im Rahmen einer sogenannten Datenanalyse ermittelt

 $^{^{1}\}mathbf{Para}$ genesen **D**aten Informations System

 $^{^2\}mathbf{R}\text{elationales}$ Datenbank Management System

und mit der Datenarchitektur vereinigt. Die so erarbeiteten Konstruktionselemente sind mit Hilfe eines optimalen, voll normalisierten Relationenmodells³ zu definieren.

Dieses bildet die Grundlage für die zu ermittelnden physischen Datenstrukturen. Um diese möglichst optimal zu gestalten, sind noch weitere Angaben notwendig. Dazu gehören sowohl die logischen Datenstrukturen, mit denen die geplanten Zugriffe auf die Daten zu dokumentieren sind, als auch Angaben über die Beziehungsintegrität und die Datenmengen. Hardware- und softwarespezifische Überlegungen werden solange zurückgestellt, bis eine logisch einwandfreie Lösung vorliegt. Erst dann wird die Datenbank realisiert, indem das konzeptionelle Modell in eine geeignete physische Datenstruktur transformiert wird. Erst die physische Datenstruktur ist abhängig vom Datenbankmanagementsystem (DBMS), das zur Anwendung gelangen soll.

2.2 Datenarchitektur und Relationenmodell

Aufgrund der Anforderungen, die an die zu realisierende Datenbank **P**AR**DIS** gestellt werden, kann der zu modellierende Realitätsausschnitt klar abgegrenzt werden. Die für petrologische Fragestellungen wichtigen Entitätsmengen, für die Informationen gesammelt und in der Datenbank gespeichert werden sollen, sind in Tabelle 2.1 aufgelistet und kurz beschrieben. Tabelle 2.2 zeigt sämtliche Beziehungsmengen und deren Abbildungstyp, die für diese Entitätsmengen in Frage kommen. Es kommen 3 verschiedene Abbildungstypen vor:

1:M Ein Element der Menge A steht mit beliebig vielen (also auch null oder nur einem) Elementen in B in Beziehung. Umgekehrt steht jedes Element in B jederzeit mit einem Element in A in Beziehung.

Beispiel: In einem Gesteinshandstück können viele Mineralien vorkommen; ein Mineral(korn) kann nur zu einem Handstück gehören.

C:M Ein Element in A steht mit beliebig vielen Elementen in B in Beziehung. Umgekehrt steht jedes Element in B mit höchstens einem oder möglicherweise auch keinem Element in A in Beziehung.

Beispiel: Ein Mineral kann mehrere fremde Mineralien als Einschlüsse aufweisen, aber selbst nur von einem oder keinem anderen Mineral eingeschlossen werden.

M:M Ein Element der Menge A steht mit beliebig vielen Elementen in B in Beziehung. Umgekehrt steht ein Element aus B mit beliebig vielen Elementen in A in Beziehung. Beispiel: Eine Publikation kann von einem oder mehreren Autoren verfasst worden sein. Umgekehrt kann ein Autor bei mehreren Publikationen mitgewirkt haben.

Figur 2.1 zeigt die globale Datenarchitektur im Überblick. Die Entitätsmengen befinden sich am oberen Bildrand. Pfeile zeigen die Abbildungstypen der Beziehungsmengen an.

Für jede Entitätsmenge wird eine Relation definiert (vgl. Tabelle 2.3). Die Relationen sind mit einem Relationenschlüssel oder auch Primärschlüssel auszuweisen. Als Primärschlüssel sel wurden fast ausschliesslich fortlaufende natürliche Zahlen gewählt. So erhält jedes neue Tupel sofort einen sehr kurzen Primärschlüssel zugeteilt und kann später leicht und schnell wiedergefunden werden.

 $^{^{3}}$ Das relationale Modell, von Codd (1970) entwickelt, beschreibt die Art und Weise, wie Daten zu sehen sind. Es handelt sich um eine Vorschrift, wie Daten zu repräsentieren (Datenstruktur, Datenintegrität) und zu manipulieren sind.

Fig. 2.1: Datenarchitektur

Publikation	Paper, Dissertation, Diplomarbeit					
Autor	Der Verantwortliche					
Handstück	Die Probe					
Paragenese	Assoziation von verschiedenen kogenetischen Mineral-					
	individuen einer Probe, aufgrund textureller Beobach-					
	tungen zu einer Paragenese gruppiert					
P-T-Interpretation	Druck- und Temperaturabschätzung, auf den chemischen					
	Analysen der Mineralindividuen einer Paragenese basie-					
	rend und aus einem P-T-Stabilitätsdiagramm berechnet					
Stabilitätsdiagramm	P-T-, T-X- usw. Diagramm, auf dem die P-T-					
	Interpretation beruht, einschliesslich den Berechnungsop-					
	tionen für das Diagramm (TWEEQU-restart File) und					
	den ausgewählten Formelparametern der Mineralien, die					
	für die Berechnung des Diagramms verwendet wurder					
	(TWEEQU-cmp File)					
Reaktion	Reaktionskurve im Stabilitätsdiagramm					
Label	Beschriftung einer Reaktionskurve in einem Stabilitäts-					
	diagramm					
Punkt	Punkt auf einer Reaktionskurve					
Mineral	Texturell identifizierbares Mineralindividuum					
Mineralgruppe	Gruppe von Mineralindividuen der gleichen Art (Bsp.:					
	Gruppe Biotit besteht aus Matrixbiotit, Einschlussbiotit,					
	Querbiotit)					
Assoziation von Flüs-	Assoziation von gleichalten Flüssigkeitseinschlüssen eines					
${ m sigkeitseinschlüssen}$	Minerals, gruppiert aufgrund textureller Beobachtungen					
Phase	optisch identifizierbare Phase eines Flüssigkeitseinschlus-					
	Ses					
Chemische	Teil der Analyse eines Flüssigkeitseinschlusses					
Komponente						
EMS-Analyse	Elektronenmikrosondeanalyse eines Mineralindividuums					
Analysen-Messprofil	${\it Elektronenmikrosondeanalysen, zu einem Messprofil "uber"}$					
	ein Mineral gruppiert					

Tab. 2.1: Definition der Entitätsmengen

Eine Ausnahme bildet die Relation «mineralgroup», die einen zusammengesetzten Primärschlüssel aufweist, der sich aus den Schlüsselteilen «SAM#» (Primärschlüssel der Relation «sample») und «miname» (Attribut der Relation «mineral») zusammensetzt.

Die Beziehungsmengen werden abhängig von ihrem Abbildungstyp dargestellt.

Beziehungsmengen der Abbildungstypen (1:M), (M:1), (C:M), (M:C) stellt man mit Hilfe von Fremdschlüsseln dar:

Die Beziehungsmenge «Handstück – Mineral» vom Typ (1:M) stellt man beispielsweise dar, indem in der Relation «mineral» mit dem Primärschlüssel «MIN#» der Fremdschlüssel «SAM#» eingeführt wird. («SAM#» ist Primärschlüssel der Relation «sample».) Der Primärschlüssel bewirkt, dass pro Mineral, also pro «MIN#»-Wert, nur ein «SAM#»-Wert vorkommen kann; umgekehrt ist es jedoch möglich, dass ein «SAM#»-Wert, zusammen mit verschiedenen «MIN#»-Werten, mehrfach vorkommt.

Beziehungsmenge						
Menge A	\longleftrightarrow	Menge B	A:B			
Publikation	\longleftrightarrow	Autor	M:M			
Publikation	\longleftrightarrow	Publikation	M:M			
Publikation	\longleftrightarrow	Handstück	1:M			
Handstück	\longleftrightarrow	Mineral	1:M			
Handstück	\longleftrightarrow	Paragenese	1:M			
Paragenese	\longleftrightarrow	Mineral	C:M			
Handstück	\longleftrightarrow	Mineralgruppe	1:M			
Mineralgruppe	\longleftrightarrow	Mineral	1:M			
Paragenese	\longleftrightarrow	P-T-Interpretation	1:M			
P-T-Interpretation	\longleftrightarrow	EMS-Analyse	M:M			
P-T-Interpretation	\longleftrightarrow	Stabilitätsdiagramm	1:M			
Stabilitätsdiagramm	$n \longleftrightarrow$	Label	1:M			
Stabilitätsdiagramm	$n \longleftrightarrow$	Reaktion	1:M			
Reaktion	\longleftrightarrow	Label	1:M			
Reaktion	\longleftrightarrow	Punkt	1:M			
Mineral	\longleftrightarrow	Einschlussmineral	C:M			
Mineral	\longleftrightarrow	Flüssigkeitseinschluss	1:M			
Flüssigkeitseinschlus	$ss \longleftrightarrow$	Phase	1:M			
Flüssigkeitseinschlus	$ss \longleftrightarrow c$	chemische Komponente	1:M			
Mineral	\longleftrightarrow	EMS-Analyse	1:M			
EMS-Analysen-Messpr	$\operatorname{cofil} \longleftrightarrow$	EMS-Analyse	C:M			

Tab. 2.2: Beziehungsmengen und deren Abbildungstyp

Die Beziehungsmengen vom Typ (C:M), beispielsweise «Paragenese – Mineral», werden analog dargestellt. Da jedoch ein Mineral nicht notwendigerweise einer Paragenese zuzuordnen ist, müssen für den Fremdschlüssel Nullwerte⁴ zugelassen werden.

Für eine Beziehungsmenge ist eine eigene Relation zu definieren, wenn sie eine komplexe Abbildung (M:M) darstellt. Aus dem Namen dieser Relation geht hervor, welche Entitätsmengen in Beziehung zueinander gebracht werden (Tabelle 2.3, unterer Teil). Zum Beispiel wird die Beziehungsmenge «Publikation – Autor» durch die Relation «writes» dargestellt. Sie enthält die Information, welche Publikation von welchem Autor stammt. Sie weist einen zusammengesetzten Primärschlüssel auf, der sich aus den Schlüsselteilen «PUB#» (Primärschlüssel in «publication») und «AUT#» (Primärschlüssel in «author») zusammensetzt. Folglich kann zwar sowohl eine Publikation als auch ein Autor in der Relation mehrfach vorkommen, die Kombination Publikation/Autor allerdings nur einmal!

Die auf diese Weise erhaltenen Elementar-Relationen repräsentieren die Datenarchitektur.

Damit die Beziehungsintegrität erhalten bleibt, wenn ein Primärschlüsselwert gelöscht werden soll, geschieht folgendes mit den entsprechenden Fremdschlüsseln:

Weitergabe der Löschung (wl): Löscht man beispielsweise ein Stabilitätsdiagramm, so werden alle Daten mit dem entsprechenden Fremdschlüssel in den Relationen «plotreaction», «plotpoint», «plotlabel» gelöscht.

⁴Ein *Nullwert* (englisch: *Null Value*) bedeutet «nicht existent» und darf nicht verwechselt werden mit einem *numerischen 0-Wert* (englisch: *zero*).

Name	Schlüssel				
publication	PUB#				
author	AUT#				
sample	$\overline{\text{SAM}\#}$	PUB#			
paragenesis	PAR#	SAM#			
ptinterpretation	PTI#	PAR#			
plot	PLT#	PTI#			
plotreaction	RCN#	PLT#			
plotlabel	LAB#	RCN#	PLT#		
plotpoint	PNT#	RCN#	PLT#		
mingroup	<u>MINAME</u>	SAM#			
mineral	MIN#	nw IN_MIN#	nw PAR#	MINAME	SAM#
flincassociation	$\mathrm{FLI}\#$	MIN#			
flincphase	$\overline{\text{FPH}\#}$	FLI#			
flinccomposition	FCM#	$\mathrm{FLI}\#$			
emsprofile	$\mathrm{EMP}\#$	MIN#			
emsanalysis	$\mathrm{EMS}\#$	MIN#	nw EMP#		
references	PUB#	REL_PUB#			
writes	PUB#	AUT#			
baseson	PTI#	$\mathrm{EMS}\#$			

Tab. 2.3: Elementarrelationen; Abkürzungen: nw: Nullwerte sind zugelassen.

- Nullsetzung bei Löschung (nl): Löscht man zum Beispiel eine Paragenese oder ein EMS-Analysen-Messprofil, so werden die entsprechenden Fremdschlüssel in den Relationen «mineral» bzw. «emsanalysis» auf Null gesetzt.
- Bedingte Löschung (bl): Ein Handstück kann beispielsweise nur gelöscht werden, wenn weder Einträge für zugehörige Mineralien noch Paragenesen vorliegen.

In die einzelnen Elementarrelationen müssen noch Attribute eingeführt werden, damit sämtliche wichtigen Eigenschaften der unterliegenden Entitäten erfasst werden können (vgl. Kapitel 3). Durch diesen Prozess entsteht ein globales Datenmodell.

Abschliessend müssen die Relationen bis zur 3. Normalform normalisiert werden (VETTER, 1990). Voll normalisierte Relationen weisen keine Redundanz auf, und es treten keine Schwierigkeiten bei Speicheroperationen (Einschub-, Lösch- und Modifikationsoperationen) auf. Voll normalisierte Relationen halten einen Realitätsausschnitt einwandfrei entsprechend der getätigten Beobachtungen fest und lassen sich wie eine präzise, verbale Realitätsbeschreibung interpretieren.

2.3 Logische Datenstrukturen

2.3.1 Das konzeptionelle Strukturdiagramm

Im konzeptionellen Strukturdiagramm sind sowohl voraussichtliche Datenmengen und Angaben zur Beziehungsintegrität als auch Primärschlüssel-Fremdschlüssel-Beziehungen dargestellt. Jede Relation ist in Form eines Kästchens dargestellt, und die Relationen, die aufgrund

des Primärschlüssel-Fremdschlüssel-Prinzips miteinander in Beziehung stehen, sind mit Pfeilen verbunden (vgl. Fig. 2.2).

Fig. 2.2: Konzeptionelles Strukturdiagramm mit Hervorhebung der Sachgebiete;

Abkürzungen: wl: Weitergabe der Löschung; nl: Nullsetzung bei Löschung; bl: Bedingte Löschung; nw: Nullwerte sind zugelassen; E: Eigenständige Relation (Datenmanipulation ist ohne Rücksicht auf andere Relationen möglich); n: Ein Tupel der Primärschlüsselrelation steht mit n Tupeln der Fremdschlüsselrelation in Verbindung.

2.3.2 Zugriffspfade

Mit Hilfe des konzeptionellen Strukturdiagrammes lassen sich Zugriffspfade ableiten, die beschreiben, in welcher Reihenfolge die Daten zur Verfügung zu stellen sind, damit Anwen-

dungsprogramme möglichst effizient arbeiten können. Die Zugriffspfadmatrix zeigt an, von welcher Relation auf eine andere zugegriffen wird. In dieser Matrix sind sämtliche Zugriffspfade vereinigt (vgl. Fig. 2.3).

Fig. 2.3: Zugriffspfadmatrix

2.4 Physische Datenstrukturen

Im Unterschied zu indizierten, netzwerkförmig strukturierten oder hierarchisch-netzwerkförmigen Datenbeständen, für die die physischen Datenstrukturen zuerst abgeleitet werden müssen, können mit einem relationalen DBMS wie INGRES die Relationen direkt implementiert werden.

2.4.1 Indexe, Speicherstrukturen und DB-Optimierung

Für den Zugriff auf eine Relation können beliebige Attribute in Frage kommen. Falls der Abfrage jedoch ein Attribut zugrunde liegt, für das kein Index vorliegt, erfordert selbst eine einfache Abfrage ein sequentielles Durchlesen der ganzen Relation.

Eine Speicherstruktur ist eine File-Architektur, die einen speziellen Zugriff auf Daten in den Tabellen ermöglicht. Speicherstrukturen mit Schlüsseln ermöglichen einen bedeutend schnelleren Zugriff auf die Daten als wenn die Tabelle oder der Index keinen Schlüssel hätte. INGRES bietet 4 Basis-Speicherstrukturen an: heap, hash, isam und btree (CHIP SPECIAL, 1989; DATE 1987). Jede Speicherstruktur bietet optimale Leistung für bestimmte Abfragen und Anwendungen. Die idealen Speicherstrukturen der Tabellen und Indexe werden aufgrund deren Grösse und Funktionen bestimmt.

Für jede Tabelle wurden Speicherstrukturen mit eindeutigen (engl. unique) Schlüsseln gewählt. Diese eindeutigen Schlüssel entsprechen den Primärschlüsseln der Tabellen. Mit Hilfe der Zugriffsmatrix (vgl. Fig. 2.3) wurden die zusätzlich notwendigen Indexe und deren Speicherstruktur mit zum Teil mehrdeutigen (engl. non-unique) Schlüsseln ermittelt (vgl. Tabelle 2.4).

INGRES benutzt einen Query-Optimierer, der vor jeder Datenbank-Transaktion eine optimale Zugriffsstrategie entwickelt (DATE 1987). Der Query-Optimierer benutzt dazu sowohl Basisinformationen wie Datengrösse, Anzahl Daten, Indexe als auch mehr datenbezogene Informationen wie z.B. den Grad an Datenduplikation innerhalb eines Attributsfeldes. Diese datenbezogene Information kann INGRES mit dem Programm «optimizeDB», das eine Statistik über die Verteilung der Schlüsselwerte erstellt, zugänglich gemacht werden. Die Zugriffszeit auf die Daten wird so erheblich verkürzt.

2.5 Anwendungen

Eine INGRES-Anwendung ist ein Programm, das ein bestimmtes Problem löst, indem es eine Datenbank öffnet und eine Serie von Operationen (Abfrage-, Einschub-, Lösch-, Modi-fikationsoperationen) ausführt.

Eine typische Anwendung zeigt einen bestimmten Datensatz auf einem Bildschirmformular an und gestattet dem Benutzer über ein Menü die gewünschte Aktion. Ein Bildschirmformular mit Menü nennt man Frame. Eine vollständige Anwendung besteht in der Regel aus einer komplexen Abfolge von Frames.

Für die Datenbank **P**ARA**DIS** existieren zwei Anwendungen, UNIVERSAL und SPOUT, deren Funktionen im Folgenden kurz beschrieben werden.

2.5.1 Die Anwendung UNIVERSAL

Diese Anwendung erlaubt die vollständige Manipulation (Eingabe, Abfrage, Veränderung, Löschen) aller *Primär*daten in **P**ARA**DIS**. Man ist gezwungen, der logischen Datenstruktur zu folgen, damit bei der Eingabe von Daten die Schlüssel-Fremdschlüssel-Beziehungen korrekt abgelegt werden können. Figur 2.4 zeigt die leicht vereinfachte Frame-Abfolge von UNIVER-SAL. Jede Frame erlaubt die vollständige Manipulation einer oder mehrerer Tabellen.

Man beginnt mit der Eingabe der Publikationsdaten. Erst nach dem Publikationseintrag kann man dazugehörige Handstückbeschreibungen eingeben. Nach dem Handstück folgen die Paragenesen und/oder die Mineralien, falls vorhanden deren Mineral- und Flüssigkeitseinschlüsse und schliesslich die EMS-Analysen. Paragenesen können auch nachträglich definiert werden;

Tabellen	Speicher-	unique	Schlüssel
Indexe	struktur	±	
nublication	abtuca		BUB //
publication	cotree	+	
pubidx	isam	+	title, keywords
author	btree	+	AUT#
autidx	isam	+	secondname, firstname
sample	cbtree	+	SAM#
samidx	isam	-	PUB#, sampcd1, sampcd2
paragenesis	cbtree	+	PAR#
paridx	hash	—	SAM#
ptinterpretation	btree	+	PTI#
ptiidx	hash	-	PAR#
plot	btree	+	PLT#
plotcmp	btree	+	PLT#, part#
plotlabel	btree	+	PLT#, RCN#, LAB#
plotpoint	btree	+	PLT#, RCN#, PNT#
plotreaction	btree	+	PLT#, RCN#
plotrestart	btree	+	PLT#, part#
mineralgroup	btree	+	SAM#, miname
mineral	cbtree	+	MIN#
minidx1	isam	_	SAM#, PAR#, in_min#, miname
minidx2	hash	_	PAR#
minidx3	hash	_	in_min#
flincass	btree	+	FLI#
flaidx	isam	_	MIN#, PAR#
flinccomp	btree	+	FCM#
flcidx	hash	_	FLI#
flincphase	btree	+	FPH#
flpidx	hash	-	FLI#
emsprofile	btree	+	EMP#
emsanalysis	cbtree	+	EMS#
emsidx	isam	_	MIN#, EMP#
references	isam	+	PUB#, rel_PUB#
writes	isam	+	PUB#, AUT#
baseson	btree	+	PTI#, EMS#

Tab. 2.4: Speicherstrukturen

auch die beschriebenen Mineralien oder Mineraleinschlüsse lassen sich nachträglich noch einer Paragenese zuordnen oder aus ihr entfernen. EMS-Analysen können entweder eingetippt (Uff!) oder von einem Elektronenmikrosondefile eingelesen und anschliessend den entsprechenden Mineralien zugeordnet werden. Analysen, die zu einer Messreihe über ein oder mehrere Mineralien gehören, kann man zu Messprofilen gruppieren.

Fakten und Interpretationen sind in der Datenbank getrennt. Die Interpretationen können gelöscht werden, ohne dass die Fakten beeinflusst werden (z.B. kann man die Parageneseninformation löschen, ohne dass die Mineralien gelöscht werden). Fakten kann man hingegen nur dann löschen, wenn keine anderen Fakten oder Interpretationen auf ihnen basieren (bedingte Löschung).

2.5.2 Die Anwendung SPOUT

Die Anwendung SPOUT erfüllt zwei Aufgaben:

1. Ausgabe sämtlicher Daten (also sowohl Primär- als auch Sekundärdaten) in verschie-

Fig. 2.4: Abfolge der Frames in der Anwendung UNIVERSAL

densten Formaten und

2. Manipulation von *Sekundär*daten (Erstellung von P-T-Interpretationen und Auswertung von Stabilitätsdiagrammen). *Primär*daten lassen sich nicht verändern.

Datenausgabe

Bei der Datenausgabe ist man nicht mehr gezwungen, der logischen Datenstruktur zu folgen, da die Schlüssel-Fremdschlüssel-Beziehungen ja alle schon bestehen. SPOUT erlaubt den Einstieg in **P**ARA**DIS** auf Handstückebene. Figur 2.5 zeigt die leicht vereinfachte Frame-Abfolge von SPOUT.

Die Ausgabe beliebiger Datensätze erfolgt in verschiedensten Formaten, entweder mit Hilfe von vorgefertigten INGRES-Reporten oder integrierten Fortran-Programmen.

- Diverse Reporte erlauben die Ausgabe von einfachen Beschreibungen (z.B. von Handstücken, Handstücklisten, Paragenesen, Mineralien). Sie können wahlweise als einfaches Textfile oder als fertig formatiertes $I\!AT_E\!X$ -File ausgegeben werden, das, mit $T_E\!X$ gesetzt, druckreife Dokumente produziert.
- Mineralanalysen werden in Formaten ausgegeben, die für Normierungsprogramme wie MINSORT oder NORM geeignet sind, welche die Daten für petrologische Programme wie TWEEQU vorbereiten. Die Analysen lassen sich wahlweise für eine ganze Probe, eine Paragenese, nur ein einzelnes Mineral oder für eine P-T-Interpretation ausgeben. Im letzten Fall muss man sich die geeigneten Analysen aussuchen. SPOUT erzeugt dann automatisch Verweise zu den Analysen, so dass die analytischen Grundlagen für die P-T-Interpretation festgelegt sind.
- Stabilitätsdiagramme (P-T, T-X usw.) und assoziierte Daten (Diagramm-Berechnungsoptionen: TWEEQU-restart-File und die chemische Zusammensetzung der Mineralien: TWEEQU-cmp-File) werden im gleichen Format geschrieben, wie sie das Programm

Fig. 2.5: Abfolge der Frames in der Anwendung SPOUT

TWEEQU ausgibt. Damit eröffnet sich die Möglichkeit, Diagramme in **P**ARA**DIS** mit Hilfe von auf TWEEQU abgestimmten Zeichenprogrammen (GridLoc) oder integrierten UNIX-Programmen (AWK-Postscript-Konverter, Pageview) auf dem Bildschirm anzuzeigen oder mit Hilfe des restart-Files neu zu berechnen, eventuell mit leicht geänderten Optionen.

• Druck- und Temperaturwerte von P-T-Interpretationen oder andere Probendaten (Gesteinsnamen, -codes, Parageneseninformationen usw.) können entweder zusammen mit den Probenkoordinaten als rohes GMT-Datenfile oder sogar in Form eines fertigen UNIX-Shellscriptes für das GMT-System ausgegeben werden. Das GMT-System vermag auf einer Basiskarte thematische Informationen an ihren geographischen Orten darzustellen. Druck und Temperaturwerte können konturiert werden. Damit besteht die Möglichkeit, Isobaren-, Isothermen- oder andere thematische Karten zu erstellen.

Analytik

SPOUT dient jedoch auch zur Bearbeitung von Sekundärdaten wie P-T-Interpretationen und Stabilitätsdiagrammen. Hat man eine Paragenese in der Datenbank gefunden, so kann man dazu eine oder mehrere P-T-Interpretationen eingeben.

Stabilitätsdiagramme, auf der Basis von Mineralanalysen aus **P**RA**DIS** mit dem Programm TWEEQU berechnet, lassen sich zusammen mit den Berechnungsoptionen (das restart-File) und den chemischen Zusammensetzungen der Mineralien (das cmp-File) wieder zur P-T-Interpretation ins **P**RA**DIS** einlesen. Pro P-T-Interpretation können mehrere Diagramme eingelesen werden. Ein Plotfile enthält neben den Reaktionskurven und deren Labels auch die Delta-Grössen (ΔH , ΔS , ΔV) der Reaktionen.

In SPOUT integriert sind Programme, die aus diesen Daten eines P-T-Stabilitätsdiagrammes petrologisch wichtige Informationen extrahieren können:

- Man kann irgendeine Kurve des Diagramms auswählen, T (bzw. P) eingeben und erhält P (bzw. T). Dies ist besonders in einfachen Diagrammen mit wenigen Kurven nützlich.
- Bei komplizierten P-T-Diagrammen mit vielen Kurven besteht die Möglichkeit, mit verschiedenen Berechnungsmethoden einen einzigen, optimalen P-T-Punkt zu ermitteln, bei dem das System equilibriert hat. Berücksichtigt werden dabei die Schnittpunkte der Reaktionskurven:
 - 1. Durchschnittliche T und P mit Standardabweichung aus *sämtlichen* Schnittpunkten.
 - 2. Durchschnittliche T und P mit Standardabweichung aus allen Schnittpunkten ausser denen, wo sich zwei Kurven unter *sehr kleinem Winkel* schneiden.
 - 3. Durchschnittliche T und P mit Standardabweichung aus allen Schnittpunkten ausser denen, wo Reaktionen mit sehr kleinen ΔS und ΔV beteiligt sind.
 - 4. Durchschnittliche T und P mit Standardabweichung aus allen Schnittpunkten ausser denen, wo die Schnittwinkel und ΔS , ΔV sehr klein sind.
 - 5. Durchschnittliche T und P, gewichtet nach dem Schnittwinkel der Kurven.
 - 6. Durchschnittliche T und P, gewichtet nach ΔS und ΔV .
 - 7. Durchschnittliche T und P, gewichtet nach Schnittwinkel der Kurven und $\Delta S, \Delta V$.

Die Standardabweichungen stellen ein Mass für die Streuung der Schnittpunkte dar und erlauben eine Abschätzung der Konsistenz der Resultate unter der Voraussetzung der drei kritischen Annahmen für die Thermobarometrie (vgl. Kap. 6.1.3). Die Standardabweichungen repräsentieren jedoch nicht statistisch gültige Gesamtunsicherheiten der P-T-Abschätzung. Die Gesamtunsicherheiten sind ausserordentlich schwer quantitativ abzuschätzen und können nicht mit statistischen Standardmethoden berechnet werden (vgl. BERMAN, 1991).

Alle Resultate werden in **P**RA**DIS** beim Stabilitätsdiagramm abgelegt. Der bevorzugte P-T-Punkt lässt sich mit Verweis auf die Berechnungsmethode in der P-T-Interpretation abspeichern und kann z.B. für Isothermen- und Isobarenkarten verwendet werden. Kapitel 2. ParaDIS

Kapitel 3

Daten

3.1 Datenanalyse

Im folgenden werden sämtliche Relationen mit allen ihren Attributen vorgestellt. Dabei wird insbesondere auch auf die Domänen hingewiesen, die den Attributen unterliegen, damit für jeden Datenbankbenutzer klar ersichtlich ist, in welcher Form ein Eintrag zu erfolgen hat. Selbstverständlich wird sich der Benutzer nicht um das Einsetzen von irgendwelchen Schlüsseln kümmern müssen, das DBMS kann diese Aufgabe viel schneller und zuverlässiger lösen.

In den Tabellen findet man Informationen über die Namen der Attribute (Primär- und Fremdschlüssel sind versal geschrieben), die zugehörigen Datentypen, deren Länge und Erläuterungen zu den Domänen oder andere Bemerkungen.

Attribute, die Nullwerte enthalten können, sind kursiv geschrieben. Nullwerte sind nur dort sinnvoll, wo speziell darauf hingewiesen werden soll, dass keine Daten vorliegen. Dies ist, wie bereits erwähnt, bei bestimmten Fremdschlüsseln sinnvoll, wenn die entsprechenden Primärschlüssel nicht existieren. Erlaubt man bei numerischen Datentypen Nullwerte, so kann ausserdem klar zwischen «nicht existent» und «numerisch 0» unterschieden werden. Vor allem bei EMS-Analysen von Mineralien ist es wichtig, unterscheiden zu können, ob ein Element im Mineral nicht vorkommt (numerisch 0) oder ob das Element gar nicht gemessen wurde (Nullwert).

Die verwendeten Datentypen sind INGRES-spezifisch und wurden mit der relationalen Sprache QUEL definiert.

3.1.1 Publikation, Autoren und Referenzen

Um eine geologische Publikation möglichst vollständig zu charakterisieren, benötigt man die folgenden Angaben, die auf die Relationen «author», «writes», «publication» und «references» verteilt sind (vgl. Tabelle 3.1).

In der Relation «publication» finden sich die Angaben über das eigentliche Werk.

Die Relation «writes» wird vom DBMS automatisch manipuliert. Sie enthält die Information, welche Publikation von welchem Autor stammt.

Die Relation «references» verweist auf andere, beispielsweise thematisch verwandte Publikationen in der Datenbank oder auf Publikationen, die in der Referenzliste erscheinen.

PUBLICATION					AUTHOR			
Attribut	Тур	L	Bemerkungen		Attribut	Тур	L	Bemerkungen
PUB#	integer	4	Primärschlüssel		AUT#	integer	4	Primärschlüssel
year	integer	2	Erscheinungsjahr		secondname	varchar	25	Nachname
title	varchar	240	Titel		firstname	varchar	25	Vorname
territory	varchar	180	Arbeitsgebiet				1	
keywords	varchar	110	Schlüsselwörter		WRITES			
type	char	5	Diss, Pap, Dipl		Attribut	Тур	L	Bemerkungen
journal	varchar	60	Zeitschrift		PUB#	integer	4	Primärschlüssel
volume	char	10	Band		AUT#	integer	4	Primärschlüssel
frompage	integer	2	Beginn Seitenzahl		$\operatorname{sort} \#$	integer	1	Reihenfolge
topage	integer	2	Ende Seitenzahl		L			
institute	varchar	50	Adr. des Autors					
university	varchar	50	Universität		REFERENCE	ES		
emsanalyst	varchar	25	Sonde-Laborant		Attribut	Тур	L	Bemerkungen
remarks	varchar	200	Bemerkungen		PUB#	integer	4	Primärschlüssel
newdate	date		Eintragsdatum		$\text{REL}_\text{PUB}\#$	integer	4	Primärschlüssel

Tab. 3.1: Relationen «author», «writes», «publication» und «references»

3.1.2 Handstück und Mineralien

Die Relation «sample» enthält nicht nur die makroskopische Gesteinsbeschreibung, sondern auch Angaben über den Fundort.

Die Relation «mineralgroup» beschreibt zusammenfassend gleiche Mineralien (z.B. Schieferungsbiotit, Querbiotit usw.) aus verschiedenen texturellen Umgebungen (Paragenesen). In der Relation «mineral» können mikroskopische Beobachtungen abgelegt werden.

SAMPLE				MINERALGROUP			
Attribut	Тур	L	Bemerkungen	Attribut	Тур	L	Bemerkungen
SAM#	integer	4	Primärschlüssel	SAM#	integer	4	Primärschlüssel
PUB#	integer	4	Fremdschlüssel	MINAME	char	20	Primärschlüssel
sampcd1	char	15	1. Code	modal	integer	1	Modalanteil
sampcd2	char	15	2. Code				
rockname	varchar	80	Gesteinsname	MINERAL			
rockclass	varchar	40	Gesteinsklasse	Attribut	Тур	L	Bemerkungen
tectunit	varchar	80	tekton. Einheit	MIN#	integer	4	Primärschlüssel
descript	varchar	400	makr. Beschr.	IN_MIN#	integer	4	Fremdschlüssel
fabric	varchar	180	Gefüge	PAR #	integer	4	Fremdschlüssel
location	varchar	150	Fundort	SAM#	integer	4	Fremdschlüssel
xcoord	float	4	Längen-Koord.	MINAME	char	20	Fremdschlüssel
ycoord	float	4	Breiten-Koord.	mingrainsize	float	4	min. Korngrösse
zcoord	float	4	Höhe über Meer	maxgrainsize	float	4	max. Korngrösse
remarks	varchar	200	Bemerkungen	description	varchar	525	mikr. Beschr.
				remarks	varchar	200	Bemerkungen

Tab. 3.2: Relationen «sample», «mineral» und «mineralgroup»

3.1.3 EMS-Analysen und -Messprofile

Die Relation «emsanalysis» enthält alle wichtigen Informationen einer Elektronenmikrosonde-Messung. «emsprofile» gruppiert die Analysen zu einem Messprofil über ein oder mehrere Mineralien und gibt somit Auskunft über chemische Zonierungen.

EMSANALYSIS							
Attribut	Тур	L	Bemerkungen				
EMS#	integer	4	Primärschlüssel				
MIN#	integer	4	Fremdschlüssel				
GRA #	integer	4	Kornnummer				
EMP #	integer	4	Fremdschlüssel				
x_position	float	8	Messtischkoord.				
y_position	float	8	Messtischkoord.				
anacd1	char	10	1. Code				
anacd2	char	10	2. Code				
rimcore	char	10	Messort im Korn				
averagean	integer	1	Durchschnitt				
SiO_2	float	4	Gew% der				
Al_2O_3	float	4	Oxide				
TiO_2	float	4					
FeO	float	4					
$Fe_2 O_3$	float	4					
MnO	float	4					
MgO	float	4					
CaO	float	4					
Na_2O	float	4					
$K_2 O$	float	4					
NiO	float	4					
Cr_2O_3	float	4					
ZnO	float	4					
$H_2 O$	float	4					
F	float	4					
Cl	float	4					
$Li_2 O$	float	4					
tot	float	4	Total				
remarks	varchar	150	Bemerkungen				
newdate	date		Eintragsdatum				

EMSPROFILE						
Attribut	Тур	L	Bemerkungen			
EMP#	integer	4	Primärschlüssel			
profdescription	varchar	200	Beschreibung			
rim1against	char	20	Nachbar 1			
rim2against	char	20	Nachbar 2			
lengthmm	float	4	Profillänge			
distancemm	float	4	PtAbstand			
remarks	varchar	100	Bemerkungen			

Tab. 3.3: Relationen «emsanalysis» und «emsprofile»

3.1.4 Paragenesen und P-T-Interpretationen

Die Relationen «paragenesis» und «ptinterpretation» enthalten die Informationen über Paragenesen und Druck-Temperatur-Abschätzungen. Druck-Temperatur-Werte können von Hand oder als Resultat von einem in der Anwendung SPOUT (vgl. Kapitel 2.5.2) integrierten Plot-Analyseprogramm automatisch eingesetzt werden.

In der Relation «baseson» steht, auf welchen EMS-Analysen die P-T-Abschätzung basiert (P-T-interpretation bases on EMS-analysis).

PARAGENESIS						
Attribut	Тур	L	Bemerkungen			
PAR#	integer	4	Primärschlüssel			
SAM#	integer	4	Fremdschlüssel			
facies	char	30	MetamFazies			
locfabric	varchar	300	Paragenese-Textur			
metage	char	20	Metamorphosealter			
presest	char	10	P des Autors			
tempest	char	10	T des Autors			
source	varchar	100	Quelle der Daten			
remarks	text	200	Bemerkungen			
BASESON						
Attribut	Тур	L	Bemerkungen			
PTI#	integer	4	Primärschlüssel			
$\mathrm{EMS}\#$	integer	4	4 Primärschlüssel			
PAR# SAM# facies locfabric metage presest tempest source remarks BASESON Attribut PTI# EMS#	integer integer char varchar char char char varchar text V Typ integer integer	$ \begin{array}{c} 4 \\ 4 \\ 30 \\ 20 \\ 10 \\ 100 \\ 200 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Primarschlüssel Fremdschlüssel MetamFazies Paragenese-Textur Metamorphosealter P des Autors T des Autors Quelle der Daten Bemerkungen Bemerkungen Primärschlüssel Primärschlüssel			

PTINTERPRETATION							
Attribut	Typ L		Bemerkungen				
PTI#	integer	4	Primärschlüssel				
SAM#	integer	4	Fremdschlüssel				
PAR#	integer	4	Fremdschlüssel				
PT_PLT#	integer	4	Plot-Nummer				
id_code	char	20	Code				
quality	integer	2	Güte				
temperatur	float	8	Temperatur				
$t_dispersion$	float	8	T-Verteilung				
pressure	float	8	Druck				
p_dispersion	float	8	P-Verteilung				
calcmethod	char	30	Methode				
thermometer	char	100	Thermometer				
barometer	char	100	Barometer				
description	varchar	400	Beschreibung				
date	date		Eintragsdatum				

Tab. 3.4: Relationen «paragenesis», «ptinterpretation» und «baseson»

3.1.5 Plots

Druck- und Temperaturabschätzungen wurden mit dem Programm TWEEQU (BERMAN 1991) vorgenommen. Die berechneten Phasendiagramme können direkt eingelesen und bei der P-T-Interpretation abgelegt werden. In Tabelle 3.5 finden sich die dazu benötigten Relationen. «Plotcmp» und «Plotrestart» sind Hilfsrelationen, in die das composition- resp. das restart-file Zeile für Zeile abgelegt werden, damit die Diagramme sofort neu berechnet werden können, z.B. mit leicht abgeänderten Berechnungsoptionen.

Die TWEEQU-files werden automatisch eingelesen und die Daten in die entsprechenden Relationen verteilt. In der Anwendung SPOUT integrierte Analyseprogramme können auf diese Daten zugreifen und Durchschnittswerte von P, T und deren Standardabweichungen berechnen.

PLOT				Γ	PLOTLAB	EL		
Attribut	Typ	L	Bemerkungen	-	Attribut	Typ	L	Bemerkungen
PLT#	integer	4	Primärschlüssel	-	PLT#	integer	4	Primärschlüssel
PTI#	integer	4	Fremdschlüssel		RCN#	integer	4	Primärschlüssel
plotlabx	char	25	Diagramm-x-Label		LAB#	integer	4	Primärschlüssel
plotlaby	char	25	Diagramm-y-Label		x	float	8	x-Koordinate
xmin	float	8	x-Minimalwert		у	float	8	y-Koordinate
xmax	float	8	x-Maximalwert		ht	float	8	?
ymin	float	8	y-Minimalwert		beta	float	8	Rotationswinkel
ymax	float	8	y-Maximalwert		title	varchar	120	Label-Text
xplen	float	8	?	L				
yplen	float	8	?		PLOTREA	CTION		
val1	float	8	?		Attribut	Тур	L	Bemerkungen
val2	float	8	?		PLT#	integer	4	Primärschlüssel
mod	integer	4	?		RCN#	integer	4	Primärschlüssel
rcn	integer	4	Anzahl Reaktionen		labels	integer	4	Anzahl Labels
compsfile	char	25	Name des cmp-Files		points	integer	4	Anzahl Punkte
ttot	float	8	T, alle Punkte		deltah	float	8	Delta H
ttotdev	float	8	T-Stdabw.		deltas	float	8	Delta S
ptot	float	8	P, alle Punkte		deltav	float	8	Delta V
ptotdev	float	8	P-Stdabw.					
ntot	float	8	Anzahl aller Punkte		PLOTPOI	νT		
ta	float	8	T, ohne enge Winkel		Attribut	Тур	L	Bemerkungen
tadev	float	8	T-Stdabw.		PLT#	integer	4	Primärschlüssel
$_{\rm pa}$	float	8	P, ohne enge Winkel		$\mathrm{RCN}\#$	integer	4	Primärschlüssel
padev	float	8	P-Stdabw.		PNT#	integer	4	Primärschlüssel
na	float	8	Anzahl Punkte		xval	float	8	x-Koordinate
tsv	float	8	T, ohne kleine SV		yval	float	8	y-Koordinate
tsvdev	float	8	T-Stdabw.		movedraw	integer	2	Zeichen-Befehl
psv	float	8	P, ohne kleine SV	-				
psvdev	float	8	P-Stdabw.		PLOTCMF)		
nsv	float	8	Anzahl Punkte		Attribut	Тур	L	Bemerkungen
tasv	float	8	T, ohne SV, Winkel		PLT#	integer	4	Primärschlüssel
tasvdev	float	8	T-Stdabw.		PART#	integer	4	Primärschlüssel
pasv	float	8	T, ohne SV, Winkel		text	varchar	100	Textteil
pasvdev	float	8	P-Stdabw.					
nasv	float	8	Anzahl Punkte		PLOTRES	TART		
twa	float	8	T, winkelgewichtet		Attribut	Тур	L	Bemerkungen
pwa	float	8	P, winkelgewichtet		PLT#	integer	4	Primärschlüssel
twsv	float	8	T, SV-gewichtet		PART#	integer	4	Primärschlüssel
pwsv	float	8	P, SV-gewichtet		text	varchar	100	Textteil
twasv	float	8	T, wink, SV-gew.					
pwasv	float	8	P, wink, SV-gew.					
remarks	varchar	400	Bemerkungen					

Tab. 3.5: Relationen «plot», «plot
label», «plot
reaction», «plot
cmp», «plotpoint» und «plot
restart»

3.1.6Flüssigkeitseinschlüsse

Flüssigkeitseinschlüsse, die zusammen entstanden sind, bilden eine Assoziation. Um Flüssigkeitseinschluss-Assoziationen umfassend beschreiben zu können, sind drei Relationen notwendig. Obwohl viele analytische Methoden existieren, um Flüssigkeitseinschlüsse zu untersuchen, wurde vorerst nur auf die Heiztisch-Analytik Rücksicht genommen.

FLINCASSOCIATION							
Attribut	Тур	L	Bemerkungen				
FLI#	integer	4	Primärschlüssel				
MIN#	integer	4	Fremdschlüssel				
PAR #	integer	4	Fremdschlüssel				
modeofocc	varchar	300	Erscheinungsform				
relage	varchar	100	relatives Alter				
size	varchar	80	Grösse				
morphology	varchar	300	Morphologie				
tmin	float	4					
tm carmean	float	4					
tm carlow	float	4					
tm carup	float	4					
tm carreaction	varchar	30					
temean	float	4					
telow	float	4					
teup	float	4					
tereaction	varchar	30					
tmicemean	float	4					
tmicelow	float	4					
tmiceup	float	4					
tmicereaction	varchar	30					
tm clamean	float	4					
tm clalow	float	4					
tmclaup	float	4					
tm clareaction	varchar	30					
th carlow	float	4					
th carup	float	4					
th carreaction	varchar	30					
tmsolidmean	float	4					
tmsolidlow	float	4					
tmsolidup	float	4					
tm solid reaction	varchar	30					
thtotmean	float	4					
thtotlow	float	4					
th to tup	float	4					
thto treaction	varchar	30					
tdecmean	float	4					
t declow	float	4					
tdecup	float	4					
tmax	float	4					
bulk density	float	4					
molvol	float	4					
remarks	varchar	150	Bemerkungen				
otherdata	varchar	300	weitere Daten?				

Attribut	Тур	L	Bemerkungen				
FPH#	integer	4	Primärschlüssel				
FLI#	integer	4	Fremdschlüssel				
phase	char	20	Phase				
modal	integer	2	Modalanteil				
FLINCCC	FLINCCOMPOSITION						
Attribut	Тур	L	Bemerkungen				
FCM#	integer	4	Primärschlüssel				
FLI#	integer	4	Fremdschlüssel				
species	char	10	chem. Spezies				
wtperc	float	4	Gew%				
molperc	float	4	Mol-%				

FLINCPHASE

Tab. 3.6: Relationen «flincassociation», «flincphase» und «flinccomposition»

Teil II

Evaluation von Paragenesedaten mesoalpiner Mineralvergesellschaftungen der Zentralalpen

Kapitel 4

Evaluation von Paragenese-Daten aus der Literatur

4.1 Anforderungen an Paragenese-Daten

Bevor man Anforderungen an eine Paragenesenbeschreibung stellen kann, muss man sich darüber im klaren sein, welche Prozesse eine Paragenese erzeugen, wie eine Paragenese definiert wird und wie man die Paragenese erkennen kann.

4.1.1 Definition einer Paragenese

Metamorphose ist die Umwandlung eines Gesteins im festen Zustand und wird bewirkt durch eine bedeutende Veränderung der instensiven Variablen P, T, X und der Spannungen, die auf das Gestein wirken.

Alle diese Veränderungen bewirken einerseits eine Überprägung von neuen Strukturen über alte, z.T. diese völlig verwischend. Die neuen Strukturen können andere Korngrössen und -orientierungen aufweisen. Andererseits verändert sich sowohl die mineralogische Zusammensetzung des Gesteins als auch die chemische Zusammensetzung der Mineralien. Alle diese Veränderungen in Struktur und Zusammensetzung sind eine Anpassung des Systems an einen neuen, stabileren Gleichgewichtszustand.

Die spezielle Aufgabe eines Petrologen besteht nun darin, Drucke und Temperaturen zu berechnen, denen ein Gestein während der Metamorphose unterworfen wurde. Um diese Ableitungen machen zu können, werden Mineralparagenesen interpretiert, einerseits unter dem Aspekt der chemischen Prozesse, die sie erzeugt haben, andererseits unter dem Aspekt der Strukturen, die das Resultat der physikalischen Kräfte sind, die auf das Gestein wirkten. PRESS & SIEVER (1986) definieren eine Mineralparagenese und deren Bedeutung folgendermassen:

...Precise guides [to pressure and temperature] are given by mineral assemblages, which consist of two, three or many minerals found together in a rock and whose textures indicate that they were formed at the same time in chemical equilibrium.

Diese zunächst klare Definition wirft jedoch einige Diskussionspunkte auf:

• Ordnet man Mineralien nur aufgrund textureller Kriterien einer Paragenese zu, so muss sichergestellt sein, dass die Paragenese syn- oder posttektonisch entstand, d.h.
die Texturen und die Mineralien entstanden gleichzeitig und man kann annehmen, dass sowohl texturelles als auch chemisches Gleichgewicht vorliegt.

• Nur diskontinuierliche chemische Reaktionen (Mineralumwandlungen) können die Textur beeinflussen! Kontinuierliche Reaktionen (Ionenaustausch) benötigen in der Regel geringere Aktivierungsenergien und können nach Beendigung der diskontinuierlichen Reaktionen noch weiterlaufen.

So können sich beispielsweise durch Fe-Mg-Austausch die Chemismen von Granat und Biotit bei der Abkühlung kontinuierlich weiter verändern, ohne dass die Textur des Gesteins beeinflusst wird. Aufgrund geringerer Ionendiffusionsgeschwindigkeit entstehen in der Regel am Granat Abkühlungsränder, während die Biotite keine Zonierung zeigen. Granatränder und Biotite änderten ihren Chemismus gleichzeitig, gehören somit zur gleichen Paragenese, allerdings zu einer späteren als die Granatkerne.

Teile ein und desselben Minerals können somit zu verschiedenen Paragenesen gehören!

• Metamorphe Reaktionen werden in der Regel mit thermodynamischen Methoden studiert. SPRY (1983) weist jedoch darauf hin, dass bei der Beurteilung metamorpher Mineralparagenesen die Kinetik nicht vergessen werden sollte. Die Reaktionsrate kann so langsam werden, dass kinetisch kontrollierte Texturen entstehen, die ein eingefrorenes Reaktionsstadium zeigen, das den Zustand des Energieminimums nicht erreicht hat und auf einem metastabilen Niveau stehen geblieben ist, weil die Aktivierungsenergie für die Reaktion unterschritten wurde. Dies gilt für kontinuierliche und diskontinuierliche Reaktionen gleichermassen.

4.1.2 Erkennung und Beschreibung einer Paragenese

In Anbetracht der oben erwähnten Problematik ist es keine triviale Aufgabe, eine Paragenese zu erkennen, besonders nicht in Gesteinen der Zentralalpen, deren Metamorphose sowohl polyphas als auch plurifaziell war. Im gleichen Gestein kommen deshalb in der Regel mehrere Paragenesen vor. Im folgenden werden die Erkennungskriterien kurz repetiert (vgl. auch SPRY, 1983; MASON, 1986):

- 1. Jedes Mineral der Paragenese sollte irgendwo im Gestein eine gemeinsame Korngrenze mit allen anderen Mineralien der Paragenese aufweisen.
- 2. Die Textur muss durch metamorphe Rekristallisation entstanden sein, d.h. die Paragenese entstand syn- oder posttektonisch.
- 3. Die Mineralien müssen stabil erscheinen, d.h. Zerfalls- oder Reaktionsprodukte gehören nicht zur Paragenese.
- 4. Zersetzungserscheinungen wie Serizitisierung, Saussuritisierung, Chloritisierung oder chemische Zonierungen oder chemische Reaktionen zwischen Mineralien sind Anpassungen des Systems an einen stabileren Gleichgewichtszustand und somit Hinweise auf die Entstehung einer neuen Paragenese.
- 5. Die Mineralien (oder Mineralteile) dürfen keine chemische Zonierung aufweisen.

Problematisch bei den Punkten 1-4 ist natürlich, dass man mit Hilfe *optischer* Methoden versucht, ein *chemisches* Gleichgewicht zu erkennen. Diese Erkennungsmerkmale sind deshalb nur als Anhaltspunkte zu betrachten und können keine letzte Sicherheit geben.

Mehr Sicherheit über die Paragenesenzugehörigkeit der Mineralien oder Mineralteile kann nur die auf detaillierten chemischen Analysen (Punkt 5) basierende Chemographie oder eine thermodynamische Gleichgewichtsberechnung geben. Gerade bei chemischen Zonierungen von Mineralien ist es oft sehr schwierig, Paragenesen voneinander abzugrenzen. Beschreibungen dieser Zonierung oder Illustrationen in Form von chemischen Profilen über Mineralien sind jedoch für sinnvolle Abschätzungen von P und T unerlässlich.

4.2 Anforderungen an Elektronenmikrosonde-Daten

Für Druck- und Temperaturberechnungen müssen die Elektronenmikrosonde-Daten gewissen Anforderungen genügen.

Wünschenswert wäre natürlich, dass möglichst *alle* chemisch variablen Mineralien der im Gestein vorhandenen Paragenesen analysiert worden sind, damit man bei der Berechnung auch *alle* chemischen Gleichgewichte berücksichtigen kann. Existieren Messprofile über zonierte Mineralien, so können im Glücksfall die Veränderungen von Druck und Temperatur über verschiedene Metamorphosephasen detailliert bestimmt werden.

Als Mindestanforderung aber sollte mit den verfügbaren Analysen ein Thermometer oder ein Barometer formuliert werden können.

Die einzelnen Elektronenmikrosondeanalysen müssen den folgenden 3 Bedingungen genügen, damit man sie für Druck- und Temperaturberechnungen verwenden kann:

- Das Total darf höchstens 2% Abweichung von 100% aufweisen! Ausgenommen sind natürlich wasserhaltige Mineralien, deren Total je nach Wassergehalt unter 100% liegt (Biotite ca 94.9%, Muskovite ca 94.7%, Chlorite ca 86.2%). Granate liegen in der Regel etwas über 100% (100.4%).
- 2. Bei der Normierung der Analyse muss die ermittelte Strukturformel den kristallchemischen Forderungen entsprechen! Es müssen folglich *alle* im Mineral vorhandenen Hauptelemente analysiert worden sein. (Vor allem bei älteren Arbeiten kann es vorkommen, dass aufgrund einer anderen petrologischen Fragestellung als P-T-Metrik nur eine Auswahl der im Mineral vorhandenen Elemente gemessen wurde.)
- 3. Sowohl für wasserfreie wie wasserhaltige Minerale sollten, ausgehend von einem Endglied, kristallchemisch sinnvolle Substitutionen zu den ermittelten Strukturformeln führen.

4.3 Datenquellen

Als Datenquellen kamen sämtliche verfügbaren veröffentlichten und unveröffentlichten Arbeiten wie Dissertationen, Diplom- und Lizentiatsarbeiten und Artikel aus wissenschaftlichen Zeitschriften in Frage.

Als Anfang eines petrologischen Inventars der Zentralalpen wurde Arbeiten mit quantitativen Analysenmethoden (Mikroröntgenspektroskopie, Röntgenfluoreszenz, Röntgendiffraktometrie usw.) speziell Beachtung geschenkt. Allerdings kamen auch Arbeiten, die rein qualitative Erkenntnisse enthielten, wie detaillierte petrographische Beschreibungen oder strukturelle Untersuchungen (meistens Diplom- und Lizentiatsarbeiten), in die Liste, da sie ausgezeichnetes Ausgangsmaterial für zukünftige quantitative Untersuchungen liefern.

Im Rahmen dieser Arbeit wurden jedoch nur diejenigen Arbeiten weiterverwendet, die sowohl brauchbare Proben- und Paragenesenbeschreibungen als auch verwertbare mineralchemische Analysen (Elektronenmikrosonde) enthielten, da mit diesen Daten Druck- und Temperaturberechnungen vorgenommen werden sollten.

4.3.1 Kriterien für die Literatur-Evaluation

Arbeiten, die EMS-Analysen von Mineralien enthalten, wurden genauer untersucht und gemäss Tabelle 4.1 kategorisiert.

Kriterium	Erfüllbarkeit	Wann erfüllt
EMS	komplett	Sämtliche Mineralien mindestens einer der gefundenen Pa- ragenesen wurden mit der Elektronenmikrosonde analysiert. Von jedem analysierten Mineral ist mindestens eine Analyse brauchbar.
	brauchbar	Es wurden zwar nicht alle Mineralien einer Paragenese ana- lysiert, aber mit den vorhandenen Analysen kann mit geeig- neten Thermo- oder Barometern eine Temperatur bzw. ein Druck berechnet werden.
	unbrauchbar	Die Analysen werden für P-T-Berechnungen unbrauchbar, falls einer der folgenden Punkte zutrifft:
		 Es lässt sich kein Thermo- oder Barometer anwenden, weil Analysen der dazu notwendigen Mineralien fehlen. Die Analysen sind schlecht.
		• Logistische Fehler, wie sie auch in Tabelle 4.2 auf- geführt sind, können die EMS-Daten wertlos machen!
P-T-calc	ja oder nein	Mit den EMS-Analysen wurden Druck-Temperatur-Berech- nungen vorgenommen. (Das heisst aber nicht, dass die EMS- Analysen als brauchbar evaluiert wurden!)
PARADIS	ja oder nein	Sämtliche verfüg- und brauchbaren Daten befinden sich bereits in der Datenbank P ARA DIS .
Geochemie	XRF	Röntgenfluoreszenz
	andere	nasschemische Methoden wie Kalorimetrie, Komplexome- trie, Flammenphotometrie, Spektralphotometrie, Gravime- trie, Coulometrie, Atomabsorption usw.
andere		der ganze Rest: XRD (Röntgendiffraktometrie), NAA, Fluid-inclusions (z.B. Mikrothermometrie), Radioaktivität, Wasseranalysen, Zirkon-Untersuchungen nach Pupin, Isoto- pengeologische Methoden wie Altersbestimmungen irgend- welcher Art (U/Pb, K/Ar, Rb/Sr, Spaltspuren usw.), op- tische Methoden (Zonenmethode nach Rittmann, Immer- sionsmethode usw.), Modalbestandsanalysen, Geophysika- lische Methoden (Magnetik, Seismik usw.), Photogramme- trie, Strukturen (makroskopisch, Qz-Achsen), experimentel- le Methoden wie Calorimetrie usw., Kathodenluminiszenz, Elektronenmikroskopie, DTA

Tab. 4.1: Evaluationskriterien für Literaturquellen

4.3.2 Fehlerquellen

Es folgt eine tabellarische Zusammenstellung der häufigsten, meist logistischen Unzulänglichkeiten, die leider in sehr vielen der Arbeiten vorkommen und eine Rekonstruktion der Resultate erschweren oder gar verunmöglichen. Die einzelnen Punkte sind entsprechend ihrer Häufigkeit geordnet. Kombinationen verschiedener Punkte kommen oft vor:

Fehlerquelle	Art
Fundort	In der Arbeit finden sich keine, falsche oder mehrere (!) Fundort- angaben/Koordinaten für ein Handstück.
Dokumentation	Es gibt keine Handstücknamen, keine Aufschluss-, Handstück-, Paragenese- oder Mineralbeschreibungen, kein Modalbestand.
Datenstruktur	Die Zugehörigkeiten Analyse – Mineral, Mineral – Paragenese, Paragenese – Handstück usw. sind nicht mehr rekonstruierbar! Mögliche Gründe: falsche oder fehlende Probennummern oder -namen.
Analytik	Die Mineralanalysen einer Paragenese stammen aus verschiedenen Handstücken. Obwohl Mineralien analysiert wurden, finden sich keine, nicht alle oder nur «repräsentative» Analysen (Auszüge, Durchschnitte) in der Arbeit abgedruckt. Die Analysen sind auch nicht mehr vom Autor erhältlich. Die Analysen sind schlecht

Tab. 4.2: Fehlerquellen

4.4 Evaluierte Literatur

Es folgen Tabellen mit den bearbeiteten Publikationen und Informationen über die jeweils angewendeten Analysenmethoden. Arbeiten ohne Kommentar sind rein beschreibend (Petrographie, Strukturen usw.).

Arbeit	EMS	PT	Pa	Geochemie	andere
[ABLM85]	komplett	•	•		
[ACR75]	keine	•	-		Stresseffekte um Quarz-Ein-
[1101010]		-			schlüsse in Granaten
[AH79]	unbrauchbar				XBD.
[A.I65]	keine				Bb-Sr-Alter an Bio und Mus
[A IE66]	keine				Bb-Sr-Alter an Bio K-Ar
$[\Lambda br 52]$	keine				XBD.
$\begin{bmatrix} Abr 75 \end{bmatrix}$	unbrauchbar			YBE	Spoktralphotom NAA Iso
	unbrauciibai			AIT	topon Elammonphotom
[Aob85]	koino				Strukturanaluson
[Aeb05]	koino				Strukturanarysen
$\begin{bmatrix} Aem 70 \end{bmatrix}$	koino			YBE	
$\begin{bmatrix} \text{Amm75} \end{bmatrix}$	koino			AIT	
$\begin{bmatrix} \text{Ams71} \\ \text{Ams74} \end{bmatrix}$	koino				Strukturop
$\begin{bmatrix} A m 68 \end{bmatrix}$	koino				nasschom Minoralanalyson
[RB80]	koino				XBD: Cuinior
[BB829]	koino				XRD: opt Moth IB Spok
[DD02a]	Keine	•			troskopio
[BB89b]	koino				lioskopie
[BBI+80]	keine				Palynologia
[BND83]	keine	•			1 arynologie
[BNFF83]	keine				
[BL83a]	brauchbar				
[BL05a] [BLM85]	brauchbar		•	XBF	Atomabsorption Spektropho-
	brauchbar	•	•	7111	tometrie Gravimetrie
[BP73]	keine			XBF	
[Bal89]	keine			XRF	Altersbestimmung
[Ban78]	unbrauchbar			XRF	Theoremanning
[Bau79]	unoradenoar			1111	NAA Wasseranalysen
[Bau82]	keine	•			
[Bea52]	keine	-			
[Bia60]	keine			nasschemisch	
[Bia71a]	keine				
[Bia71b]	keine			nasschemisch	
[Bl"83b]	keine			XRF	
[Bla65a]	keine				
[Bla65b]	keine				Spektralanalysen, Modalana-
					lysen
[Bla72]	keine	•			Sauerstoffisotopen
[Bö86]	keine			XRF	XRD; Kathodenluminiszenz
[Bos81]	keine				,
Bru65	keine				
[Buc72]	unbrauchbar			XRF	XRD;
[Bü80]	brauchbar	•		XRF	

Tab. 4.3: Evaluierte Literatur

Arbeit	EMS	PT	Pa	Geochemie	andere
[Bü81]	keine	•			
[Bü83]	unbrauchbar			XRF	XRD;
[Bur42]	keine				
[Bur89]	unbrauchbar				
[CD73]	komplett	•			
[Cha61]	keine				
[Cha68]	keine				
[Cod81]	keine				
[Col83]	keine				
[Col88]	unbrauchbar	•			
[Cor74]	keine				
[DBN84]	komplett	•	٠		
[DN87]	keine			XRF	Rb-Sr-Geochemie
[DS85a]	keine				K-Ar Hornblende
[DS85b]	keine				K/Ar-Alter
[Deu79]	unbrauchbar	•			
[Die84]	brauchbar	•		XRF	
[ET70]	keine				
[ET74]	komplett	•	•		
[ET78]	komplett	•	•	XRF	
[ET83]	komplett		•		
[ETG81]	keine			XRF	
[ETR79]	komplett	•	•		
[Egg75]	keine				XRD; Guinier
[Egl61]	keine				
[Egl66]	keine				
[Eng73]	unbrauchbar	•			XRD;
[Eng78]	keine				
[Ern77]	komplett	•	•		
[Ern78]	brauchbar	•			
[Ett 87]	keine				Strukturen
[FBFM80]	keine	•			
[FBFS82]	unbrauchbar				
$[FHF^+74]$	keine				
[FHJS83]	keine			\mathbf{XRF}	
[FJN76]	keine				
[FO74]	keine				
[FS79]	keine	•		\mathbf{XRF}	XRD; K-Ar, ³⁹ Ar - ⁴⁰ Ar, Hell-
[FGT85]	keine				stabile Isotopen
[FW75]	keine				XRD;
[Feh22]	keine				, ,
[Fer64]	keine			nasschemisch	
[Fis23]	keine				

Tab. 4.4: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	ΡT	Pa	Geochemie	andere
[Fis86]	komplett	•	•		
[Fis88]	unbrauchbar	•			
[Fis89]	keine				Strukturen
[Fox74]	keine	•		XRF	
[Fox75]	?	•			
[Fra75]	keine			XRF	XRD; optische Methoden
[Fra79a]	unbrauchbar				XRD;
[Fra79b]	brauchbar	•			XRD;
[Fra83]	brauchbar	•			
[Fre 67]	keine				Stratigraphie
[Fre 69]	unbrauchbar	•		XRF	
[Fre74]	keine				
[Fre75]	?	•			
[Fre 78]	unbrauchbar	•		XRF	XRD;
[Fre 86]	keine				
[Fum74]	keine				
[GH89]	keine				K-Ar, fission track
[GL89]	brauchbar	•	•		
[GM78]	unbrauchbar			XRF	
[GN67]	keine				
[GSS76]	keine	•		XRF	
[GSSF85]	unbrauchbar				U-Tisch
[Gan 37]	keine				Stratigraphie
[Gan 83]	keine			XRF	Guinier, Coulometrie
[Gar 47]	keine				
[Gau76]	unbrauchbar				
[Gau79]	keine				
[Gau 80]	brauchbar	•	•	XRF	
[Geh 81]	keine				
[Gen 78]	keine				
[Ger 66]	keine				
[Gie84]	unbrauchbar			XRF	
[Gig85]	brauchbar	•		XRF	Altersbestimmung
[Gre76]	keine				
[Gre85]	keine				Strukturen
[Gr"63]	keine				U-Pb-Alter
[Gru70]	keine	•			
[Gü54]	keine			nasschemisch	
[Gun87]	brauchbar		•	XRF	
[HB69]	keine				Rb-Sr-Alter Biotit
[HF'80]	keine	•			$\delta^{1\circ}$ O und δD -Bestimmung
[HFJ89]	keine				fission-track
[HFLV90]	keine				
[HGS75]	keine				Geochronologie

Tab. 4.5: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	PT	Pa	Geochemie	andere
[HRS80]	keine				Strukturen
[Hä72]	keine				XRD; Strukturen
[Haf58]	keine				
[Hal44]	keine			nasschemisch	
[Hal72]	keine				Strukturen
[Ham85]	keine	•			
[Han72]	unbrauchbar				
[Han81]	keine			XRF	Zirkonmorphologie nach Pu-
					pin
[Has 49]	keine			nasschemisch	
[Hei69]	keine				
[Hei72]	keine			XRF	
[Hei75]	keine	•			
[Hei78]	keine				
[Hei82]	komplett	•	•		
[Hei83]	komplett	•	•		
[Hei86a]	komplett	•	•		
[Hei86b]	keine				
[Hei87]	keine				Strukturen
[Hel77]	keine				Magnetik
[Her81]	keine				Strukturen
[Hig64a]	keine				
[Hig64b]	keine				Strukturen
[His75a]	keine				
[His75b]	unbrauchbar			XRF	
[His75c]	keine			XRF	
[His77]	unbrauchbar	•			
[His78]	keine	•			
[Hub22]	keine				
[Hub81]	keine				Strukturen
[HA82]	keine				Strukturen
[Hü27]	keine				Radioaktivität
[Hü88]	unbrauchbar	•			Fuid-inclusions
[Hun66]	unbrauchbar				DTA
[Hun69]	keine				Rb-Sr Phengit
[Hun74]	keine				Altersbestimmung
[Hur86]	keine				Rb-Sr, K-Ar von Bio, Mus;
_					FT Apatit, Zirkon
[Hut21]	keine				
[IA85]	unbrauchbar			XRF	XRD; Infrarotspektroskopie
[IH82]	keine				
[Iro78]	?	•			
[Iro80]	unbrauchbar				
[Iro83]	brauchbar	•	•	XRF	XRD;

Tab. 4.6: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	PT	Pa	Geochemie	andere
[JGN+61]	keine				Rb-Sr Muskovit und Biotit
[JNW67]	keine				Rb-Sr an Biotit, Phengit
[Jä70]	keine				Rb-Sr whole rock und versch.
					Mineralien
[Jä73]	keine				U-Pb Zirkon; Rb-Sr, Hellglim-
					mer, whole rock
[Jä83]	keine				Abkühlalter
[Jea81]	keine				
[Jen 69]	keine				
[Joo69]	keine				
[KBN87]	komplett	•	•		
[KG75]	keine				U-Pb Monazit, Xenotim
[KGG81]	keine				Altersbestimmung
[KLR78]	keine				Feldradioaktivität
[Kä28]	keine				
[Kaj73]	keine				XRD; Elektronenmikroskopie
[Kam92]	komplett	•	•		
[Kel68]	keine			nasschemisch	
[Ker47]	keine				
[Keu71]	keine			nasschemisch	Photometr
[Keu72b]	unbrauchbar	•		XRF, nasschem.	
[Keu72a]	unbrauchbar	•		nasschemisch	
[Kla80]	brauchbar	•			
[Kla82]	komplett	•	•		
[Kla85]	komplett	•	•		
[Kla86]	keine	•			
[Kla90]	keine			VDD	Strukturen
[Kle70a]	keine	_		ARF	VDD
	keine	•		VDE	ARD;
[K0032]	koino	•	•		
[Kub83]	unbrauchbar			XBF	
[Kü74]	keine			1111	XBD: Bradley Guinier
[Kun88]	keine				ia
[Kup77]	keine				1.0
[LG88]	keine				
[Lab65]	keine				
[Lar81]	keine				
[Lau83]	keine				Strukturen
[Led43]	keine				
[Leu86a]	keine				
[Leu86b]	keine				Strukturen
[Lin87]	brauchbar		•	XRF	
[LN66]	keine				

Tab. 4.7: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	PT	Pa	Geochemie	andere
[Lö81]	keine	•			
[Lö85]	keine				Strukturen
[Lö86]	keine	•			
[Lö87]	brauchbar	•	•		
[Lü65]	keine				
[MO88]	keine				
[MP80]	keine				Strukturen
[MS78]	keine				Strukturen
[MST87]	keine				
[Mar 84]	keine				
[Mat80]	keine				
[Mer79]	brauchbar	•			
[Mer 80]	unbrauchbar				
[Mer 82]	keine	•			Fluid-inclusions
[Mer 85]	unbrauchbar				
[Mil65a]	keine				Strukturen
[Mil65b]	keine				Strukturen
[Mil74a]	keine				Strukturen
[Mil74c]	keine				Strukturen
[Mil74b]	keine				Strukturen
[Mil76a]	keine				Modalbestandsanalysen
[Mil76b]	keine				Strukturen
[Mil78]	keine				Strukturen
[Min31]	keine				
[Mö69]	unbrauchbar				Strukturen; nasschem. Mine-
					ralanalysen
[Mor81]	keine			XRF	
[Mor 85]	unbrauchbar	•			
[Mou73]	keine				XRD;
[Mü58a]	keine			nasschemisch	
[Mü58b]	keine			nasschemisch	
[Mü86]	brauchbar			XRF	
[Mul79]	keine	•			fluid inclusions
[Mur86]	unbrauchbar			XRF	K/Ar und Rb/Sr-Alter
[NN65]	keine				
[Nab76]	keine				
[Nei48]	keine			nasschemisch	
[Nie31]	keine			nasschemisch	
[Nig60]	keine				
[Nig65]	keine			nasschemisch	Kalor., kompl., flammenph.,
[Nig70]	keine				gravim., Kadioakt.
[OSM88]	keine				
[Ohe80]	brauchhar	•			
	Stauchbai	-			

Tab. 4.8: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	PT	Pa	Geochemie	andere
[Obe85]	brauchbar	٠	٠	XRF	
[Obe86]	keine			XRF	
[Obe87]	keine	•			
[Osc86]	keine			XRF	XRD; Calorimetrie
[Ott81]	keine				
[PCG89]	keine				
$[PFV^+90]$	keine				Strukturen
[PJ76]	keine				Altersbestimmung
[PK86]	keine			XRF	Isotopen
[PS87]	komplett	•	•		
[PSW74]	keine	•			Fluid inclusions
[Per83]	brauchbar			XRF	
[Per85]	unbrauchbar				
[Pet63]	keine				spektrograph., DTA
[Pet68]	brauchbar	•			
[Pfi91]	keine				Strukturen
[Phi82]	unbrauchbar				K-Ar, Alkaliamphibole
[RA79]	keine				Strukturen
[Raz77]	keine				
[Rin92]	unbrauchbar	•			
[Ros69]	?	•			Stresseffekte um Einschlüsse;
					Piezothermometrie
[SB71]	keine				
[SHS68]	unbrauchbar			XRF	XRD; spektrometr. Methoden
[SJ81]	keine				Rb-Rr whole rock
[SO87]	unbrauchbar			\mathbf{XRF}	
[SW67]	keine				Vergleich EMS-U-Tisch
[Sch84a]	unbrauchbar			\mathbf{XRF}	Altersbestimmung
[Sch84b]	unbrauchbar	•			XRD; Fluid-inclusions
[Sch 86a]	keine				Altersbestimmung
[Sch 86b]	unbrauchbar	•		\mathbf{XRF}	
[Sch88]	unbrauchbar				
[Sch 89a]	keine			\mathbf{XRF}	Atomabsorption, Altersbest.
[Sch 89b]	keine	•			
[Sha69]	keine				Modalanalysen, Strukturen
[Sie84]	keine				Altersbestimmung
[Sim 81]	unbrauchbar			\mathbf{XRF}	XRD; Strukturen
[Sim 82]	keine				$\operatorname{Strukturen}$
[Soo86]	unbrauchbar			\mathbf{XRF}	K/Ar-Datierung, Flincs (Mi-
					krothermometrie)
[Soo90]	keine				FT Apatit, Zirkon; K-Ar Bio-
					tit, Muskovit
[St"78]	keine				
[SO91]	komplett	•	•		Sauerstoffisotopen

Tab. 4.9: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	PT	Pa	Geochemie	andere
[Ste64]	keine				K-Ar Alter an Hornblende
[Ste66a]	keine			nasschemisch	ja
[Ste66b]	unbrauchbar				
[Ste69]	keine				
[Ste78]	unbrauchbar				
[Ste80]	unbrauchbar			XRF	Spaltspuren
[Ste84a]	keine			XRF	Rb-Sr whole rock
[Ste84b]	keine				Rb-Sr, K-Ar, FT
[Ste84c]	keine			XRF	Altersbestimmung
[Sti75]	keine			XRF	Altersbestimmung
[Str 62]	keine				
[Sua83]	keine				Seismik, Magnetik
[TE69]	brauchbar	٠			
[TE72]	komplett		•		
[TE74]	unbrauchbar			XRF	
[TE77]	brauchbar	٠	•		
[TER75]	keine				
[TSU85]	keine	•			
[Teu79]	unbrauchbar				XRD; Guinier, Bradley
[Teu82]	komplett	•	•		XRD; Guinier
[The 82]	unbrauchbar			XRF	
[The 83]	keine				
[Tho76b]	keine	•			
[Tro66a]	keine	•			optische Daten
[Tro66b]	keine				
[Tro68]	unbrauchbar				
[Tro72]	keine				
[VV76]	keine				Strukturanalysen
[VV81]	keine				
[Val83]	keine			\mathbf{XRF}	
[Van 59]	keine			nasschemisch	XRD;
[Vol76a]	keine				Gefügeanalytik
[Vol76b]	keine				Strukturen
[WK69]	keine				optische Methoden
[WKHR76]	keine	•			Abkühlalter, theoret. Modell
[WO89]	keine				
[WRJ77]	keine				Rb-Sr, K-Ar
[WSHS63]	keine				Spektroskopie
[WWW74]	keine	•			
[Wab86]	komplett	•	•		
[Wal83]	unbrauchbar	•			
[Web66]	keine				
[Wen56]	keine				
[Wen62]	keine				

Tab. 4.10: Evaluierte Literatur (Fortsetzung)

Arbeit	EMS	\mathbf{PT}	Pa	Geochemie	andere
[Wen63]	keine				U-Tisch
[Wen65]	keine				XRD; Gefügestudie
[Wen68]	keine				
[Wen70]	keine				
[Wen82]	keine				
[Wen86]	keine				
[Wer80]	keine				
[Wer86]	keine				
[Wie66]	keine				
[Wys29]	keine				
[ZW85]	keine				K-Ar Hornblende
$[\mathrm{Zgr}75]$	unbrauchbar				XRD; Guinier, NAA (Würen-
					lingen), UV
[Zin79]	keine			XRF	
[deC83]	keine			XRF	Coulomat
[vR71]	keine				

Tab. 4.11: Evaluierte Literatur (Fortsetzung)

4.5 Verwendete Daten

Aufgrund der obigen Bewertungskriterien wurden aus der Literatur die folgenden Arbeiten ausgewählt, sämtliche Daten in der Datenbank **P**ARA**DIS** abgespeichert und von ca. 60 der darin beschriebenen mesoalpinen Paragenesen die Druck-Temperatur-Bedingungen berechnet. Sechs eigene Proben ergänzen die Daten aus der Literatur. Das folgende Kapitel geht im Detail auf die Methodik der Verarbeitung ein, mit besonderer Berücksichtigung der verwendeten Software-Werkzeuge.

- [ABLM85] Aurisicchio, C., Bocchio, R., Liborio, G., and Mottana, A. Petrogenesis of the eclogites from Soazza, Switzerland. *Chemical Geology*, 50:47–63, 1985.
- [Bal92] Balz, K. Die Gesteine zwischen Nufenenpass (VS/TI) und Griesspass (CH/I). Diplomarbeit, Universität Bern, 1992.
- [BLM85] Bocchio, R., Liborio, G., and Mottana, A. Petrology of the amphibolitized eclogites of Gorduno, Lepontine Alps, Switzerland. *Chemical Geology*, 50:65–86, 1985.
- [DBN84] Droop, G. and Bucher-Nurminen, K. Reaction Textures and Metamorphic Evolution of Sapphirine-bearing Granulites from the Gruf-Complex, Italian Central Alps. Journal of Petrology, 25:766–803, 1984.
- [Ern77] Ernst, W. Mineralogic Study of Eclogitic Rocks from Alpe Arami, Lepontine Alps, Southern Switzerland. Journal of Petrology, 18:371–398, 1977.
- [ET74] Evans, B. W. and Trommsdorff, V. Stability of Enstatite + Talk, and CO2-metasomatism of Metaperidotite, Val d'Efra, Lepontine Alps. American Journal of Science, 274:274–296, 1974.
- [ET78] Evans, B. W. and Trommsdorff, V. Petrogenesis of Garnet Lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40:333–348, 1978.

- [ET79] Evans, B. W. and Trommsdorff, V. Petrology of an eclogite-metarodingite suite at Cima di Gagnone, Ticino, Switzerland. American Mineralogist, 64:15–31, 1979.
- [ET83] Evans, B. W. and Trommsdorff, V. Fluorine hydroxyl Titanian Clinohumite in Alpine recrystallized Garnet Peridotite: compsitional controls and petrologic significance. American Journal of Science, 283:355–369, 1983.
- [Fis86] Fischer, M. Zur Petrographie der Bohrung Sta. Maria I, Lukmanierpass. Diplomarbeit, Universität Basel, 1986.
- [Fra79] Frank, E. Metamorphose mesozoischer Gesteine im Querprofil Brig-Verampio: mineralogischpetrographische und isotopengeologische Untersuchungen. Dissertation, Universität Bern, 1979.
- [Gau80] Gautschi, A. Metamorphose und Geochemie der basischen Gesteine des Bergeller Ostrandes (Graubünden, Schweiz / Provinz Sondrio, Norditalien). Dissertation, ETH Zürich, 1980.
- [GL89] Guntli, P. and Liniger, M. Metamorphose in der Margna-Decke im Bereich Piz da la Margna und Piz Fedoz (Oberengadin). Schweiz. Mineral. Petrogr. Mitt., 69:289–301, 1989.
- [Gun87] Guntli, P. Geologische und petrographische Untersuchungen der Margna südlich des Silsersees, Oberengadin: II. Fedoz. Diplomarbeit, ETH Zürich, 1987.
- [Hei82] Heinrich, C. A. Kyanite-Eclogite to Amphibolite Facies Evolution of Hydrous Mafic and Pelitic Rocks, Adula Nappe, Central Alps. Contributions to Mineralogy and Petrology, 81:30–38, 1982.
- [Hei83] Heinrich, C. A. Die regionale Hochdruckmetamorphose der Aduladecke, Zentralalpen, Schweiz. Dissertation, ETH Zürich, 1983.
- [Hei86] Heinrich, C. A. Eclogite Facies Regional Metamorphism of Hydrous Mafic Rocks in the Central Alpine Adula Nappe. Journal of Petrology, Part 1, 27:123–154, 1986.
- [IZ83] Irouschek-Zumthor, A. Mineralogie und Petrographie von Metapeliten der Simano-Decke unter besonderer Berücksichtigung cordieritführender Gesteine zwischen Alpe Sponda und Biasca. Dissertation, Universität Basel, 1983.
- [KBN87] Klaper, E.-M. and Bucher-Nurminen, K. Alpine metamorphism of pelitic schists in the Nufenen Pass area, Lepontine Alps. *Journal of metamorphic Geology*, 5:175–194, 1987.
- [Kla82] Klaper, E.-M. Deformation und Metamorphose in der nördlichen Maggia-Zone. Schweiz. Mineral. Petrogr. Mitt., 62:47–76, 1982.
- [Kla85] Klaper, E.-M. Deformation History and Metamorphic Mineral Growth along the Pennine Frontal Thrust (Wallis, Ticino), Switzerland. Dissertation, ETH Zürich, 1985.
- [Koc82] Koch, E. Mineralogie und plurifazielle Metamorphose der Pelite in der Adula-Decke (Zentralalpen). Dissertation, Universität Basel, 1982.
- [Lin87] Liniger, M. Geologie und Petrographie der Margna südlich des Silsersees, Oberengadin. Diplomarbeit, ETH Zürich, 1987.
- [Loe87] Loew, S. Die tektono-metamorphe Entwicklung der Nördlichen Adula-Decke (Zentralalpen, Schweiz). Dissertation, Universität Basel, 1987.
- [Obe85] Oberhänsli, R. Mineralogy and Geochemistry of metalamprophyres from the Central Swiss Alps. Habilitationsschrift, Universität Bern, 1985.
- [Obe86] Oberhänsli, R. Geochemistry of meta-lamprophyres from the Central Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 66:315–342, 1986.
- [Obe87] Oberhänsli, R. Mineralogy and Alpine metamorphism of metalamprophyres from the Central Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 67:321–338, 1987.
- [PS87] Peters, T. and Stettler, A. Radiometric age, thermobarometry and mode of emplacement of the Totalp peridotite in the Eastern Alps. Schweiz. Mineral. Petrogr. Mitt., 67:285–294, 1987.

- [Sch93] Schmatz, D. Konsistente Dokumentation, Analyse und Interpretation mesoalpin metamorpher Mineralparagenesen. Dissertation, Universität Bern, in prep.
- [SO91] Staps-Ohnmacht, P. Phasenpetrologie und ¹⁸O/¹⁶O-Isotopenchemie der Metapelite des Lucomagno-Komplexes (Zentralalpen). Dissertation, Universität des Saarlandes, 1991.
- [TE72] Trommsdorff, V. and Evans, B. W. Progressive metamorphism of antigorite schist in the Bergell Tonalite aureole (Italy). *American Journal of Science*, 272:423–437, 1972.
- [TE77] Trommsdorff, V. and Evans, B. W. Antigorite-Ophicarbonates: Contact Metamorphism in Valmalenco, Italy. *Contributions to Mineralogy and Petrology*, 62:301–312, 1977.
- [Teu82] Teutsch, R. Alpine Metamorphose der Misoxer-Zone (Bündnerschiefer, Metabasite, Granitische Gneise). Dissertation, Universität Bern, 1982.
- [Tho90] Thoenen, T. Lukmanier-Pass area (Central Alps, Switzerland). Unveröffentl. Daten, 1990.
- [Wab86] Waber, N. Mineralogie und Metamorphose in der nördlichen Lukmanier-Decke, Val Piora, Tessin. Diplomarbeit, Universität Bern, 1986.

Kapitel 5

Die mesoalpine Metamorphose in den Zentralalpen

5.1 Historischer Überblick

Der geologische Begriff «Lepontin» wurde von 1956 von WENK strukturell definiert. Die «Lepontinische Gneisregion» ist die Region der südlichen Zentralalpen, in der während der mesoalpinen Regionalmetamorphose Kristallindecken aus präalpinem Grundgebirge texturell konkordant mit ihren mesozoischen Hüllsedimenten überprägt wurden. Diese Region stimmt etwa mit dem Bereich der amphibolitfaziellen, alpinen Überprägung überein.

Von Norden nach Süden kann eine Zunahme des Metamorphosegrades beobachtet werden. Die Faziesserie vom Barrow-Typus reicht von unmetamorphen Sedimenten bis zur höchsten Amphibolitfazies der Sillimanitzone in den tiefsten tektonischen Einheiten des Lepontins.

Die ersten Mineralzonen im Bereich der Zentralalpen wurden von NIGGLI (1960) beschrieben. Mineralparagenesen in den unterschiedlichsten Lithologien wie Metapeliten (NIGGLI,1960; NIGGLI & NIGGLI, 1965; FOX, 1975; KLEIN, 1976B; THOMPSON, 1976; FRANK, 1979B; TEUTSCH, 1982), Metakarbonaten (WENK, 1962; TROMMSDORFF, 1966) und Meta-Ultrabasiten (EVANS & TROMMSDORFF, 1970, 1974) beschreiben ein grossräumiges, konzentrisches Muster. WENK & KELLER (1969) konnten nachweisen, dass auch die Verteilung der Anorthitgehalte von Plagioklasen in basischen Gesteinen diesem lepontinischen Isogradenmuster folgt.

Das systematische, aber asymetrische Isogradenmuster hat sein Zentrum in den am tiefsten erodierten tektonischen Einheiten des alpinen Deckenstapels, unmittelbar nördlich der Insubrischen Linie, an der es abrupt endet. An der Insubrischen Linie stossen die amphibolitfaziellen Gesteine des Lepontins an unmetamorphe Gesteine der Südalpen. Hier wurde der lepontinische Bereich relativ zum südalpinen gehoben (GANSSER, 1968).

Die Deckengrenzen sind oft komplex verfaltet und werden von den steiler einfallenden Isogradenflächen diskordant geschnitten. Daraus folgt, dass das lepontinische Metamorphoseereignis nach Abschluss der Deckenbildung stattgefunden oder diese zumindest überdauert haben muss (NIGGLI,1960; NIGGLI & NIGGLI, 1965, TROMMSDORFF, 1966; FOX, 1975; THOMP-SON, 1976).

Radiometrische Datierungen ergeben ein oligozänes Alter für dieses Metamorphoseereignis (JÄGER & FAUL, 1959; STEIGER, 1964). Temperaturen im Bereich des Metamorphosehöhepunktes und teilweise Rekristallisationen hielten jedoch bis ins Miozän oder sogar länger an (JÄGER et al., 1967; KÖPPEL & GRÜNENFELDER, 1975).

Im Osten des Lepontins befindet sich die zum Teil jüngere Bergeller Intrusion, die das Isogradenmuster kontaktmetamorph überprägt (TROMMSDORFF & EVANS, 1972, 1977; GUNTLI & LINIGER, 1989).

Aufgrund der Beziehung von Kristallisation und Deformation kann in vielen Gesteinen jedoch noch ein zweites, älteres alpines Metamorphoseereignis nachgewiesen werden. Dieses frühere (eoalpine) Ereignis wird durch eklogitische Paragenesen dokumentiert (ERNST, 1977, 1978; EVANS & TROMMSDORFF, 1978; HEINRICH, 1983). Wo das spätere (mesoalpine oder lepontische) Ereignis die Amhibolitfazies erreicht, überprägt es zunehmend die eoalpinen Paragenesen.

Detaillierte Untersuchungen von Struktur und Metamorphose führten zur Entdeckung von mindestens drei alpinen Hauptdeformationsphasen (HIGGINS, 1964; CHADWICK, 1965; SIB-BALD, 1971; THAKUR, 1971; HALL, 1972). Die erste (F1) wird mit der Platznahme der Decken in Verbindung gebracht, die zweite (F2) mit der Ausbildung der Hauptschieferung und die dritte (F3) mit der Steilstellung der Deckenstirnen in Norden des Lepontins (Rückfaltung) und der Ausbildung von kleinräumigen Crenulationsfalten (MILNES, 1974a,b; KLA-PER, 1985). Die mesoalpine Metamorphose erreichte ihren Höhepunkt zwischen F2 und F3 und war während F3 schon stark abgeklungen (HUBER, 1980).

5.2 Bisherige quantitative Druck- und Temperaturabschätzungen

Seit der Einführung der Elektronenmikrosonde vor etwa 20 Jahren besteht die Möglichkeit, Mineralchemismen quantitativ und genau zu bestimmen. Dies und auch die Verfügbarkeit von besseren thermodynamischen Mineraldaten und Aktivitätsmodellen führte im Bereich der Zentralalpen zu einer grossen Anzahl wissenschaftlicher Arbeiten, deren wesentliches Ziel die möglichst genaue Bestimmung von Druck und Temperatur während der mesoalpinen Metamorphose war.

In den folgenden Kapiteln werden die wichtigsten Arbeiten der letzten 20 Jahre regionenweise vorgestellt und die darin angewendeten Methoden und Resultate kurz erläutert. Im Anhang A.1 findet sich eine tabellarische Zusammenstellung der wichtigsten Resultate (Tabellen A.1 - A.8). Abbildung 5.1 zeigt einen Überblick über die durchschnittlichen Drucke und Temperaturen in den entsprechenden Gebieten.

5.2.1 Lukmaniergebiet

Das Lukmaniergebiet gehört zu den bestuntersuchten Teilen des Penninikums. Die P-T-Abschätzung (500-580 °C/5-6 kbar) beruht auf Phasengleichgewichtsstudien und kalibrierten Geothermo- und Barometern (FISCHER, 1986, 1988; FOX, 1974, 1975; FREY, 1969; WABER, 1986), Stresseffekten um Quarzeinschlüssen (ADAMS et al., 1975) und 18 O/ 16 O-Isotopenstudien (HOERNES & FRIEDRICHSEN, 1980; STAPS-OHNMACHT, 1991) (vgl. Tab. A.2).

Es fällt auf, dass in den älteren Arbeiten sowohl die Drucke als auch die Temperaturen tiefer sind als in neueren Arbeiten. Der Grund dafür liegt wahrscheinlich an neueren Kalibrierungen der Thermo- und Barometer.

Die Maximaltemperaturen können nach HOERNES & FRIEDRICHSEN (1980) und STAPS-OHNMACHT (1991) aufgrund der Quarz-Ilmenit- und Quarz-Granat-Sauerstoffisotopenfraktionierung jedoch noch bedeutend höher gewesen sein (680 - 730 °C). Eventuell handelt es sich

Fig. 5.1: Durchschnittliche Abschätzungen von Temperatur [° C] und Druck [kbar] im Bereich der Zentralalpen, zusammengestellt aus der Literatur der letzten 20 Jahre. Die einzelnen Werte werden regionenweise im Text diskutiert. Eingezeichnet sind der Rand der Amphibolitfazies aus der Tektonischen Karte der Schweiz (gepunktet) und Isothermen für 450 (Sanidin-Mikroklin-Isograde), 500 und 600 °C (gestrichelt)

bei diesen aussergewöhnlich hohen Temperaturen jedoch auch um Relikte einer voralpinen Metamorphose.

5.2.2 Olivone–nördliches V. Mesolcina, nordwestliche und mittlere Adula-Decke

Die P-T-Abschätzungen aus der nörlichen und mittleren Adula-Decke variieren erstaunlich wenig (530 °C/5 kbar), obwohl sie aufgrund verschiedener Phasengleichgewichte, Thermound Barometer in unterschiedlichen Lithologien (Kalzitmarmore, Metamergel, Metapelite, Serpentinite und Rodingite) abgeleitet wurden (KLEIN, 1976; DEUTSCH, 1979; LÖW, 1981; BAUMGARTNER, 1982; BAUMGARTNER & LÖW, 1983; TEUTSCH, 1982).

5.2.3 Nufenen- und Bedrettoregion

In der Region Nufenen-Bedretto konnte aufgrund der grossen Anzahl Proben der Metamorphoseverlauf detailliert beschrieben werden. Die P-T-Abschätzungen basieren auf Phasengleichgewichtsdiagrammen (KAMBER, 1992), verschiedenen Thermo- und Barometern wie Granat-Biotit, Kalzit-Dolomit, Anorthit-Grossular usw. (GRUBENMANN, 1970; KLAPER & BUCHER-NURMINEN, 1987; KLAPER, 1985, 1986) und stammen aus Metapeliten, Hornblendegarbenschiefern und Marmoren der Nufenenzone, Cornoschuppe und Bedrettozone. Im Gebiet Nufenenpass-Griessee-L. di Morasco nimmt von Norden gegen Süden sowohl die Temperatur als auch der Druck zu (450-470 °C/5 kbar - 500-530 °C/6 kbar - 550-600 °C/6.5-8 kbar). KLAPER (1985) und KLAPER & BUCHER-NURNIMEN (1987) unterteilen dieses Profil in 4 Metamorphosezonen, die sie durch univariante Reaktionen voneinander abgrenzen und nehmen eine kontinuierliche Zunahme der Metamorphose an. KAMBER (1992) hingegen interpretiert die Druck- und Temperaturzunahme aufgrund einer Detailkartierung und eines gut beprobten P-T-Profils als Metamorphosesprung, hervorgerufen durch ein Anheben eines südlichen Blockes (Cornoschuppe und nördlichste Bedrettozone) gegenüber einem nördlichen (südlichstes Gotthardmassiv und Nufenenzone) nach dem Höhepunkt der Metamorphose. Temperatur und Druck im Gebiet Cristallina, Naret, Bedretto (560°C/6-7 kbar) beruhen auf Granat-Biotit-, Anorthit-Grossular-, Kalzit-Dolomit-Thermobarometern, angewendet in Marmoren und Kalkglimmerschiefern (KLAPER, 1980, 1982).

5.2.4 Campolungo, Alpe Sponda, Leventina

Die Druck- und Temperaturabschätzungen variieren in dieser Region relativ stark, vor allem für den Metamorphosehöhepunkt.

Für den Metamorphosehöhepunkt im Campolungogebiet gibt ROSENFELD (1969) 600 °C und 8 kbar an, berechnet mit Hilfe einer piezometrischen Technik, mit der aus Stresseffekten um Quarzeinschlüsse der Druck abgeschätzt werden kann.

HOERNES & FRIEDRICHSEN (1980) errechnen mit Sauerstoffisotopen-Geothermometrie für das Campolungogebiet eine Durchschnittstemperatur von 630° ; die Werte streuen allerdings von 500-680 °C. Für Alpe Sponda geben sie einen engen Bereich von $660-670^{\circ}$ C an, für Molare 570-600 °C.

IROUSCHEK (1983) kommt für die Region Alpe Sponda mit Hilfe des Granat-Biotit-Thermometers und Anorthit-Grossular-Barometers, angewendet in Metapeliten, auf durchschnittlich 600-650 °C und 6-10 kbar.

HISS (1977, 1978) errechnet mit Hilfe des Feldspatthermometers (homogenisierter Alkalifeldspat) für die Leventinagneisse in diesem Gebiet Temperaturen im Bereich 550-650 °C.

Die Werte von 600-650 °C/6-7 kbar in Abb. 5.1 stammen aus FREY et al. (1980) und stellen einen guten Mittelwert dar.

MERCOLLI (1979, 1982) erhält für ein Stadium der retrograden Metamorphose mit Hilfe der Kalzit-Dolomit-Thermometrie, angewendet in Metadolomiten, einen Wert von 500 °C. Dies entspricht den Resultaten von TROMMSDORFF et al. (1985), abgeleitet aus (K,Na)Cl-Einschlüssen. WALTHER (1983) erhält 500 °C und ≈ 3.25 kbar mit Kalzit-Dolomit-Thermometrie kombiniert mit Studien an Flüssigkeitseinschlüssen (Bestimmung von Zusammensetzung und Dichte) in metasomatischen Reaktionszonen, die sich entlang existierender Quarzvenen gebildet haben. Auch diese Werte finden sich in Abb. 5.1.

5.2.5 Val Calanca

Die Druck- und Temperaturabschätzungen im zentralen Teil des Val Calanca (bei Rossa, P. di Strega, Torrone Alto) beruhen auf der Granat-Biotit-Thermometrie und Anorthit-Grossular-Barometrie in Metapeliten (KOCH, 1982) und Sauerstoffisotopen-Geothermometrie (HOERNES & FRIEDRICHSEN, 1980). Die Temperaturen streuen nur sehr wenig um 600 °C (KOCH: 595-664 °C, HOERNES & FRIEDRICHSEN: 590-620 °C). Leider liegt nur eine Druckberechnung vor, die mit 9.5 kbar sehr hoch ausgefallen ist.

5.2.6 Südliches V. Mesolcina, V. Bodengo

Auch in dieser Region stammen die Druck- und Temperaturwerte aus unterschiedlichen Quellen. Sauerstoffisotopentemperaturen in Gneissen liegen im V. Bodengo von BLATTNER (1972) vor, allerdings mit einer grossen Streubreite von 400-690 °C (vgl. Tab. A.4).

TROMMSDORFF & EVANS (1969) geben Bedingungen von 600-650 °C/4 kbar für einen Magnetit-Chlorit-Enstatit-Forsterit-Schiefer im V. Cama an.

KOCH (1982) berechnet P-T-Werte mit kalibrierten Thermo- und Barometern (Granat-Biotit, Anorthit-Grossular) in Metapeliten. Die Temperaturen seiner Proben von Lostallo (V. Mesolcina), V. Bodengo, V. Grono und V. di Darengo streuen im engen Bereich von 597-645 °C; die Drucke variieren allerdings zwischen 6.5 und 8.4 kbar.

THOMPSON (1976) schätzt Druck und Temperatur nach der Staurolith-, Sillimanit- und Andalusit-Isograde ab und erhält für das nördliche V. Mesolcina $525^{\circ}/4$ kbar und für das südliche $650^{\circ}C/6$ kbar.

WENK et al. (1974) verwendet diverse Mineralreaktionen zur Abschätzung und schlägt 650 °C und 6 kbar für die Region des V. Bodengo vor.

Die in Abb. 5.1 verwendeten Werte von 600-650 $^{\circ}\mathrm{C}/6\text{-}7\,\mathrm{kbar}$ bilden den Durchschnitt der obigen Resultate.

5.2.7 Region Bellinzona

Bei den wenigen Arbeiten, die für die Region Bellinzona vorliegen, streuen besonders die Druckwerte relativ breit.

HEITZMANN (1975), der etwa 20 km westlich von Bellinzona arbeitete, schlägt für die dortigen Metapelite und granitoiden Gneisse 670-700 °C/3.5-5 kbar vor (beginnende Anatexis, Alkalifeldspat + Sillimanit).

Mit Granat-Biotit-Thermometrie erhält BÜHL (1980, 1981) in den Gneissen der Zone von Bellinzona im Gebiet des Corno di Gesero Temperaturen von 690 °C.

SCHMIDT (1988, 1989) kommt mit der Chlorit-Breakdown-Reaktion in der Peridotit-Rodingit-Blackwall und dem Granat-Biotit-Thermometer in der Peridotit-Amphibolit-Blackwall des Ganna Rossa Ultramafitites auf 690-730 °C. Den Druck schätzte er mit dem Auftauchen von Sillimanit \pm Disthen auf 8 kbar, übereinstimmend mit dem Intrusionsdruck des Bergeller Tonalites (REUSSER, 1987).

ERNST (1977) kommt aufgrund von Phasengleichgewichtsstudien in Metapeliten und mafischen Gesteinen um Alpe Arami und in symplektitischen und amphibolitischen Paragenesen im Eklogit auf Werte von 600-650 °C/6-7 kbar.

5.2.8 Aarmassiv

Die Sanidin-Mikroklin-Isograde entspricht nach BERNOTAT & BAMBAUER (1980, 1982) und BAMBAUER & BERNOTAT (1982) einer 450 °C-Isotherme während der lepontischen Metamorphose. Diese Isograde wurde anhand von 11 ausgewählten Profilen durch die Zentralalpen ermittelt und verläuft von Visp in einer geraden Linie nach Göschenen, biegt dann nach SE gegen Hinterrhein um und verläuft von dort Richtung S bis nach Mesocco (vgl. Abb. 5.1). HOERNES & FRIEDRICHSEN (1980) bestimmten für Göschenen und Andermatt jedoch eine Sauerstoffisotopentemperatur von 460-530 °C.

Für das südliche Aarmassiv erhält MORARIU (1985) mit der Kalzit-Dolomit-Thermometrie, dem Lawsonit-Laumontit-Übergang und Rückschlüssen aus der tektonischen Überdeckung 350 ± 30 °C/ ≤ 3.5 kbar. Mit Granat-Biotit- und 2-Feldspat-Thermometrie kommt HAMMER-SCHLAG (1985) für die gleiche Region auf 320-415 °C.

Studien an Flüssigkeitseinschlüssen in alpinen Spaltenquarzen, die sicher in der Abkühlungs-/Hebungsphase nach dem Maximum der mesoalpinen Metamorphose gebildet wurden, ergeben für das südliche Aarmassiv Minimaldrucke von 2.5-2.8 kbar (POTY et al., 1974).

5.2.9 Das Profil Brig–Crevola

Druck- und Temperaturangaben aus diesem Bereich der Zentralalpen stellen Durchschnittswerte dar von Abschätzungen aus verschiedenen Arbeiten.

FRANK (1979, 1983), FRANK & STETTLER (1979) und BUCHER-NURMINEN et al. (1983) haben das gesamte Profil im Detail bearbeitet. In karbonat- und/oder margaritführenden Bündnerschiefern konnten sie mehrere kartierbare Mineralzonen und Reaktionsisograden ausscheiden und einen deutlichen Metamorphosegradienten von Brig nach Crevola nachweisen:

- erstes Auftauchen von Biotit + Kalzit resp. Granat + Ca-Amphibol,
- Paragonit + Kalzit + Quarz «out» Isograd,
- Margarit + Kalzit + Quarz «out» Isograd (480 °C/4 kbar und 520 °C/7 kbar)
- Skapolith «in» Isograd,
- Muskovit + Kalzit + Quarz «out» Isograd,
- Margarit «out» Isograd in quarz- und kalzitfreien Gesteinen (bei Bosco).

Die Druck- und Temperaturabschätzungen basieren sowohl auf kalibrierten Thermometern (Granat-Biotit, Muscovit-Paragonit, Skapolith-Kalzit-Plagioklas, Graphitkristallinität) und Barometern (Anorthit-Grossular-Alumosilikat) als auch auf phasenpetrologischen Überlegungen und quantitativen thermodynamischen Berechnungen.

HAMMERSCHLAG (1985) verwendete vor allem das Granat-Biotit und 2-Feldspat-Thermometer und das Anorthit-Grossular-Alumosilikat-Barometer zur Temperatur- und Druckabschätzung in Quarz-Feldspatgesteinen. Er konnte zwar einen Temperaturgradienten vom Simplonpassgebiet bis zum V. Vigezzo nachweisen, die Drucke gruppieren sich jedoch überall um 7 kbar.

5.2.10 Das Profil Antronapiana–Locarno

Druck- und Temperaturabschätzungen in diesem Bereich stammen aus den Arbeiten von HAMMERSCHLAG (1985), der Quarz-Feldspatgesteine bearbeitete, und COLOMBI (1988), der die mafischen Gesteine untersuchte.

HAMMERSCHLAG (1985) kann zwar eine Temperaturzunahme gegen Locarno hin nachweisen (Granat-Biotit-, 2-Feldspat-Thermometer), die Drucke gruppieren sich jedoch immer um 7 kbar (Anorthit-Grossulat-Alumosilikat-Barometer, Si-Gehalt im Hellglimmer).

COLOMBI (1988) benutzt neben den herkömmlichen Thermometern (Granat-Biotit, Granat-Amphibol, Kalzit-Dolomit) zwei neue Kalibrierungen (Reaktion: Albit = Edenit + 4 Quarz; temperaturabhängiger Ti-Gehalt im Amphibol).

Das Thermometer, das auf dem temperaturabhängigen Ti-Einbau im Amphibol basiert, zeigt die regional kohärenteste Verteilung der Metamorphosetemperaturen; diese Resultate werden deshalb hier verwendet, obwohl COLOMBI (1988) darauf hinweist, dass gewisse Temperaturen etwas hoch ausgefallen sein könnten.

Auch COLOMBI kann eine deutliche Temperaturzunahme von Antronapiana (550 °C) nach Locarno (700 °C) nachweisen, wo die höchsten Temperaturen zwischen dem östlichen V. Vigezzo und Locarno Cardada gemessen wurden. Bei Arcegno, nur wenige Kilometer südlich davon gegen die Insubrische Linie hin, fallen die Temperaturen auf 600 °C. Südlich von Antronapiana, bei Bannio im V. Anzasca, fallen die Temperaturen ebenfalls ab, hier auf etwa 500 °C. Im weiteren dokumentiert COLOMBI 2 Isograde:

- Chlorit «out» Isograd und
- Diopsid «in» Isograd, der etwa in der Fortsetzung des Diopsid-Kalzit-Isograds von TROMMSDORFF (1966) verläuft.

5.2.11 Zusammenfassung

Die Resultate von über 80 Arbeiten der letzten 20 Jahre, die hier zusammengefasst wurden, zeigen trotz regional grosser Streubreiten ein kohärentes Bild, dies obwohl die unterschiedlichsten Methoden der Druck- und Temperaturabschätzung zur Anwendung kamen.

Während sich die Temperaturen in allen Regionen in einem relativ engen Bereich von etwa 50 °C bewegen, variieren die Drucke in einem bedeutend grösseren Ungenauigkeitsintervall von durchschnittlich 1 kbar bis zu einem Maximum von 3.5 kbar im Bereich Bellinzona.

Verbindet man Regionen gleicher Temperatur, so liegen die entstehenden Isothermen etwa parallel zu den Mineralzonen von NIGGLI (1960). Die absolute Lage dieser Isothermen ist natürlich in weiten Bereichen sehr spekulativ, einerseits aufgrund der Variationen der Werte in den einzelnen Regionen, andererseits weil in vielen Gebieten einfach keine Daten vorliegen. Am besten dokumentiert ist die 500 °C-Isotherme, die sich vom Simplonpass über den Nufenenpass und Lukmanierpass bis in die mittlere Adula-Decke zieht. In diesem Temperaturbereich existiert ein relativ steiler Temperaturgradient, der die Eingabelung der Isotherme erleichtert. Besonders im Bereich des Nufenenpasses konnte ihre Lage durch neuere Arbeiten genau ermittelt werden (KAMBER, 1992; KLAPER, 1985, 1986); die Natur ihrer Entstehung wird jedoch sehr unterschiedlich interpretiert.

Gegen den Bereich Locarno-Bellinzona hin erhöht sich die Temperatur zwar deutlich, der Temperaturgradient wird aber flacher und die Lage der Isothermen somit sehr unsicher, besonders im östlichen Bereich der Zentralalpen, wo Temperaturen um 600 °C von der Region Cairasca-Verampio (FRANK, 1979, FRANK & STETTLER, 1979) bis in den östlichen Teil des V. Vigezzo (HAMMERSCHLAG, 1985) berechnet wurden. Die Form und Lage der 600 °C-Isotherme zwischen Simplonlinie und Insubrischer Linie entspricht dem Durchschnitt verschiedener Thermometer aus der Arbeit von COLOMBI (1988). Der Übergang über die Simplonlinie ist unklar. Da die Simplonlinie jünger als die mesoalpine Metamorphose ist (TRÜMPY, 1980), wäre ein Versatz der Isothermen wahrscheinlich. Bei Locarno konnte CO-LOMBI einen Temperaturabfall gegen die Insubrische Linie hin nachweisen, von 700 °C bei Locarno-Cardada auf 600 °C bei Arcegno-Locarno.

Isobaren wurden keine eingezeichnet; ihre Form würde etwa der der Isothermen entsprechen, wenn man den Ausreisser im V. Calanca vernachlässigt.

Teil III

Analyse und Interpretation von Paragenesedaten mesoalpiner Mineralvergesellschaftungen der Zentralalpen

Kapitel 6

Analyse der Paragenese-Daten

6.1 Datenfluss und Werkzeuge

Figur 6.1 stellt die Arbeitsweise vor. Die geologisch relevanten Informationen der ausgewählten Literatur (Publikationsreferenzen, Handstück-, Paragenesen- und Mineralbeschreibungen, Elektronenmikrosondeanalysen usw.) und die eigenen Daten fliessen zur Dokumentation in die speziell strukturierte Datenbank **P**ARA**DIS**¹ (vgl. Kap. 6.1.2).

Die Datenbank stellt mit Hilfe von Applikationsprogrammen die Daten externen petrologischen Programmen (NORM, MINSORT², PTAX/TWEEQU [vgl. Kap. 6.1.3] zur Verfügung und nimmt deren Resultate wieder auf (vgl. Fig. 6.2).

Mittels vorgefertigter Reporte lassen sich beliebige Kombinationen von Datensätzen (Primärdaten und Resultate) aus der Datenbank extrahieren und an Geographische Informationssysteme oder Graphikprogramme wie zum Beispiel das GMT-System (vgl. Kap. 6.1.4) weitergeben.

Das GMT-System erlaubt die Konturierung der Druck- und Temperaturpunkte und somit die Herstellung von Isothermen- und Isobarenkarten der mesoalpinen Metamorphose in den Zentralalpen.

6.1.1 INGRES

INGRES ist ein kommerzielles, relationales Datenbank-Managementsystem (RDBMS). Ein RDBMS ist ein System, das relationale Datenbanken verwaltet und beliebig vielen Benutzern den Zugang zu den Datenbanken ermöglichen kann.

Eine relationale Datenbank besteht lediglich aus einer Sammlung von Tabellen (formaler auch Relationen genannt). Der Zugang zu den Datenbanken erfolgt mit Hilfe einer relationalen Sprache (QUEL, SQL).

INGRES bietet eine 4 GL-Entwicklungsumgebung (forth generation language), mit dessen Unterstützung relativ leicht Datenbanktabellen erstellt und menügesteuerte Applikationen programmiert werden können.

INGRES ist für diverse Hardware-Plattformen (SUN, VAX usw.) erhältlich und läuft unter verschiedensten Betriebssystemen (UNIX, VMS, usw.). Für eine detailliertere Beschreibung von INGRES siehe Anhang B.

 $^{^{1}}P$ aragenesen Daten Inventar System

²Mineralnormierungsprogramme (Petrakakis & Dietrich, 1985)

Fig. 6.1: Datenflussdiagramm

6.1.2 PARADIS und die Anwendungen UNIVERSAL und SPOUT

Die relationale Datenbank **P**ARA**DIS** enthält Objekte, die für petrologische Fragestellungen wichtig sind und für die Informationen gesammelt und gespeichert werden sollen. In **P**ARA**DIS** finden sich sowohl Primär-Daten (Publikationsreferenzen, Handstück-, Paragenesen- und Mineralbeschreibungen, Elektronenmikrosondeanalysen usw.) als auch daraus abgeleitete Sekundärdaten (Druck- und Temperaturberechnungen, Phasendiagramme).

In der Tabelle 6.1 sind die Objekte kurz beschrieben, für die Informationen in $\ensuremath{\mathbf{P}}\xspace{\mathsf{RADIS}}$ abgelegt werden können.

Die Verwaltung der Daten in **P**RA**DIS** geschieht mit menügesteuerten, benutzerfreundlichen Anwendungsprogrammen. Ein typisches Anwendungsprogramm zeigt einen bestimmten Datensatz der Datenbank auf einem Bildschirmformular an und gestattet dem Benutzer über das Menü die gewünschte Aktion (Abfrage-, Einschub-, Lösch-, Modifikationsoperation).

Fig. 6.2: Verarbeitung

Für **P**ARA**DIS** existieren zwei Anwendungsprogramme: UNIVERSAL, das der Dateneingabe und -manipulation dient, und SPOUT, das man sowohl zur Datenanalytik als auch zur Datenausgabe (Reporte in verschiedensten Formaten) benutzt.

SPOUT stellt die Daten in **P**ARA**DIS** externen petrologischen Programmen, NORM, MIN-SORT³ (PETRAKAKIS & DIETRICH, 1985), PTAX/TWEEQU (vgl. Kap. 6.1.3), zur Verfügung und gibt deren Resultate – vor allem P-T- und T-X-Phasendiagramme – wieder in die Datenbank zurück (vgl. Fig. 6.2).

In die Applikation SPOUT ist auch das FORTRAN-Programm INTERSECT integriert, welches die Diagramme analysiert, indem es eine statistische Auswertung der Schnittpunkte aller im Diagramm vorkommenden Reaktionskurven vornimmt und so den wahrscheinlichsten P-T-Punkt ermittelt, bei dem eine Paragenese equilibriert hat.

 $^{^{3}}$ Mineralnormierungsprogramme

Publikation	Paper, Dissertation, Diplomarbeit
Autor	Der Verantwortliche
Handstück	Die Probe
Paragenese	Assoziation von verschiedenen kogenetischen Mineral-
	individuen einer Probe, aufgrund textureller Beobach-
	tungen zu einer Paragenese gruppiert
P-T-Interpretation	Druck- und Temperaturabschätzung, auf den chemischen
	Analysen der Mineralindividuen einer Paragenese basie-
	rend und aus einem P-T-Stabilitätsdiagramm berechnet
Stabilitätsdiagramm	P-T-, T-X- usw. Diagramm, auf dem die P-T-
	Interpretation beruht, einschliesslich den Berechnungsop-
	tionen für das Diagramm (TWEEQU-restart File) und
	den ausgewählten Formelparametern der Mineralien, die
	für die Berechnung des Diagramms verwendet wurden
	(TWEEQU-cmp File)
Reaktion	Reaktionskurve im Stabilitätsdiagramm
Label	Beschriftung einer Reaktionskurve in einem Stabilitäts-
	diagramm
Punkt	Punkt auf einer Reaktionskurve
Mineral	Texturell identifizierbares Mineralindividuum
Mineralgruppe	Gruppe von Mineralindividuen der gleichen Art (Bsp.:
	Gruppe Biotit besteht aus Matrixbiotit, Einschlussbiotit,
	Querbiotit)
Assoziation von Flüs-	Assoziation von gleichalten Flüssigkeitseinschlüssen eines
${ m sigkeitseinschlüssen}$	Minerals, gruppiert aufgrund textureller Beobachtungen
Phase	optisch identifizierbare Phase eines Flüssigkeitseinschlus-
	ses
Chemische	Teil der Analyse eines Flüssigkeitseinschlusses
Komponente	
EMSAnalyse	Elektronenmikrosondeanalyse eines Mineralindividuums
Analysen-Messprofil	Elektronenmikrosondeanalysen, zu einem Messprofil über
	ein Mineral gruppiert

Tab. 6.1: Was findet sich in **PARADIS**?

SPOUT vermag auch vorgefertigte INGRES-Reporte zu starten, mit denen sich beliebige Kombinationen von Datensätzen aus der Datenbank in beliebigem Format (ASCII, Postscript, $end{true} ET_EX$, EXCEL usw.) extrahieren lassen. Die optimalen oder auch nach Qualität gewichteten Druck-Temperatur-Bestimmungen werden so an Graphikprogramme wie das GMT-System (vgl. Kap. 6.1.4) ausgegeben.

Für eine genauere Beschreibung von PARADIS und dessen Anwendungen siehe Kapitel 2.

6.1.3 PTAX, TWEEQU und GridLoc

 $PTAX^4$ ist ein Programm, das Phasendiagramme, Projektionen und Schnitte zu berechnen vermag. Verschiedenste Parameter können als Diagrammachsen gewählt werden, wie z.B.

 $^{^{4}\}mathrm{Druck}$ (P), Temperatur-, Aktivität-, Zusammensetzung (X)

Druck, Temperatur, X_{CO_2} , $a_{Mineralphase}$, $a_{w\ddot{a}ssrigeSpezies}$. Die Berechnung der Diagramme basiert auf einer intern konsistenten Datenbank thermodynamischer Eigenschaften von Mineralien und Fluids (BERMAN, 1988, 1990), die auf Resultaten von Experimenten beruht und mit der Methode der mathematischen Programmierung abgeleitet wurde (BERMAN et al., 1986). PTAX ist Teil des GE0CALC-Softwarepaketes und wurde an der University of British Columbia in Vancouver (UBC) entwickelt.

TWEEQU⁵ ist der verbesserte Nachfolger von PTAX (BERMAN, 1991).

Irgendein Schnittpunkt zweier Gleichgewichte in einem P-T-Diagramm stellt eine mögliche korrekte P-T-Bestimmung dar. Um mehr Sicherheit in der P-T-Bestimmung zu erhalten, sollten deshalb möglichst viele, im Idealfall *alle*, Gleichgewichte berücksichtigt werden und nicht nur einige auserwählte.

Die wichtigste Annahme von PTAX/TWEEQU besteht darin, dass alle Mineralzusammensetzungen, die in der Berechnung verwendet wurden, untereinander im Gleichgewicht sind, ihr Gleichgewicht also am gleichen P-T-Punkt eingestellt haben. Unter dieser Annahme schneiden sich alle Gleichgewichte im gleichen P-T-Punkt. Dies sollte entsprechend der Definition für alle Mineralien einer Paragenese zutreffen (vgl. Kap. 4.1.1); leider ist das nur der selten erfüllte Idealfall.

Unerlässliche Voraussetzung für den Gebrauch von PTAX/TWEEQU sind jedoch die folgenden 3 Annahmen (LIEBERMAN & PETRAKAKIS, 1991, und BERMAN, 1991):

- 1. Irgendeine Form von momentanem thermodynamischem Gleichgewicht hat sich eingestellt und ist in der Probe erhalten geblieben.
- 2. Die Extrapolation von experimentellen Resultaten zu den Eigenschaften von natürlichen Mineralien wurde korrekt durchgeführt (PTAX/TWEEQU vollzieht diese Extrapolation explizit und intern konsistent).
- 3. Die analysierten Mineralzusammensetzungen sind perfekt.

Wenn alle Gleichgewichte mit Hilfe einer einzigen, intern konsistenten thermodynamischen Datenbank (einschliesslich konsistenter Aktivitäts-Zusammensetzungs-Modelle und Zustandsgleichungen) berechnet wurden, stellt die *Verteilung* von P-T-Schnittpunkten ein Mass für die Gültigkeit der Annahme und ein qualitatives Mass für die Unsicherheit in der P-T-Bestimmung dar.

Diese Unsicherheit kann in vielen Fällen bedeutend reduziert werden, indem Mineralien mit schlecht bekannten thermodynamischen Eigenschaften oder Mischungsmodellen aus der Berechnung weggelassen werden. Mit verbesserten thermodynamischen Daten sollte es in Zukunft möglich sein, mit diesem Programm festzustellen, ob sich alle Mineralgleichgewichte unter den gleichen P-T-Bedingungen eingestellt haben.

Von PTAX/TWEEQU existieren Versionen für DOS, Macintosh und UNIX.

GridLoc ist ein Macintosh-Programm, mit dem sich schnell und flexibel Phasendiagramme von Plot-Files im PTAX/TWEEQU-Format druckreif darstellen lassen (LIEBERMAN, 1992). Die Diagramme können gedruckt, als PICT-Files gesichert oder über das «Clipboard» an andere, kommerzielle Grafikprogramme zur weiteren Verarbeitung weitergegeben werden.

6.1.4 GMT-System

Die meisten Wissenschaftler kennen die Sequenz Rohdaten \rightarrow Verarbeitung \rightarrow druckreife Illustration. Dieser Prozess ist oft mühsam und wird oft manuell durchgeführt, weil kommerzielle oder hauseigene Software meistens nur Teile dieser Arbeit übernehmen kann. Das

 $^{^5{\}rm Thermobarometry}$ with Estimation of Equilibration state

GMT-System⁶ ist ein kostenloses, public-domain-Softwarepaket, das die Manipulation von tabellenförmigen, zeitlich abhängigen oder gerasterten Daten erlaubt und diese Daten in verschiedensten Formen, vom einfachen x-y-Diagramm bis zu Karten in unterschiedlichsten Projektionen und farbigen, perspektivischen und schattierten Reliefillustrationen, darzustellen vermag. Für unsere Zwecke besonders wichtig ist die Möglichkeit, räumlich unregelmässig verteilte Daten (P-T-Punkte) gewichtet konturieren zu können (kontinuierliche Splines-Interpolation mit Spannungsfaktor), Profile zu legen und daraus thematische Karten herzustellen.

Das GMT-System wurde an der School of Ocean and Earth Science and Technology der University of Hawaii (SOEST/UH) und der Scripps Institution of Oceanography der University of California at San Diego (SIO/UCSD) entwickelt (SMITH & WESSEL, 1990; WESSEL & SMITH, 1991). Es wurde in der Programmiersprache C geschrieben und läuft auf beliebigen UNIX-Plattformen (SUN, DEC, NEXT, Silicon Graphics workstations, aber auch auf IBM und HP).

Das GMT-System befolgt die Modular-Design-Philosophie von UNIX: Der Prozess: Rohdaten \rightarrow Verarbeitung \rightarrow druckreife Illustration wird unterteilt in einzelne Schritte; jeder Schritt wird von einem speziellen GMT- oder UNIX-Tool durchgeführt. Mit Hilfe von Shell scripts oder Pipes können diese Tools miteinander verknüpft werden und so benutzerspezifische Aufgaben lösen.

Die GMT-Tools benötigen beliebige (x,y,z)-Daten im ASCII-Format als Eingabe. Die Ausgabe erfolgt entweder im ASCII-Format, in einem systemunabhängigen XDR-Format⁷ oder in der *Postscript*-Sprache, mit deren Hilfe mehrere Plotfiles einander überlagert und beliebig komplexe Grafiken erzeugt werden können. Es besteht auch die Möglichkeit, ein GMT-Postscript-Outputfile in ein Macintosh-EPS-File⁸ zu konvertieren und so in kommerzielle Macintosh-Programme einzubauen.

6.2 PTAX-methodisches

6.2.1 System, Aktivitätsmodelle

Sämtliche Berechnungen wurden im System Na $_2\rm O-K_2\rm O-CaO-MgO-FeO-Al}_2\rm O_3-SiO_2-H_2\rm O-CO_2$ durchgeführt.

Für die thermobarometrische Anwendung von PTAX wurden immer alle formulierbaren Reaktionen berechnet und in den Diagrammen dargestellt, egal ob stabil oder metastabil, da beide gleich informativ sind.

Die berechneten Temperaturen und Drucke sind natürlich nur dann direkt vergleichbar, wenn immer die gleichen Aktivitätsmodelle verwendet werden. Deshalb kamen nur die folgenden Lösungsmodelle und Gleichungen zum Einsatz:

Granat: BERMAN, 1990 Biotit: INDARES & MARTIGNOLE, 1985 Plagioklas: FUHRMAN & LINDSLEY, 1988 Hellglimmer: CHATTERJEE & FROESE, 1975 Staurolith, Chlorit, Chloritoid: ideal berechnet Wasser: HAAR et al., 1984

⁶Generic Mapping Tools

⁷External Data Representation

⁸Encapsulated-Postscript

6.2.2 Erläuterung zu den Tabellen

Die Resultattabellen enthalten folgende Informationen:

Probe: Handstückcode und -name.

- **Mineralogie:** sämtliche bekannten Mineralien einer Probe. Die Mineralien der als *mesoalpin* interpretierten Paragenese sind *kursiv*, Akzessorien oder Mineralien anderer Paragenesen normal geschrieben.
- **benutzte Paragenese:** Diese Mineralien wurden in die PTAX-Berechnung einbezogen. In der Regel handelt es sich nur um eine Teilmenge der *mesoalpinen* Paragenese, da nur im Idealfall die Chemismen aller Mineralien bekannt waren.
- **Resultat:** gewichtete und ungewichtete Mittelwerte der Schnittpunkte der Gleichgewichtskurven auf dem entsprechenden Phasendiagramm mit Standardabweichung (genaue Beschreibung der Berechnungsmethodik vgl. Kap. 2.5.2).
- bisherige P-T-Abschätzung: Vergleich mit den Resultaten der Autoren, die fast ausschliesslich das Granat-Biotit-Thermometer und das Anorhtit-Grossular-Barometer anwendeten.
- **Gleichgewichte:** eine Liste der verwendeten Gleichgewichte, inklusive deren ΔS und ΔV -Werte und Angaben über die lineare Abhängigkeit der Reaktionen.

Kapitel 7

Nufenenregion

7.1 Nuf183, Nuf189

Es handelt sich um folgende Gesteine:

Nuf183: Biotit-reicher Granatschiefer Nuf189: Granat-Glimmerschiefer

Für Probe Nuf183 steht keine Plagioklasanalyse zur Verfügung. Es resultieren zwar 3 linear unabhängige Reaktionen, die aber nicht alle wasserfrei sind. Die wasserfreien Reaktionen 1, 8, 13, 14 und 15 sind linear abhängig und schneiden sich bei 515 °C und 7535 bar. Bei $X_{H_2O} = 0.7$ verlaufen auch die wasserführenden durch diesen P-T-Punkt.

In Probe Nuf189 fehlt ein Alumosilikat. Auch hier resultieren 3 linear unabhängige Reaktionen, die nicht alle wasserfrei sind. Die linear abhängigen, wasserfreien (Nr. 1, 7 und 9 in Tab. 7.1 b) schneiden sich bei 537 °C und 6400 bar. Bei $X_{H_2O} = 0.8$ verlaufen auch die wasserführenden Reaktionen durch diesen Punkt (vgl. Fig. 7.1).

In beiden Fällen wird die Temperatur vom Granat-Biotit-Thermometer bestimmt.

Fig. 7.1: (a) Nuf183, (b) Nuf189

a) Probe:	a) Probe: 183. Biotit-reicher Granatschiefer					
Mineralogie:	Grt-Bt-Ms-Pl-Qtz-St-Chl-Czo					
benutzte Paragenese:	Grt-Bt-Ms-Qtz-St-Chl-H ₂ O					
Resultat:	Schnittpunkt	515 °C	$7535\mathrm{bar}$	7535 bar		
bisherige P-T-Abschätzung:	Klaper & Bucher (1987)	$450\text{-}550^{\circ}\mathrm{C}$	5000-6000	5000-6000 bar		
Gleichgewichte in Figur 7.1 a (3 linear unabhängig)				ΔS_r	ΔV_r	
1 Alm + Phl = Prp + Ar	n			12.0	0.24	
2 3 Chl + Ms + 3 aQtz = 12 W + 4 Prp + Phl				-323.2	-24.09	
3 6 St + 117 aQtz + 8 Phl + 69 Chl = 8 Ann + 123 Prp + 288 W				7481.0	-597.36	
4 3 aQtz + Ms + 3 Chl + Alm = Ann + 5 Prp + 12 W				-311.2	-23.86	
5 4 Alm + 5 Phl + 12 W = 3 aQtz + Ms + 3 Chl + 4 Ann					25.04	
6 69 Chl + 117 aQtz + 6 St = 288 W + 115 Prp + 8 Alm -7577.1					-599.24	
7 123 Alm + 115 Phl + 288 W = 6 St + 117 aQtz + 69 Chl + 115 Ann 8957.8					626.38	
8 8 Ann + 3 Chl + 24 Ms + 27 Prp = 6 St + 45 aQtz + 32 Phl -276.2						
9 8 Ann + 48 Chl + 39 Ms = 180 W + 6 St + 33 Prp + 47 Phl -5124.5 -						
10 6 St + 141 aQtz + 8 Ms + 93 Chl = 8 Ann + 155 Prp + 384 W -10066.8 -7						
11 8 Ann + 23 Ms + 31 Prp + 12 W = 6 St + 48 aQtz + 31 Phl 47.0						
12 32 Ann + 93 Chl + 123 Ms = 324 W + 24 St + 99 aQtz + 155 Phl -9831.7 -57						
13 32 Alm + 3 Chl + 24 M	4s = 6 St + 45 aQtz + 5 Pr	p + 24 Ann		108.0	26.65	
14 27 Alm $+$ 3 Chl $+$ 24 M	4s = 6 St + 45 aQtz + 5 Ph	l + 19 Ann		47.9	25.47	
15 8 Alm + 3 Chl + 24 Ms	s + 19 Prp = 6 St + 45 aQt	z + 24 Phl		-180.2	20.99	
16 47 Alm + 48 Chl + 39 Ms = $180 \text{ W} + 6 \text{ St} + 80 \text{ Prp} + 39 \text{ Ann}$ -4560.2					-331.22	
17 41 Ann + 48 Chl + 39 Ms = 180 W + 6 St + 80 Phl + 33 Alm -5520.7					-350.10	
18 8 Alm + 48 Chl + 39 Ms = 180 W + 6 St + 41 Prp + 39 Phl -5028.4					-340.42	
19 31 Alm + 23 Ms + 12 W = 6 St + 48 aQtz + 23 Ann 419.2					50.51	
20 8 Alm + 23 Ms + 23 Prp + 12 W = 6 St + 48 aQtz + 23 Phl 143.1					45.08	
21 32 Alm + 69 Chl + 115 Ms = 228 W + 24 St + 123 aQtz + 115 Phl -6861.8 $-3'$					-373.83	
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$						
b) Probe:	Nuf189, Granat-Glimme	rschiefer				
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Chl-Czo-(Opk-Gr				
benutzte Paragenese: 0	Grt-Bt-Ms-Pl-Qtz-Chl-H ₂ O					
Resultat:	Schnittpunkt 537 $^{\circ}C$	$6400\mathrm{bar}$				
bisherige T-Abschätzung:	Klaper (1985) $468 \pm 19^{\circ}$ C	3				
Gleichgewichte in Figur 7.1 b	(2 linear unabhängig)		ΔS_r	ΔV_r		
1 $Alm + Phl = Prp + Ann$	1		12.0	0.24	_	
2 12 W + 5 Prp + Grs = 3	3 An + 3 Chl + 3 aQtz		443.5	31.36		
3 3 Chl + Ms + 3 aQtz =	12 W + 4 Prp + Phl		-323.2	-24.09		
4 12 W + 5 Phl + Grs + 5	5 Alm = 5 Ann + 3 An + 3	Chl + 3 aQtz	503.5	32.53		
5 $Alm + 3 Chl + Ms + 3 a$	aQtz = 12 W + 5 Prp + An	in	-311.2	-23.86		
$6 4 \operatorname{Ann} + 3 \operatorname{Chl} + \operatorname{Ms} + 3 \operatorname{Chl} + 3$	3 aQtz = 12 W + 5 Phl + 4	Alm	-371.2	-25.04		
7 $Prp + Ms + Grs = 3 An$	+ Phl		120.2	7.26		
8 $3 \text{ Chl} + 4 \text{ Grs} + 5 \text{ Ms} +$	3 aQtz = 12 W + 5 Phl +	12 An	157.7	4.95		
9 $Ms + Grs + Alm = Ann$	+ 3 An		132.2	7.50		
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot b$	ar^{-1}				—	

, ·

Tab. 7.1: (a) Nuf183, (b) Nuf189

7.2 Fus46, Nuf243, Nuf244, Fus80b, Nuf27

Es handelt sich um folgende Gesteine:

Fus46: Hellglimmerschiefer
Nuf243: Granat-Glimmerschiefer
Nuf244: Granat-Glimmerschiefer
Fus80b: Plagioklasschiefer
Nuf27: Kalkglimmerschiefer

Weil für die oben aufgeführten Handstücke nur Granat- bzw. Biotitanalysen vorlagen, konnten nur das Granat-Biotit-Thermometer und das Anorhtit-Grossular-Barometer angewendet werden (vgl. Tab. 7.2 und Fig. 7.2). Von Probe Fus46 lagen mehrere Analysen vor. Die Berechnung der beiden Gleichgewichte mit allen möglichen Kombinationen der Analysen ergab vor allem beim Granat-Biotit-Thermometer eine ausserordentlich grosse Streuung. Für die Isothermen- und Isobarenkarten wurden die Durchschnittsanalysen verwendet; diese Resultate liegen auch am nächsten bei denen von KLAPER (1982).

Probe Nuf27 konnte nur für die Granat-Biotit-Thermometrie verwendet werden. Die Druckvorgabe stammt aus P-T-Berechnungen von Gesteinsproben aus der näheren Umgebung.

benutzte Paragenese:	Grt-Bt-Pl-Qtz-Ky				
a) Probe:	Fus46, Hellglimmerschiefer				
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-Czo-Chl				
Resultat:	Durchschnitt	495 °C	6946 bar		
bisherige P-T-Abschätzung:	Klaper (1982)	$560^{\circ}\mathrm{C}$	6800 bar		
b) Probe:	Nuf243, Granat-Glimmerschiefer				
Mineralogie:	Grt- Bt - Ms - Pl - Qtz - Ky - St - Czo -Opk-Tur				
Resultat:	Schnittpunkt	$589 \ ^{\circ}\mathrm{C}$	7469 bar		
bisherige P-T-Abschätzung:	Klaper (1985)	$536 \pm 43^{\circ}\mathrm{C}$	$7031 \pm 445 \mathrm{bar}$		
c) Probe:	Nuf244, Granat-Glimmerschiefer				
Mineralogie:	Grt- Bt - Hgl - Pl - Qtz - Ky - St - Czo -Opk- Gr				
Resultat:	Schnittpunkt	$633 \ ^{\circ}\mathrm{C}$	7496 bar		
bisherige P-T-Abschätzung:	Klaper (1985)	$599 \pm 35^{\circ}C$	$5993 \pm 34 \mathrm{bar}$		
d) Probe:	Fus80b, Plagioklasschiefer				
Mineralogie:	Grt-Bt-Hgl-Pl-St-Qtz-Ky-Chl				
Resultat:	Schnittpunkt	$569 \ ^{\circ}\mathrm{C}$	6752 bar		
bisherige P-T-Abschätzung:	Klaper (1982)	$560^{\circ}\mathrm{C}$	6800 bar		
e) Probe:	Nuf27, Kalkglimmerschiefer				
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Hbl-Dol-Czo-Cal-Opk				
benutzte Paragenese:	Grt-Bt				
Resultat:		$517 \ ^{\circ}\mathrm{C}$	6000 bar (angenommen)		
bisherige T-Abschätzung:	Klaper (1985)	$410 \pm 25^{\circ}\mathrm{C}$			
Gleichgewichte in Figur 7.2 (2 linear unabhängig) $\Delta S_r = \overline{\Delta V_r}$			ΔV_r		
1 Grs + 2 Ky + aQtz = 3	An	139.1	6.59		
2 Phl + Alm = Ann + Prp)	12.0	0.24		

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 7.2: (a) Fus46, (b) Nuf243, (c) Nuf244, (d) Fus80b, (e) Nuf27

Fig. 7.2: (a) Fus46, (b) Nuf243, (c) Nuf244, (d) Nuf80b, (e) Nuf27

7.3 Fus70, Nuf242, Nuf237, Nuf179

Es handelt sich um folgende Gesteine:

Fus70: Kalkglimmerschiefer Nuf242, Nuf237, Nuf179: Granat-Glimmerschiefer

Die Analysen der einzelnen Mineralien wurden jeweils gemittelt. Es existieren keine Analysen von Staurolith. Es resultieren nur H_2O -konservierende Reaktionen, von denen drei linear unabhängig sind (vgl. Fig. 7.3).

Es fällt auf, dass Reaktion 4 am weitesten weg vom Schnittpunkt der anderen Reaktionen liegt. Diese Reaktion weist jedoch die kleinsten ΔS - und ΔV -Werte auf und ist folglich am empfindlichsten auf kleine Änderungen in der Aktivität oder Zusammensetzung einer involvierten Phase (BERMAN, 1991). Sie fällt bei der Berechnung der ΔS - und ΔV -gewichteten arithmetischen Mittel praktisch nicht ins Gewicht (vgl. Tab. 7.3).

In Nuf179 fehlt ein Alumosilikat; die Reaktionen sind linear abhängig.

a) Probe:	Fus70, Kalkglimmerschiefer		
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-Cal-Dol-Ep	0	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky		
Resultat:	alle Schnittpunkte	604 \pm 86 $^{\circ}\mathrm{C}$	$6295\pm1418\mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$627 \pm 7 \ ^{\circ}\mathrm{C}$	$6831 \pm 426 \mathrm{bar}$
	winkelgewichtet	$626^{\circ}\mathrm{C}$	6796 bar
	$\Delta S, \Delta V$ -gewichtet	$576^{\circ}\mathrm{C}$	$6034\mathrm{bar}$
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$625^{\circ}\mathrm{C}$	$6992 \mathrm{bar}$
bisherige P-T-Abschätzung:	Klaper (1982)	$560^{\circ}\mathrm{C}$	5400 bar
b) Probe:	Nuf242, Granat-Glimmerschi	efer	
Mineralogie:	Grt-Bt-Ms-Pl-Qtz-Ky-St-Czo-Opl	c-Czo-Gr	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky		
Resultat:	alle Schnittpunkte	516 \pm 143 $^{\circ}\mathrm{C}$	$4999\pm2218\mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	530 ± 139 °C	$5345 \pm 2116 \mathrm{bar}$
	winkelgewichtet	$535^{\circ}\mathrm{C}$	$5427 \mathrm{bar}$
	$\Delta S, \Delta V$ -gewichtet	$470^{\circ}\mathrm{C}$	4710 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$536^{\circ}\mathrm{C}$	5971 bar
bisherige P-T-Abschätzung:	Klaper (1985)	$493\pm30^{\circ}\mathrm{C}$	$5104\pm645\mathrm{bar}$
c) Probe:	Nuf237, Granat-Glimmerschi	efer	
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-Czo-Crb-C	hl-Gr	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky		
Resultat:	alle Schnittpunkte	440 \pm 74 $^{\circ}\mathrm{C}$	$5486\pm1616\mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	448 \pm 68 $^{\circ}\mathrm{C}$	$5751\pm1530\mathrm{bar}$
	winkelgewichtet	$461^{\circ}\mathrm{C}$	5935 bar
	$\Delta S, \Delta V$ -gewichtet	$420^{\circ}\mathrm{C}$	5412 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$468^{\circ}\mathrm{C}$	6470 bar
bisherige P-T-Abschätzung:	Klaper (1985)	$451 \pm 30^{\circ} C$	$8095 \pm 591 \mathrm{bar}$
d) Probe:	Nuf179, Granat-Glimmerschi	efer	
Mineralogie:	Grt-Bt-Ms-Pl-Qtz-Czo-Chl-Opk-C	- Fr	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz		
Resultat:	Schnittpunkt	498 °C	5566 bar
bisherige T-Abschätzung:	Klaper (1985)	414 \pm 27 °C	
Gleichgewichte in Figur 7.3 (3 linear unabhängig) $\Delta S_r = \Delta V$	r T	
1 Alm + Phl = Prp + Am	n 12.0 0.2	4	
2 Grs + 2 Ky + a Qtz = 3	An 139.1 6.5	9	
3 Ms + Prp = aQtz + Phl	+ 2 Ky -18.8 0.6	7	
4 $Ms + Alm = Ann + 2 K$	y + aQtz - 6.8 - 0.9	0	
5 $Prp + Ms + Grs = 3 An$	+ Phl = 120.2 - 7.2	6	
6 Ms + Grs + Alm = Ann	+ 3 An 132.2 7.5	0	
ΛC in I V^{-1} , ΛV in I h			

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^-$

Tab. 7.3: (a) Fus70, (b) Nuf242, (c) Nuf237, (d) Nuf179

Fig. 7.3: Λ (a) Fus70, (b) Nuf242, (c) Nuf237, (d) Nuf179

Kapitel 8

Das Gebiet der mittleren und südlichen Adula-Decke

8.1 DS5: Granat-Disthen-Muscovit-Biotit-Gneiss

Die Analysen der einzelnen Mineralien wurden jeweils gemittelt, da die Mineralien keine nennenswerte Zonierung aufweisen. Obwohl Disthen gegenüber dem fibrolithischen Sillimanit den grösseren Modalanteil aufweist (5% gegenüber <1%), scheint er, aufgrund seiner stark zersetzten Erscheinung, nicht mit den anderen Mineralien im Gleichgewicht zu sein. Für Fibrolith wurden die thermodynamischen Daten von Sillimanit verwendet.

Die wasserkonservierenden Reaktionen (davon 3 linear unabhängige) verlaufen fast alle durch den gleichen P-T-Punkt (Fig. 8.1 a) und deuten ein gutes Gleichgewicht an (vgl. Tab. 8.1 a). Bei einem X_{H_2O} von 0.9 konvergieren auch Reaktionen mit Paragonit und Wasser durch dieses P-T-Feld (Fig. 8.1 b, c).

Chlorit ersetzt den Biotit pseudomorph und gehört zu einer späteren, wahrscheinlich retrograd entstandenen Paragenese. Bezieht man Chlorit trotzdem in die Berechnung mit ein, so fallen die entsprechenden Reaktionen zu viel tieferen Temperaturen (ca 550 °C).

8.2 DS6: Granat-Muscovit-Disthen-Biotit-Gneiss

Auch hier wurden die Mittelwerte der Analysen verwendet, da die Mineralien keine nennenswerte Zonierung aufweisen. Die wasserkonservierenden Reaktionen (davon 3 linear unabhängige) verlaufen fast alle durch den gleichen P-T-Punkt (Fig. 8.1 d) und deuten ein gut erhaltenes Gleichgewicht an (vgl. Tab. 8.1). Reaktion 2 weicht am stärksten vom Durchschnitt ab, weist jedoch auch die kleinsten ΔS - und ΔV -Werte auf.

Da der Hellglimmer einen relativ hohen Paragonitanteil enthält (20%), wurde er noch in die Berechnung einbezogen. X_{H_2O} muss jedoch auf 0.66 herabgesetzt werden, damit Reaktionen mit Paragonit auch durch die gleiche P-T-Region konvergieren. Das T- X_{CO_2} -Diagramm bei 7400 bar bestätigt diesen Wert (vgl. Fig. 8.1 e und f und Tab. 8.1).

a) Probe:	DS5, Granat-Disthen-Musco	vit-Biotit-C	Gneiss
Mineralogie:	Grt-Bt-Ms-Pl-Sil-Qtz-Ky-Chl-O	pk-Ap-Tur-Zi	rn
benutzte Paragenese:	Grt-Bt-Ms-Pl-Sil-Qtz	_	
Resultat:	alle Schnittpunkte	692 ± 14	$^{\circ}\mathrm{C}$ 5357 \pm 201 bar
	ohne kleine Δ 's u. Schnittwinkel	692 ± 14	$^{\circ}\mathrm{C}$ 5357 \pm 201 bar
	winkelgewichtet	$696^{\circ}\mathrm{C}$	$5392 \mathrm{bar}$
	$\Delta S, \Delta V$ -gewichtet	$694^{\circ}\mathrm{C}$	$5297 \mathrm{bar}$
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$696^{\circ}\mathrm{C}$	$5328 \mathrm{bar}$
b) benutzte Paragenese:	Grt-Bt-Ms-Pg-Pl-Sil-Qtz-H ₂ O		
Resultat:	alle Schnittpunkte	697 ± 15	$^{\circ}C$ 5312 ± 547 bar
	ohne kleine Δ 's u. Schnittwinkel	696 ± 14	$^{\circ}\text{C}$ 5364 ± 239 bar
	winkelgewichtet	698°C	5370 bar
	$\Delta S, \Delta V$ -gewichtet	696°C	5312 Dar 5202 bar
d) Proba	winkel- u. $\Delta S, \Delta V$ -gewichtet	690°C	5293 Dar
d) Flobe. Minoralogio:	Cert Bt Hal Pl Kai Ota Ople Ap I	$2_{\rm V}$ $7_{\rm m}$	FIIelss
benutzte Paragenese	Grt-Bt-Ms-Pl-Ky-Qtz-Opk-Ap-1	y-2111	
Besultat.	alle Schnittpunkte	613 ± 24	$^{\circ}\mathrm{C}$ 7227 + 404 bar
100000000	ohne kleine Δ 's u. Schnittwinkel	618 ± 24	$C = 7369 \pm 99 \text{ bar}$
	winkelgewichtet	618°C	7360 bar
	$\Delta S, \Delta V$ -gewichtet	$605^{\circ}C$	7144 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$618^{\circ}\mathrm{C}$	7404 bar
e) benutzte Paragenese:	Grt-Bt-Ms-Pg-Pl-Ky-Qtz-H ₂ O		
Resultat:	alle Schnittpunkte	616 ± 11	$^{\circ}\mathrm{C}$ 7403 \pm 428 bar
	ohne kleine Δ 's u. Schnittwinkel	616 \pm 4 $^{\circ}$	C 7360 \pm 127 bar
	winkelgewichtet	$617^{\circ}\mathrm{C}$	$7378\mathrm{bar}$
	$\Delta S, \Delta V$ -gewichtet	$613^{\circ}\mathrm{C}$	$7315\mathrm{bar}$
	winkel- u. $\Delta S, \Delta V\text{-gewichtet}$	$616^{\circ}\mathrm{C}$	7383 bar
Gleichgewichte in Figur 8	.1 a-c (3 linear unabhängig)	$\Delta S_r = \Delta V_r$	r
1 $\text{Grs} + 2 \text{Sil} + a\text{Qtz}$ 2 $\text{Alm} + \text{Ma} = a\text{Otz}$	= 3 An	112.1 5.4	5
2 AIIII + MS = aQtz - 2 $2 Perto Qtz = W + 2$	$+ 2 \operatorname{SH} + \operatorname{AH}$	20.2 2.0	4 0
3 rg + aQtz = W + 1	$\square + AD$	1.2 - 0.4 120 0.2	2 A
4 1 III + AIII = AIII = 5 $5 Alm + Grs + Ms = -5$	3 An + Ann	12.0 0.2 132.2 7.5	4 0
$\begin{array}{c} 5 \\ 6 \\ W + 3 \\ Sil + \\ Grs + \end{array}$	Ab = 3An + Pg	110.9 5.8	7
7 3 aOtz + 2 Pg + Gi	rs = 2 Ab + 3 An + 2 W	114.5 4.6	1
8 Alm + Ms + Pg = 1	W + 3 Sil + Ann + Ab	21.3 1.6	3
9 $3 \text{ aQtz} + 2 \text{ Pg} + \text{At}$	nn = 2 Ab + Alm + Ms + 2 W	-17.8 -2.8	8
10 $Prp + Ms = 2$ Sil +	Phl + aQtz	8.2 1.8	1
11 $Prp + Ms + Grs =$	3 An + Phl	120.2 7.2	6
12 $Prp + Pg + Ms = A$	Ab + 3 Sil + Phl + W	9.3 1.3	9
$13 2 \operatorname{Pg} + \operatorname{Phl} + 3 \operatorname{aQt}$	z = 2 W + Prp + Ms + 2 Ab	-5.8 -2.6	5
Gleichgewichte in Figur 8	.1 d-f (3 linear unabhängig)	$\Delta S_r = \Delta V_r$	r
$\frac{1}{1 \text{ Grs} + 2 \text{ Ky} + a\text{Qtz}}$	= 3 An	139.1 6.5	9
2 Alm + Ms = aQtz -	+ 2 Ky + Ann	-6.8 0.9	0
3 Pg + aQtz = W + 2	Ky + Ab	-12.3 -0.9	9
4 $Phl + Alm = Ann -$	+ Prp	12.0 0.2	4
5 $\operatorname{Alm} + \operatorname{Grs} + \operatorname{Ms} =$	3 An + Ann	132.2 7.5	0
6 W + 3 Ky + Grs +	Ab = 3 An + Pg	151.4 7.5	8
7 $3 aQtz + 2 Pg + Ga$	rs = 2 Ab + 3 An + 2 W	114.5 4.6	1
8 Alm + Ms + Pg = 7	W + 3 Ky + Ann + Ab	-19.2 -0.0	9
9 $3 \text{ aQtz} + 2 \text{ Pg} + \text{At}$	nn = 2 Ab + Alm + Ms + 2 W	-17.8 -2.8	8
$10 \Pr + Ms = 2 \text{ Ky} +$	- Phl + aQtz	-18.8 0.6	7
11 Prp + Ms + Grs =	3 An + Phl	120.2 7.2	6
$12 \Pr + \Pr + \operatorname{Pg} + \operatorname{Ms} = A$	Ab + 3 Ky + Phl + W	-31.2 -0.3	2
$\frac{13}{AC} = \frac{2 \text{ Pg} + \text{Phl} + 3 \text{ aQt}}{1 \text{ Vg}}$	z = z W + Prp + Ms + 2 Ab	-5.8 -2.6	00
$\Delta S_r \ln J \cdot K^{-1}; \Delta V_r \ln c$	I · Dar ·		

Tab. 8.1: DS5: (a) wasserfreies System, (b) alle Reaktionen; DS6: (d) wasserfreies System, (e) alle Reaktionen

Fig. 8.1: DS5:(a) wasserkonservierende Reaktionen (b) sämtliche Reaktionen, Paragonit eingeschlossen (c) T-X_{CO2}-Diagramm bei 5330 bar; DS6: (d) wasserkonservierende Reaktionen (e) sämtliche Reaktionen, Paragonit eingeschlossen (f) T-X_{CO2}-Diagramm bei 7400 bar

8.3 RT159, Th46

Es handelt sich um folgende Gesteine:

RT159: pelitischer Bündnerschiefer **Th46:** Glimmerschiefer

Abgeschen von Reaktion 2, welche die kleinsten ΔS - und ΔV -Werte aufweist, schneiden sich die wasserkonservierenden Reaktionen (3 linear unabhängige) in einem engen Bereich (vgl. Fig. 8.2 a, d).

Bei einem X_{H_2O} von 0.83 (Probe RT159) bzw. 0.79 (Probe Th46) konvergieren die meisten wasserfreisetzenden Reaktionen durch diesen P-T-Bereich (vgl. Tab. 8.2).

Die linear abhängigen Reaktionen 2, 4, 9, 10 und 11 schneiden sich bei anderen Drucken als die restlichen Gleichgewichte. Diese Abseitslage ist unabhängig vom X_{H_2O} – Reaktion 2 ist wasserkonservierend und liegt abseits – und muss zurückzuführen sein auf den Chemismus der festen Phasen (Messfehler, Ungleichgewicht aufgrund retrograder Veränderung, Probleme mit den eng verknüpften Aktivitätsmodellen von Almandin und Annit).

Reaktionen mit Chlorit liegen weit abseits und deuten auf eine retrograde Chloritentstehung hin.

8.4 DS10a, EK45, B367, Kl437

Es handelt sich um folgende Gesteine:

DS10a: Muscovit-Granat-Disthen-Biotit-GneissB367, Kl437: GlimmerschieferEK45: granatführender Glimmerschiefer

Mit den zur Verfügung stehenden Analysen resultieren nur wasserkonservierende Reaktionen; diese sind unabhängig von der Zusammensetzung der fluiden Phase. 3 Reaktionen sind linear unabhängig.

In Probe DS10a wurden die Analysen der einzelnen Mineralien gemittelt, da keine nennenswerte Zonierung der Mineralien vorlag. Für die anderen Proben (B367, Kl437, EK45) liegt jeweils nur eine Analyse pro Mineral vor.

In Probe DS10a tritt untergeordnet auch fibrolithischer Sillimanit auf (2%), weshalb die gleiche Berechnung auch mit Sillimanit anstelle von Disthen durchgeführt wurde. Die meisten Reaktionen liegen in der Nähe der Reaktion Disthen = Sillimanit. Allerdings streuen alle Reaktionen mit Sillimanit weiter als die äquivalenten mit Disthen. Sillimanit ist offenbar ein Spätprodukt und scheint nicht mehr im Gleichgewicht mit den anderen Mineralien zu sein.

In den Probe B367 und Kl437 musste Staurolith von der Paragenese ausgeschlossen werden, da er nur untergeordnet auftritt und in Probe B367 sogar nur als Einschluss im Disthen vorkommt. Alle Reaktionen mit Staurolith streuen zudem extrem weit.

Es fällt auf, dass Reaktion 2 in allen Proben am weitesten weg vom Schnittpunkt der anderen Reaktionen liegt. Diese Reaktion weist jedoch die kleinsten ΔS - und ΔV -Werte auf und ist somit am empfindlichsten auf kleine Änderungen in der Aktivität oder Zusammensetzung einer involvierten Phase (BERMAN, 1991). Sie fällt bei der Berechnung der ΔS - und ΔV gewichteten arithmetischen Mittel praktisch nicht ins Gewicht (vgl. Tab. 8.3).

a) Probe:	RT159, pelitischer Bündnersc	RT159, pelitischer Bündnerschiefer			
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Ilm-Chl-Tur				
benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz				
Resultat:	alle Schnittpunkte	579 ± 15 °C	6803	$\pm 1186 \mathrm{bar}$	
	ohne kleine Δ 's u. Schnittwinkel	579 \pm 16 $^{\circ}\mathrm{C}$	6622	$\pm 1079 \mathrm{bar}$	
	winkelgewichtet	$581^{\circ}C$	6663	bar	
	$\Delta S, \Delta V$ -gewichtet	$582^{\circ}C$	6171	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$584^{\circ}C$	6194	bar	
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O				
Resultat:	alle Schnittpunkte	586 \pm 36 $^{\circ}\mathrm{C}$	6936	± 1316 bar	
	ohne kleine Δ 's u. Schnittwinkel	587 \pm 35 $^{\rm o}{\rm C}$	6871	$\pm 1242 \mathrm{bar}$	
	winkelgewichtet	$599^{\circ}C$	7078	bar	
	$\Delta S, \Delta V$ -gewichtet	$590^{\circ}C$	6215	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$610^{\circ}\mathrm{C}$	6621	bar	
bisherige P-T-Abschätzung:	Teutsch (1982)	$627^{\circ}\mathrm{C}$	6800:	$\pm 1000 \text{bar}$	
d) Probe:	Th46, Glimmerschiefer				
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-St-Sil-Ep-A	Ap-Rt-Opk			
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky				
Resultat:	alle Schnittpunkte	579 \pm 64 $^{\circ}\mathrm{C}$	7227	$\pm 1298 \mathrm{bar}$	
	ohne kleine Δ 's u. Schnittwinkel	$611 \pm 7 \ ^{\circ}\mathrm{C}$	7917	$\pm 458 \mathrm{bar}$	
	winkelgewichtet	$610^{\circ}\mathrm{C}$	7860	bar	
	$\Delta S, \Delta V$ -gewichtet	$561^{\circ}\mathrm{C}$	7089	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$609^{\circ}C$	8085	bar	
e) benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky-St-H ₂ O			· · ·	
Resultat:	alle Schnittpunkte	599 \pm 49 $^{\circ}\mathrm{C}$	7667	\pm 913 bar	
	ohne kleine Δ 's u. Schnittwinkel	606 \pm 19 $^{\circ}\mathrm{C}$	7785	\pm 596 bar	
	winkelgewichtet	$602^{\circ}C$	7698	bar	
	$\Delta S, \Delta V$ -gewichtet	$607^{\circ}C$	8088	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$598^{\circ}C$	7897	bar	
bisherige P-T-Abschätzung:	Koch (1982)	643 \pm 35 $^{\circ}\mathrm{C}$	8400	bar	
Gleichgewichte in Figur 8.2 a	-f (3 linear unabhängig)		ΔS_r	ΔV_r	
1 $\operatorname{Grs} + 2 \operatorname{Ky} + a \operatorname{Qtz} =$	3 An		139.1	6.59	
2 Alm + Ms = aQtz + 2	Ky + Ann		-6.8	0.90	
3 Phl + Alm = Ann + P	rp		-12.0	-0.24	
4 8 Alm + 46 Ky + 12 W	V = 6 St + 25 aQtz		576.6	29.74	
5 $\operatorname{Alm} + \operatorname{Grs} + \operatorname{Ms} = 3$	An + Ann		132.2	7.50	
6 $12 \text{ W} + 96 \text{ Ky} + 25 \text{ Gr}$	rs + 8 Alm = 75 An + 6 St	-	4053.8	-194.59	
7 6 St + 48 aQtz + 23 G	rs = 8 Alm + 69 An + 12 W	-	2622.4	-121.92	
$8 \Pr + Ms = 2 \text{ Ky} + \Pr$	hl + aQtz		18.8	-0.67	
9 6 St + 25 Ms + 17 Alm	n = 25 Ann + 96 Ky + 12 W		747.7	7.17	
10 6 St + 17 aQtz + 8 Ms	= 8 Ann + 62 Ky + 12 W		631.3	22.52	
11 31 Alm $+$ 23 Ms $+$ 12	W = 6 St + 48 aQtz + 23 Ann	_	419.2	50.51	
12 8 Ann + 46 Ky + 8 Pr	p + 12 W = 6 St + 25 aQtz + 8 Ph	1	480.5	27.85	
13 $\operatorname{Prp} + \operatorname{Ms} + \operatorname{Grs} = 3$ A	n + Phl		-120.2	-7.26	
14 12 W + 96 Ky + 17 G	rs + 8 Ann = 51 An + 8 Ms + 6 St	-	2995.8	-134.62	
15 6 St + 48 aQtz + 8 Ms	+ 31 Grs = 8 Ann + 93 An + 12 V	- V	3680.4	-181.90	
16 $12 \text{ W} + 8 \text{ Prp} + 96 \text{ Ky}$	+ 25 Grs + 8 Ann = 75 An + 8 P	hl + 6 St -	3957.8	-192.70	
17 $6 \text{ St} + 48 \text{ aQtz} + 8 \text{ Ph}$	l + 23 Grs = 8 Ann + 69 An + 8 P	rp + 12 W -	2718.5	-123.81	
18 $6 \text{ St} + 17 \text{ Prp} + 25 \text{ Ms}$	= 8 Ann + 96 Ky + 17 Phl + 12 V	V	951.8	11.18	
19 $6 \text{ St} + 25 \text{ Prp} + 25 \text{ Ms}$	= 8 Alm + 96 Ky + 25 Phl + 12 V	V	1047.8	13.07	
20 8 Ann + 23 Ms + 31 P	rp + 12 W = 6 St + 48 aQtz + 31	Phl	47.0	43.19	
21 8 Alm + 23 Ms + 23 P	rp + 12 W = 6 St + 48 aQtz + 23	Phl	143.1	45.08	
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot b$	ar^{-1}				

Tab. 8.2: RT159: (a) wasserfreies System, (b) alle Reaktionen; Th46: (d) wasserfreies System, (e) alle Reaktionen

Fig. 8.2: RT159: (a) wasserkonservierende Reaktionen (b) sämtliche Reaktionen, (c) T-X_{CO2}-Diagramm bei 6200 bar; Th46: (d) wasserkonservierende Reaktionen (e) sämtliche Reaktionen, (f) T-X_{CO2}-Diagramm bei 8000 bar

a) Proba	DS10a Mercasette Care	not D:-	thon Distit C-	oiga
a) Frode:	D = D = Ua, Muscovit-Grai	Chi Chi	Inen-Biotit-Gn	eiss 7
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-Sil	-Oni-Opl	к-Ap-Rt-Py-Tur-	Zrn
benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz			
Resultat:	alle Schnittpunkte		662 ± 29 °C	$6548 \pm 1869 \mathrm{bar}$
	ohne kleine Δ 's u. Schnit	twinkel	663 ± 30 °C	$6264 \pm 1702 \text{bar}$
	winkelgewichtet		$666^{\circ}\mathrm{C}$	6262 bar
	$\Delta S, \Delta V$ -gewichtet		$668^{\circ}\mathrm{C}$	$5556 \mathrm{bar}$
	winkel- u. $\Delta S, \Delta V$ -gewich	ntet	$671^{\circ}\mathrm{C}$	$5594 \mathrm{bar}$
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Sil-Qtz			
Resultat:	alle Schnittpunkte		$655 \pm 97 \ ^{\circ}\mathrm{C}$	$6021 \pm 1490 \mathrm{bar}$
	ohne kleine Λ 's u. Schnit	twinkel	$655 \pm 97 \ ^{\circ}\text{C}$	$6021 \pm 1490 \text{bar}$
	winkelgewichtet		680°C	6281 bar
	$\Delta S \Delta V$ gowichtet		668°C	5575 bar
	$\Delta S, \Delta V$ -gewichtet	atot	686°C	5911 hor
-> Duch -	white- $u. \Delta S, \Delta V$ -gewich	1tet 	080 C	Joii Dai
c) Probe:	B367, Glimmerschiefe	r		
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-Si	l-St-Chl-	Ap-Rt-Opk	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky			
Resultat:	alle Schnittpunkte		688 ± 55 °C	$6574 \pm 894 \mathrm{bar}$
	ohne kleine Δ 's u. Schnit	twinkel	$708 \pm 3 \ ^{\circ}\mathrm{C}$	$6919 \pm 211 \text{bar}$
	winkelgewichtet		$707^{\circ}\mathrm{C}$	6929 bar
	$\Delta S, \Delta V$ -gewichtet		$670^{\circ}\mathrm{C}$	6375 bar
	winkel- u. $\Delta S, \Delta V$ -gewich	ntet	$706^{\circ}C$	7020 bar
bisherige P-T-Abschätzung:	Koch (1982)		$645 \pm 28 \ ^{\circ}\mathrm{C}$	7200 bar
d) Probe:	EK45, granatführende	er Glim	merschiefer	
Mineralogie:	Grt-Bt-Hal-Pl-Otz-Sil-Ch	l-Onk		
honutzta Paragonosa:	Crt Bt Mc Pl Otz Sil	п-орк		
Denutzte i aragenese.	alla Sabrittanunlita		612 ± 20 °C	$4692 \pm 417 \rm{bar}$
nesuitat.	alle Schnittpunkte		012 ± 29 C	4023 ± 417 bar
	onne kleine Δ 's u. Schnit	twinkei	612 ± 29^{-1} C	$4023 \pm 417 \text{ bar}$
	winkelgewichtet		619°C	4691 bar
	$\Delta S, \Delta V$ -gewichtet		615°C	4499 bar
	winkel- u. $\Delta S, \Delta V$ -gewich	ntet	$620^{\circ}\mathrm{C}$	$4559\mathrm{bar}$
bisherige P-T-Abschätzung:	Koch (1982)		631 ± 44 °C	$6500 \mathrm{bar}$
e) Probe:	Kl437, Glimmerschief	er		
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-Ky-St	-Sil-Chl-	Ap-Rt-Opk	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-Ky			
Resultat:	alle Schnittpunkte		$612 \pm 159 \ ^{\circ}\text{C}$	$6938 \pm 3097 \mathrm{bar}$
	ohne kleine Δ 's u. Schnit	twinkel	$629 \pm 146 \ ^{\circ}\text{C}$	$7439 \pm 2928 \mathrm{bar}$
	winkelgewichtet		648°C	7672 bar
	$\Delta S \Delta V$ -gewichtet		569°C	6754 bar
	winkel $\mu \Delta S \Delta V$ -gowiel	ntet	663°C	8634 bar
bishorigo P.T. Abschötzung:	Koch (1082)	1000	$664 \pm 33 \circ C$	0500 bar
Olitheringer-i-Abschatzung:		A (7	004 ± 33 U	3000 Dai
Gleichgewichte in Figur 8.3 a	,c,e (3 linear unabhängig)	ΔS_r	$\frac{\Delta V_r}{2}$	
1 $Grs + 2 Ky + aQtz = 3$	An	139.1	6.59	
2 Alm + Ms = aQtz + 2 I	xy + Ann	-6.8	0.90	
3 Phl + Alm = Ann + Prp	p	12.0	0.24	
4 Alm + Grs + Ms = 3 An	n + Ann	132.2	7.50	
5 $Prp + Ms = 2 Ky + Phl$	+ aQtz	-18.8	0.67	
6 Prp + Ms + Grs = 3 An	h + Phl	120.2	7.26	
Gleichgewichte in Figur 8.3 h	d (3 linear unabhängig)	ΔS_{π}	ΔV_r	
$\frac{1}{1} \operatorname{Grs} + 2 \operatorname{Gr} + 2 \operatorname{Si} - 3 \operatorname{I}$	An	<u> </u>	5 45	
$\begin{array}{ccc} 1 & 0.15 \pm a \sqrt{52} \pm 2.51 \pm 5.12 \\ 2 & A \ln \pm M_2 = 2.51 \pm a Ot \end{array}$	$z \perp Ann$	11⊿.1 20.2	2.04	
2 $\operatorname{Ann} = 1018 = 2.01 \pm 3000$		20.2 19.0	2.04	
3 FIII + AIII = AIII + Pr	U 19 Am	120.0	0.24	
4 $Ms + Grs + Alm = Ann$	+ 3 An $+$ 3 G	132.2	1.00	
5 $Prp + Ms = Phl + aQtz$	+2 Si	8.2	1.81	
6 Prp + Ms + Grs = 3 An	$\iota + Phl$	120.2	7.26	

 $\frac{\partial S_r}{\partial S_r} \ln J \cdot K^{-1}; \ \Delta V_r \ln J \cdot bar^{-1}$

Tab. 8.3: (a) DS10a mit Disthen, (b) DS10a mit Sillimanit, (c) B367, (d) EK45, (e) Kl437

Fig. 8.3: (a) DS10a mit Disthen, (b) DS10a mit Sillimanit, (c) B367 (Ky), (d) EK45 (Sil), (e) Kl437(Ky)

8.5 Kl185: granatführender Glimmerschiefer

Die wasserfreien Reaktionen deuten ein fast perfektes Gleichgewicht an (3 linear unabhängige Reaktionen), selbst dann noch, wenn man das chemische System um Na erweitert und noch Paragonit (relativ grosse Paragonitkomponente im Hellglimmer) und Staurolith mit in die Berechnung einschliesst (4 linear unabhängige Reaktionen!).

Die wasserhaltigen Reaktionen konvergieren durch das gleiche P-T-Feld bei einem XH2O von 0.65. Es resultieren so 5 (!) linear unabhängige Reaktionen (vgl. Fig. 8.4 a-d). Reaktionen mit Chlorit streuen weit; Chlorit wird als retrograde Phase interpretiert.

Fig. 8.4: Kl185: (a) trockenes System ohne Paragonit, (b) trockenes System mit Paragonit und Staurolith, (c) alle Phasen, (d) T-X_{H2O}-Diagramm bei 6360 bar

		1	
a) Probe:	K1185, granatführender Glimm	nerschiefer	
Mineralogie:	Grt-Bt-Hgl-Pl-Sil-Qtz-St-Chl-Cld-	Ep-Rt-Opk	
benutzte Paragenese:	Grt-Bt-Ms-Pl-Sil-Otz	-	
Resultat.	alle Schnittpunkte	580 ± 10 °C	$6227 \pm 311 \text{bar}$
Lubuluau.	ale permupulkue	500 ± 10 °C	$c_{007} \perp o_{11} b_{01}$
	onne kleine Δ 's u. Schnittwinkel	580 ± 19 °C	0227 ± 311 bar
	winkelgewichtet	$585^{\circ}C$	$6278\mathrm{bar}$
	$\Delta S, \Delta V$ -gewichtet	$582^{\circ}C$	6135 bar
	winkel- 11, ΔS , ΔV -gewichtet	$585^{\circ}C$	6180 bar
b) bonutzto Porozonogo	Crt Bt Mc Do DI Sil Oto St	000 0	5100 000
D benutzte raragenese:	GIU-DU-IMS-F g-F I-ƏII-QUZ-ƏU	600 L 05 0 C	
Resultat:	ane Schnittpunkte	002 ± 35 °C	$6485 \pm 754 \text{bar}$
	ohne kleine Δ 's u. Schnittwinkel	599 \pm 28 $^{\circ}\mathrm{C}$	$6434 \pm 594 \mathrm{bar}$
	winkelgewichtet	$595^{\circ}C$	6351 bar
	$\Delta S. \Delta V$ -gewichtet	$614^{\circ}C$	6641 bar
	winkel $\mu \Delta S \Delta V$ considered	500°C	6351 bar
	winker- u. $\Delta S, \Delta V$ -gewichtet	399 C	0551 Dai
c) benutzte Paragenese:	Grt-Bt-Ms-Pg-Pl-Sil-Qtz-St-H ₂ O		
Resultat:	alle Schnittpunkte	600 ± 36 °C	$6392 \pm 843 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	600 ± 30 $^{\circ}\mathrm{C}$	$6402 \pm 590 \mathrm{bar}$
	winkelgewichtet	600°C	6383 bar
	$\Delta S \Delta V$ somichtet	600°C	6353 har
	$\Delta S, \Delta V$ -gewichtet	000°C	osos bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$601^{\circ}\mathrm{C}$	6362 bar
bisherige P-T-Abschätzung:	Koch (1982)	595 \pm 26 $^{\circ}\mathrm{C}$	7300 bar
Gleichgewichte in Figur 8.4 (5 line	ear unabhängig)	Δs	$S_r = \Delta V_r$
1 Grs + 2 Pg + 3 aQtz = 2 V	$V + 3 \operatorname{An} + 2 \operatorname{Ab}$	11	4.5 4.61
2 3 aQtz + 2 Pg + Ann = 2 Ann	Ab + Alm + Ms + 2 W	-1	7.8 -2.88
3 $Phl + Alm = Ann + Py$		1	2.0 0.24
4 $aQtz + Pg = Ab + Sil + W$		-	1.2 -0.42
21 aQtz + 46 Pg + 8 Alm = 6 Alm + Crz + Mz = 2 A + 1000 Alm + Crz + Mz = 2 A + 1000 Alm + Crz + 1000 Alm + 10000 Alm + 100000 Alm + 100000000000000000000000000000000000	= 40 AD + 6 St + 34 W	1	0.0 -15.80
$\begin{array}{c} 0 \text{AIIII} + \text{Grs} + \text{Ms} = 3 \text{ An} + \\ 7 2 \text{ Sil} + 2 \text{ Otz} + \text{Grs} - 2 \text{ An} \end{array}$	AIII	13	2.2 7.00 2.1 5.45
$\begin{array}{c} 2 \text{ Sin} + a \text{Grz} + \text{Grs} = 3 \text{ An} \\ 8 \text{ Ab} + \text{Grs} + 3 \text{ Sil} + W = P \end{array}$	g + 3 An	11	0.9 5.87
9 12 Ab + 17 Grs + 30 aOtz	+ 6 St = 12 Pg + 51 An + 8 Alm	193	5.7 94.24
10 $32 \text{ Ab} + 7 \text{ Grs} + 6 \text{ St} + 20$	W = 32 Pg + 21 An + 8 Alm	79	1.2 48.10
11 23 Grs + 48 aQtz + 6 St =	12 W + 69 An + 8 Alm	262	2.4 121.92
$12 2 \operatorname{Pg} + \operatorname{Phl} + 3 \operatorname{aQtz} = 2 \operatorname{W}$	V + Py + Ms + 2 Ab	-	5.8 -2.65
13 $Ms + Alm = Ann + aQtz +$	2 Sil	2	0.2 2.04
14 Alm + Ms + Pg = W + 3 S	har Ann + Ab	2	1.3 1.63
10 12 rg + 17 Ms + 25 Alm = 16 32 Pg + 7 Ms + 15 Alm =	12 AD + 17 AIII + 30 aQtz + 6 St 32 Ab + 7 App + 6 St + 20 W	31	2.4 33.21 4.5 4.98
10 32 rg + 7 Ms + 10 Alm = 1 17 12 W + 23 Ms + 31 Alm = 1	23 Ann + 48 aOtz + 6 St	13	4.0 9.2 50.51
18 8 Ann + 62 Pg + 45 aOtz =	= 50 W + 6 St + 8 Ms + 62 Ab	-13	2.3 -38.86
19 21 aQtz + 8 Pv + 46 Pg +	8 Ann = 46 Ab + 8 Phl + 6 St + 34 W	-8	6.0 -17.69
20 12 Ab + 13 aQtz + 6 St = 12	34 Sil + 12 Pg + 8 Alm	3	0.2 1.55
21 8 Alm + 25 Pg + 21 Sil = 1	3 W + 6 St + 25 Ab	-1	4.8 -7.00
22 $25 \text{ aQtz} + 6 \text{ St} = 12 \text{ W} + 4$	$6 \operatorname{Sil} + 8 \operatorname{Alm}$	4	4.4 -3.48
23 Py + Ms + Grs = 3 An + H		12	0.2 7.26
24 12 Ab + 25 Grs + 8 Ms + 3 25 22 Ab + 15 Grs + 8 Ms + 4	SU = AU + 6 St = 12 Pg + 75 An + 8 Ann	1 299	3.7 154.21
20 $32 \text{ AD} + 13 \text{ Grs} + 8 \text{ Ms} + 6$ 26 $31 \text{ Grs} + 8 \text{ Ms} + 48 \text{ sOt} + 7$	$p_{51} + 20 \text{ w} = 32 \text{ rg} + 43 \text{ An} + 8 \text{ Ann}$ 6 St - 12 W + 93 An + 8 Ann	184	0.4 181.00
20 $31 \text{ Grs} + 6 \text{ IVIS} + 46 \text{ dQLZ} + 27 12 \text{ Ab} + 17 \text{ Grs} + 8 \text{ PhI} + 12 \text{ Grs} + 12 \text{ Crs} $	30 aOtz + 6 St = 8 Pv + 12 Po + 51 Am	+ 8 Ann 202	1.8 96.12
28 32 Ab + 7 Grs + 8 Phl + 6	St + 20 W = 8 Py + 32 Pg + 21 An + 8	Ann 88	7.2 49.98
29 23 Grs + 8 Phl + 48 aQtz -	-6 St = 12 W + 8 Py + 69 An + 8 Ann	271	8.5 123.81
30 60 Sil + 12 Pg + 13 Grs +	8 Alm = 12 Ab + 39 An + 6 St	142	6.9 69.32
31 12 W + 96 Sil + 25 Grs + 8	A = 75 An + 6 St	275	7.8 139.78
32 Py + Ms = Phl + aQtz + 2	Sil		8.2 1.81
33 Py + Pg + Ms = Ab + Phl	+ 3 Sul + W	4 1	9.3 1.39
34 20 ry + 12 rg + 17 Ms + 8 35 17 Pv + 19 Pr + 17 Ms + 8	$h_{\rm Ann} = 12 \text{ AD} + 20 \text{ Pnl} + 30 \text{ aQtz} + 6 \text{ S}$ $h_{\rm Alm} = 12 \text{ Ab} \pm 17 \text{ Phl} \pm 30 \text{ aOtz} \pm 6 \text{ S}$	1 I	2.0 21.01 8.3 29.20
$36 15 \text{ Pv} + 32 \text{ Po} + 7 \text{ Me} \pm 8$	Ann = 32 Ab + 15 Phl + 6 St + 20 W	-4	5.5 0.84
37 7 Pv + 32 Pg + 7 Ms + 8 A	Alm = 32 Ab + 7 Phl + 6 St + 20 W	-4	0.5 2.73
38 12 W + 31 Py + 23 Ms + 8	Ann = 31 Phl + 48 aQtz + 6 St	4	7.0 43.19
39 12 W + 23 Py + 23 Ms + 8	Alm = 23 Phl + 48 aQtz + 6 St	14	3.1 45.08
40 12 Ab + 5 Alm + 13 Ms +	6 St = 60 Sil + 12 Pg + 13 Ann	-29	2.2 -28.14
41 6 St + 5 aQtz + 8 Ms + 12	Ab = 8 Ann + 12 Pg + 50 Sil	19	1.5 17.91
42 17 Alm + 25 Ms + 6 St = 1 42 5 W + 6 St = 2 Ms + 17 Alm	2 W + 96 Sil + 25 Ann	54	8.3 47.65
45 $3 W + 0 St + 8 Ms + 17 A$	D = 0 Ann + 17 Pg + 45 Sil App $\pm 62 \text{ Sil} \pm 12 \text{ W}$	18	0.0 20.01 5.7 10.99
45 12 Ab + 8 Pb1 \pm 13 aOt $\pi \pm$	6 St = 34 Sil + 8 Pv + 12 Po + 8 App	20	6.3 3.44
46 8 Ann + 25 Pg + 8 Pv + 2	Sil = 13 W + 6 St + 8 Phl + 25 Ab	-11	0.9 -8.89
47 8 Phl + 25 aQtz + 6 St = 1	2 W + 46 Sil + 8 Py + 8 Ann	14	0.5 -1.59
48 60 Sil + 12 Pg + 5 Grs + 8	Ann = 12 Ab + 15 An + 8 Ms + 6 St	36	9.0 9.35
49 12 W + 96 Sil + 17 Grs + 8	3 Ann = 51 An + 8 Ms + 6 St	169	9.8 79.80
50 60 Sil + 8 Py + 12 Pg + 13	Grs + 8 Ann = 12 Ab + 39 An + 8 Phl	+ 6 St 133	0.9 67.44
51 12 W + 96 Sil + 8 Py + 25	Grs + 8 Ann = 75 An + 8 Phl + 6 St	266	1.8 137.89
52 12 Ab + 13 Ms + 5 Py + 6	St = 60 Sil + 5 Phl + 12 Pg + 8 Ann	23	2.2 26.96
12 Ab + 13 Ms + 13 Py + 0	p St = 60 Sil + 13 Phl + 12 Pg + 8 Alm W + 06 Sil + 17 Phl + 8 Arm	13	6.2 25.07
55 25 Ms \pm 25 Pv \pm 6 St $=$ 12	W + 96 Sil + 25 Phl + 8 Alm	34	4.2 40.04 8.2 41.75
$\frac{35}{\Delta S_{-}} \text{ in } J \cdot K^{-1} \cdot \Delta V \text{ in } J \cdot har^{-1}$	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	24	U.2 HI.(U
$ \Delta v_r \dots \sigma n , \Delta v_r \dots \sigma \sigma ar$			

Tab. 8.4: Kl
185: (a) trockenes System ohne Paragonit, (b) trockenes System mit Paragonit und Staurolith, (c) alle Phasen

8.6 RT140, RT150, DS4, Kl264, EK50

Es handelt sich um folgende Gesteine:

RT140: pelitischer Bündnerschiefer
RT150: kalkiger Bündnerschiefer
DS4: Granat-Sillimanit-Biotit-Muscovit-Gneiss
Kl264: Granat-Glimmerschiefer
EK50: Granat-Disthen-Glimmerschiefer

In Ermangelung einer Plagioklasanalyse lassen sich für Probe RT140 zwar 3 linear unabhängige Reaktionen formulieren, davon ist jedoch eine von X_{H_2O} abhängig. Die wasserfreien (Nr. 1, 2 und 4 in Tabelle 8.5) sind linear abhängig und schneiden sich bei 637 °C und 5585 bar. Bei einem X_{H_2O} von 0.93 gehen auch wasserführende Kurven durch diesen Punkt. Da die wasserfreien Reaktionen die kleinsten ΔS - und ΔV -Werte aufweisen, ist ihre Lage unsicher. Chlorit konnte aus der Paragenese ausgeschlossen werden, weil Reaktionen mit Chlorit weit streuen; Chlorit wird als retrogrades Produkt interpretiert.

Für Probe RT150 ergibt das Granat-Biotit-Thermometer bei angenommenen 6000 bar eine zu tiefe Temperatur von ca $450\,^{\circ}\mathrm{C}.$

In der Probe DS4 waren leider sämtliche Plagioklasanalysen unbrauchbar, so dass auch hier nur Granat-Biotit-Thermometrie betrieben werden konnte. Das Thermometer ergibt jedoch bei 5500 bar (Druck aus P-T-Berechnung einer benachbarten Probe entnommen) eine den benachbarten Proben entsprechende Temperatur von 723 °C, wenn man die Durchschnitte aller Analysen benutzt.

In Probe Kl264 lässt sich nur das Granat-Chloritoid-Thermometer anwenden, das eine für die nördliche Adula-Decke sehr hohe Temperatur von über 600 °C ergibt. Reaktionen mit Staurolith streuen sehr weit.

In Probe EK50 beobachtete KOCH (1982) Berührungsparagenesen von Disthen und Sillimanit?! Weil nur beschränkt Analysen zur Verfügung standen, sind hier nur das Anorthit-Grossular-Barometer und Granat-Biotit-Thermometer anwendbar. Mit den Durchschnittschemismen der Matrixmineralien ergeben sich ausserordentlich hohe Drucke und Temperaturen von über 800 °C und 10.5 kbar. Dieser P-T-Punkt liegt im Bereich der beiden Phasenübergänge Disthen = Sillimanit und α -Quarz = β -Quarz.

KOCH (1982) verzichtete bei dieser Probe auf eine Druckabschätzung, weil er kaum Berührungsparagenesen von Granat mit Plagioklas fand. Er wendete nur das Granat-Biotit-Thermometer an, das eine Temperatur von 597 \pm 22 °C ergab, also bedeutend tiefer als die mit PTAX berechnete Temperatur. Aufgrund dieser grossen Abweichungen wird diese Probe nicht verwendet für die Isothermenkarte.

Fig. 8.5: RT140: (a) alle möglichen Reaktionen, (b) T-X_{CO_2} Diagramm bei 5580 bar; (c) RT150, DS4, Kl264: Granat-Biotit- und Granat-Chloritoid-Thermometer; (d) EK50: alle möglichen Reaktionen

a) Probe:	RT140, pelitischer Bündnerso	chiefer	
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Ilm-Chl		
benutzte Paragenese:	Grt-Bt-Ms-Kv-Qtz-St-H2Q		
Resultat:	alle Schnittpunkte	637 ± 1 °C	$5579 \pm 57 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	637 ± 1 °C	5584 ± 49 bar
	winkelgewichtet	$637^{\circ}\mathrm{C}$	5589 bar
	$\Delta S, \Delta V$ -gewichtet	$637^{\circ}\mathrm{C}$	5574 bar
	winkel- u. ΔS , ΔV -gewichtet	$637^{\circ}C$	5585 bar
bisherige T-Abschätzung:	Teutsch (1982)	$622^{\circ}\mathrm{C}$	
c) Probe:	Kl264, Granat-Glimmerschief	fer	
Mineralogie:	Grt-Hql-Ky-Qtz-Chl-Cld-St-Ep-Rt	t-Opk	
benutzte Paragenese:	Grt-Cld	1	
Resultat:	Schnittpunkt	$626^{\circ}\mathrm{C}$	6000 bar (angenommen)
Probe:	DS4, Granat-Sillimanit-Biotit	t-Muscovit-Gn	eiss
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Sil-Qtz-Ap-Tur-	-Zrn	
benutzte Paragenese:	Grt-Bt		
Resultat:		$723^{\circ}\mathrm{C}$	5500 bar (angenommen)
Probe:	RT150, kalkiger Bündnerschi	efer	
Mineralogie:	Grt- Bt - Ms - Pl - Chl - Qtz - Czo - Cal		
benutzte Paragenese:	Grt-Bt		
Resultat:		$477^{\circ}C$	7000 bar (angenommen)
bisherige T-Abschätzung:	Teutsch (1982)	$513^{\circ}\mathrm{C}$	
d) Probe:	EK50, Granat-Disthen-Glimm	nerschiefer	
Mineralogie:	Grt- Bt - Hgl - Pl - Qtz - Ky - St -Sil-Ep-O	Chl-Rt-Opk	
benutzte Paragenese:	Grt-Bt-Pl-Qtz-Ky-Sil		
Resultat:	alle Schnittpunkte	827 ± 39 °C	$10850 \pm 853 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$816 \pm 13 \ ^{\circ}\mathrm{C}$	$10659 \pm 327 \mathrm{bar}$
	winkelgewichtet	$812^{\circ}C$	10549 bar
	$\Delta S, \Delta V$ -gewichtet	$866^{\circ}C$	11699 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$808^{\circ}C$	10556 bar
bisherige T-Abschätzung:	Koch (1982)	$597 \pm 22 \ ^{\circ}\mathrm{C}$	
Gleichgewichte in Figur 8.5	5 a,b (3 linear unabhängig)	ΔS_r	ΔV_r
1 Alm + Ms = aQtz +	2 Ky + Ann	-6.8	0.90
2 Phl + Alm = Ann +	Prp	12.0	0.24
3 12 W + 46 Ky + 8 A	lm = 25 aQtz + 6 St	576.6	29.74
4 Ms + Prp = aQtz +	Phl + 2 Ky	-18.8	0.67
5 17 Alm $+$ 25 Ms $+$ 6	St = 12 W + 96 Ky + 25 Ann	-747.7	-7.17
6 8 Ms + 17 aQtz + 6	St = 12 W + 62 Ky + 8 Ann	-631.3	-22.52
7 $12 \text{ W} + 23 \text{ Ms} + 31$	Alm = 23 Ann + 48 aQtz + 6 St	-419.2	-50.51
8 $12 \text{ W} + 8 \text{ Prp} + 46 \text{ I}$	Ky + 8 Ann = 8 Phl + 25 aQtz + 6	6 St -480.5	-27.85
9 $25 \text{ Ms} + 17 \text{ Prp} + 6$	St = 12 W + 17 Phl + 96 Ky + 8 J	Ann -951.8	-11.18
10 $25 \text{ Ms} + 25 \text{ Prp} + 6$	St = 12 W + 25 Phl + 96 Ky + 8 J	Alm -1047.8	-13.07
11 12 W + 31 Prp + 23	Ms + 8 Ann = 31 Phl + 48 aQtz +	+6 St 47.0	43.19
12 12 W + 23 Prp + 23	Ms + 8 Alm = 23 Phl + 48 aQtz +	+ 6 St 143.1	45.08
Gleichgewichte in Figur 8.	óc	ΔS_r	ΔV_r
1 Alm + 3 Mg-Cld = \mathbf{H}	Prp + 3 Fe-Cld	21.8	0.08
2 Phl + Alm = Ann +	Prp	12.0	0.24
Gleichgewichte in Figur 8.3	5d	ΔS_r	ΔV_r
1 aQtz + 2 Ky + Grs =	= 3 An	-139.1	-6.59
2 Phl + Alm = Ann +	Prp	12.0	0.24
3 aQtz = bQz		2.7	0.10
4 $Ky = Si$		13.5	0.57
$5 ext{ bQz} + 2 ext{ Ky} + ext{Grs} =$	= 3 An	136.3	6.49
$6 2 \operatorname{Si} + \operatorname{aQtz} + \operatorname{Grs} =$	3 An	112.1	5.45
$7 2 \operatorname{Si} + \mathrm{bQz} + \operatorname{Grs} =$	3 An	109.3	5.35

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 8.5: (a) RT140: alle möglichen Reaktionen; (c) RT150, DS4, Kl264: Granat-Biotit- und Granat-Chloritoid-Thermometer; (d) EK50: alle möglichen Reaktionen

8.7 Kl285: Granat-Glimmerschiefer

In diesem Handstück fehlt Plagioklas. Mit den verfügbaren Analysen resultieren bloss 5 linear abhängige Gleichgewichte, die sich bei 639 °C und 6464 bar schneiden. Die Temperatur entspricht der des Granat-Biotit-Thermometers.

Disthen kommt als ein einige μ m-grosser Einschluss im Granat vor und gehört offenbar nicht zur Paragenese; Reaktionen mit Disthen streuen auch sehr weit.

Fig. 8.6: Kl
98: (a) Reaktionen ohne Wasser, (b) alle Reaktionen, (c)
 $T-X_{CO_2}$ Diagramm bei 7900 bar; (d) Kl285, trockenes System

8.8 Kl98: Granat-Glimmerschiefer

In diesem Handstück liegt kein Alumosilikat vor. Die wasserfreien Gleichgewichte, berechnet mit den Durchschnittschemismen der Mineralien, beschreiben ein eng begrenztes P-T-Feld; 3 Gleichgewichte sind linear unabhängig. Bei einem X_{H_2O} von 0.60 verlaufen fast alle der wasserführenden Gleichgewichte durch den gleichen P-T-Bereich, 4 davon sind linear unabhängig

(vgl. Fig. 8.6 a, b und Tab. 8.6 a, b).

Reaktionen mit Paragonit streuen sehr weit (kleiner Anteil von Paragonit im Hellglimmer und auch kleiner Modalanteil von Paragonit im Gestein).

a) Probe:	Kl98. Granat-Glimmerschiefe	r		
Mineralogie:	Grt-Bt-Hal-Pl-Qtz-St-Chl-En-An-	- Rt-Opk		
benutzte Paragenese	Grt-Bt-Ms-Pl-Otz-St-Chl			
Resultat:	alle Schnittpunkte	499 ± 14 °	C 8069	$\pm 271 \mathrm{bar}$
Toobarbab	ohne kleine A's u Schnittwinkel	$499 \pm 15^{\circ}$	C 8060	$\pm 253 \text{ bar}$
	winkelgewichtet	499°C	8090	har
	$\Delta S \Delta V_{\text{generic}}$	499°C	7082	bar
	winkel u $\Delta S \Delta V$ cowichtet	498 C 500°C	8052	bar
b) honutato Ponogonogo	$C_{\text{rt}} \text{ Pt} M_{c} \text{ Pl} O_{\text{tr}} \text{ St} C_{\text{bl}} H_{c} O$	500 C	8052	Dai
D) benutzte Faragenese.	alla Sahrittaunlita	402 19.04	C 0019	1 201 ham
Resultat:		495 ± 12^{-1}	0 0015	\pm 364 bar
	onne kleine Δ 's u. Schnittwinkel	493 ± 4 °C	7946	$\pm 171 \mathrm{bar}$
	winkelgewichtet	493°C	7965	bar
	$\Delta S, \Delta V$ -gewichtet	492°C	7945	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	492°C	7871	bar
bisherige T-Abschätzung:	Koch (1982)	599 ± 35 °C	C	
d) Probe:	K1285, Granat-Glimmerschief	er		
Mineralogie:	Grt-Bt-Hgl-Qtz-St-Chl-Ky-Cld-Ap	o-Rt-Opk		
benutzte Paragenese:	Grt-Bt-Ms-Qtz-St-Chl			
Resultat:	Schnittpunkt	$639 ^{\circ}\mathrm{C}$	6464	bar
Gleichgewichte in Figur 8.6 (4	linear unabhängig)		ΔS_r	ΔV_r
1 5 Alm + Grs + 5 Phl +	12 W = 3 aQtz + 3 Chl + 3 An + 5 Ann	L	-503.5	-32.53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 4 Ann + 3 Cni + Ms + 3 aqtz		12.0	0.24
4 $288 \text{ W} + 115 \text{ Phl} + 123$	Alm = 115 Ann + 69 Chl + 117 aQtz +	6 St	8957.8	626.38
5 Ms + Grs + Alm = Ann	+ 3 An		132.2	7.50
$6 \qquad 3 \text{ aQtz} + 5 \text{ Ms} + 4 \text{ Grs}$	+ 3 Chl = 12 An + 5 Phl + 12 W		157.7	4.95
7 12 W + 5 Prp + Grs = 3 8 6 St + 45 oOtz + 5 Ph	3 An + 3 Chl + 3 aQtz	Chl	-443.5	-31.36
3 0 St + 45 aQtz + 5 Fm = 0 9 180 W + 6 St + 80 Ph = 0	+ 24 Grs = 5 Alm + 5 Alm + 72 Alm + 5 Alm + 72 Alm + 30 Grs + 72 Alm - 80 Anm + 117 Am	± 48 Cbl	10678.2	642 48
10 23 Grs + 48 aQtz + 6 St	h = 12 W + 69 An + 8 Alm	1 40 011	2622.4	121.92
11 36 W + 30 St + 216 aQt	z + 40 Phl + 123 Grs = 40 Ann + 369 Ann	n + 24 Chl	-17140.1	-869.88
12 Alm $+$ 3 Chl $+$ Ms $+$ 3 a	aQtz = 12 W + 5 Prp + Ann		311.2	23.86
13 12 W + 4 Prp + PhI = 3 14 27 Alm + 2 ChI + 24 Me	3 Chl + Ms + 3 aQtz		323.2	24.09
14 27 Ann + 3 Chi + 24 Ms 15 $41 \text{ Ann} + 48 \text{ Chl} + 39 \text{ Ms}$	S = 0.5t + 45 aQt2 + 5.1 m + 19 Am Is = 180 W + 6 St + 80 Phl + 33 Alm		-5520.7	-350 10
16 12 W + 23 Ms + 31 Alm	a = 23 Ann + 48 aQtz + 6 St		419.2	50.51
17 32 Ann $+$ 93 Chl $+$ 123	Ms = 324 W + 24 St + 99 aQtz + 155 P	hl	9831.7	574.14
18 32 Alm + 69 Chl + 115	Ms = 228 W + 24 St + 123 aQtz + 115 I	Phl	6861.8	373.83
19 288 W + 115 Prp + 8 A	m = 69 Chl + 117 aQtz + 6 St		7577.1	599.24
20 $288 \text{ W} + 123 \text{ Prp} + 8 \text{ As}$ 21 $\text{Prp} + \text{Ms} + \text{Grs} - 3 \text{ Ap}$	nn = 69 Cnl + 8 Pnl + 117 aQtz + 6 St $+ Phl$		120.2	597.30 7.26
21 fr p + ms + Grs = 0 ms 22 6 St + 45 aOtz + 5 Ph	+ 3 Ms + 27 Grs = 8 Ann + 81 An + 3 Grs	Chl	3522.7	176.95
23 6 St + 45 aQtz + 5 Phl	+ 19 Grs = 8 Alm + 57 An + 3 Chl + 5	Ms	2464.7	116.97
24 = 8 Ann + 48 Chl + 33 Gr	s + 72 Ms = 180 W + 6 St + 80 Phl + 9	99 An	1156.6	102.70
25 8 Alm + 48 Chl + 41 Gr	s + 80 Ms = 180 W + 6 St + 80 Phl + 1	.23 An	98.7	42.72
26 31 Grs + 8 Ms + 48 aQt	z + 6 St = 12 W + 93 An + 8 Ann + 24 Cra = 8 Alm + 72 An + 2 Chl		3680.4	181.90
27 = 0.51 + 45 aQtz + 5 Frp 28 = 24 Grs + 8 Phl + 45 aQt	+ 24 Grs = 8 Alm + 72 An + 3 Cm z + 6 St = 3 Prp + 3 Chl + 72 An + 8	Ann	-3161.9	-155.26
29 $180 \text{ W} + 6 \text{ St} + 80 \text{ Prp}$	+ 39 Grs = 8 Alm + 117 An + 48 Chl		-9717.7	-623.60
30 180 W + 6 St + 72 Prp	+ 8 Phl + 39 Grs = 8 Ann + 117 An + 4	l8 Chl	-9813.8	-625.49
31 6 St + 48 aQtz + 8 Phl	+ 23 Grs = 8 Ann + 69 An + 8 Prp + 12	2 W	-2718.5	-123.81
32 32 Alm + 3 Chl + 24 Ms 33 8 Ann + 2 Chl + 24 Ms	s = 6 St + 45 aQtz + 5 Prp + 24 Ann + 27 Prp = 6 St + 45 aQtz + 22 Pb1		108.0	26.65
33 0 Ann + 3 Chi + 24 Ms 34 8 Alm + 3 Chl + 24 Ms	+ 27 rrp = 0 St + 45 aQtz + 32 Ph + 19 Prp = 6 St + 45 aOtz + 24 Ph		-180.2	20.99
$35 47 ext{ Alm} + 48 ext{ Chl} + 39 ext{ Nl}$	Is = 180 W + 6 St + 80 Prp + 39 Ann		-4560.2	-331.22
36 8 Ann + 48 Chl + 39 Ms	s = 180 W + 6 St + 33 Prp + 47 Phl		5124.5	342.31
37 = 8 Alm + 48 Chl + 39 Ms	s = 180 W + 6 St + 41 Prp + 39 Phl		5028.4	340.42
38 8 Ann + 155 Prp + 384 39 8 Ann + 23 Me \pm 21 P	W = 6 St + 141 aQtz + 8 Ms + 93 Chl h + 12 W = 6 St + 48 aOtz + 31 Ph		-10066.8 47 0	-790.11
40 8 Alm + 23 Ms + 31 Fr	p + 12 W = 0.5t + 48 aOtz + 31 Pm p + 12 W = 6 St + 48 aOtz + 23 Ph		-143.1	-45.08
41 $6 \text{ St} + 45 \text{ aQtz} + 5 \text{ Prp}$	+ 8 Ms + 32 Grs = 8 Ann + 96 An + 3	Chl	4123.8	213.25
42 $180 \text{ W} + 6 \text{ St} + 80 \text{ Prp}$	+ 8 Ms + 47 Grs = 8 Ann + 141 An + 4	8 Chl	-10775.7	-683.58

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 8.6: Kl98: (a) trockenes System, (b) alle Reaktionen; (d) Kl285: trockenes System

Kapitel 9

Lukmaniergebiet

9.1 25: Metapelit

In dieser Probe zeigt der Granat zwar eine Zonierung, diese ist allerdings völlig unsystematisch. (Nur in einem Granatkorn zeigt die Pyropkomponente eine starke Zunahme gegen den Rand; alle anderen Komponenten schwanken völlig unsystematisch innerhalb eines Kornes.) Der An-Gehalt im Plagioklas schwankt von 15.5% im Kern bis 20.5% am Rand. Alle anderen Mineralien sind nicht zoniert. Deshalb wird mit dem Durchschnitt der Granatanalysen gerechnet, und die Plagioklaskern- und Plagioklasrandanalysen werden getrennt behandelt. Im wasserfreien System resultieren je 3 linear unabhängige Reaktionen. Reaktion 2 liegt abseits, weist aber auch die kleinsten ΔS - und ΔV -Werte auf und fällt bei der Berechnung des gewichteten Mittels nicht ins Gewicht. Es ergibt sich eine Druckerniedrigung von 8630 bar (mit der Plagioklaskernanalyse) auf 7550 bar (mit der Randanalyse) bei gleichbleibenden Temperaturen von 557 °C.

Im wasserhaltigen System wird bei einem X_{H_2O} von 0.68 die beste Konvergenz der Gleichgewichte erreicht (vgl. Fig. 9.1 und Tab. 9.1).

Reaktionen mit Chlorit streuen weit. Chlorit scheint ein retrogrades Produkt zu sein.

9.2 12: Metapelit

In dieser Probe zeigt sowohl Granat als auch Plagioklas einen deutlichen chemischen Zonarbau. Almandin- und Pyropkonzentrationen sind gegenläufig: die Kerne sind almandinreich und pyroparm, die Ränder pyropreich und almandinarm. Es lässt sich eine Zunahme der Grossularkomponente gegen den Rand beobachten. In den Plagioklasen nimmt die Anorthitkomponente vom Zentrum gegen den Rand hin zu.

Es wurden Gleichgewichtsberechnungen für die Bereiche Granatkern/Plagioklaskern und Granatrand/Plagioklasrand vorgenommen. Die Kerne ergeben tiefere Werte ($464 \,^{\circ}C/7621$ bar) als die Ränder ($527 \,^{\circ}C/7793$ bar).

Chlorit ist nicht im Gleichgewicht mit den anderen Mineralien (Gleichgewichte mit Chlorit streuen weit!) und ist wohl sekundär entstanden.

Bei einem X_{H_2O} von 0.31 bzw. 0.54 konvergieren auch wasserhaltige Reaktionen für die Kerne bzw. Ränder (vgl. Fig. 9.2 c und f).

Fig. 9.1: 25: Granatdurchschnitt und Plagioklaskerne (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; (c) T- X_{CO_2} Diagramm bei 8700 bar; Granatdurchschnitt und Plagioklasränder (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

Probe:	25, Metapelit			
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Chl-Opk	x-Gr		
a) benutzte Paragenese:	Grt-Bt-Ms-Pl-Kv-Qtz	-		
Resultat:	alle Schnittpunkte	560 ± 23 °C	8810	$\pm 451 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$556 \pm 1 \ ^{\circ}\mathrm{C}$	8661	\pm 91 bar
	winkelgewichtet	$556^{\circ}C$	86701	bar
	$\Delta S, \Delta V$ -gewichtet	$568^{\circ}C$	8916	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$556^{\circ}C$	86251	bar
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O			
Resultat:	alle Schnittpunkte	$558 \pm 7 \ ^{\circ}\mathrm{C}$	8698	$\pm 225 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$557 \pm 3 \ ^{\circ}\mathrm{C}$	8689	$\pm 110 \mathrm{bar}$
	winkelgewichtet	$558^{\circ}C$	87141	bar
	$\Delta S, \Delta V$ -gewichtet	$558^{\circ}C$	86601	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$559^{\circ}C$	86981	bar
d) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz			
Resultat:	alle Schnittpunkte	$557 \pm 7 \ ^{\circ}\mathrm{C}$	7876	$\pm 627 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$558 \pm 8 \ ^{\circ}\mathrm{C}$	7780	\pm 571 bar
	winkelgewichtet	$558^{\circ}C$	78161	bar
	$\Delta S, \Delta V$ -gewichtet	$559^{\circ}C$	75441	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$560^{\circ}\mathrm{C}$	7558 l	bar
e) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O			
Resultat:	alle Schnittpunkte	563 ± 19 °C	7963	$\pm 696 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$563 \pm 17 \ ^{\circ}\text{C}$	7878	$\pm 610 \mathrm{bar}$
	winkelgewichtet	$569^{\circ}C$	79941	bar
	$\Delta S, \Delta V$ -gewichtet	$564^{\circ}C$	7617	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$575^{\circ}\mathrm{C}$	78291	bar
bisherige P-T-Abschätzung:	Staps-Ohnmacht (1991)	$561^{\circ}\mathrm{C}$	7900 l	bar
Gleichgewichte in Figur 9.1 (3 linear unabhängig)		ΔS_r	ΔV_r
1 Grs + 2 Ky + aQtz = 3	3 An		139.1	6.59
2 Alm + Ms = aQtz + 2	Ky + Ann		-6.8	0.90
3 Phl + Alm = Ann + Pr	rp		12.0	0.24
4 8 Alm + 46 Ky + 12 W	V = 6 St + 25 aQtz		576.6	29.74
5 $\operatorname{Alm} + \operatorname{Grs} + \operatorname{Ms} = 3 A$	n + Ann		132.2	7.50
6 12 W + 96 Ky + 25 Gr	s + 8 Alm = 75 An + 6 St		4053.8	194.59
7 6 St + 48 aQtz + 23 Gr	cs = 8 Alm + 69 An + 12 W		2622.4	121.92
8 Prp + Ms = 2 Ky + Ph	al + aQtz		-18.8	0.67
9 6 St + 25 Ms + 17 Alm	h = 25 Ann + 96 Ky + 12 W		-747.7	-7.17
10 6 St + 17 aQtz + 8 Ms	= 8 Ann + 62 Ky + 12 W		-631.3	-22.52
11 31 Alm $+$ 23 Ms $+$ 12 V	W = 6 St + 48 aQtz + 23 Ann		419.2	50.51
12 8 Ann + 46 Ky + 8 Pr	p + 12 W = 6 St + 25 aQtz + 8 Ph	ıl	480.5	27.85
$13 \Pr + Ms + Grs = 3 \text{ A}$	n + Phl		120.2	7.26
14 12 W + 96 Ky + 17 Gr	s + 8 Ann = 51 An + 8 Ms + 6 St		2995.8	134.62
15 6 St + 48 aQtz + 8 Ms	+ 31 Grs = 8 Ann + 93 An + 12 V	N	3680.4	181.90
16 12 W + 8 Prp + 96 Ky	+ 25 Grs + 8 Ann = 75 An + 8 P	hl + 6 St	3957.8	192.70
17 $6 \text{ St} + 48 \text{ aQtz} + 8 \text{ Phl}$	+ 23 Grs = 8 Ann + 69 An + 8 P	rp + 12 W	2718.5	123.81
18 6 St + 17 Prp + 25 Ms	= 8 Ann + 96 Ky + 17 Phl + 12 V	N	-951.8	-11.18
19 6 St + 25 Prp + 25 Ms	= 8 Alm + 96 Ky + 25 Phl + 12 V	N	-1047.8	-13.07
20 8 Ann + 23 Ms + 31 Pr	rp + 12 W = 6 St + 48 aQtz + 31	Phl	47.0	43.19
21 8 Alm + 23 Ms + 23 Pi	rp + 12 W = 6 St + 48 aQtz + 23	Phl	143.1	45.08
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot b$	ar^{-1}			

Tab. 9.1: Resultate für 25: Granatdurchschnitt und Plagioklas*kerne*: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; Granatdurchschnitt und Plagioklas*ränder*: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

Fig. 9.2: 12: Granat- und Plagioklaskerne (a) wasserkonservierende Reaktionen, (b) alle Reaktionen, (c) T-X_{CO2} Diagramm bei 7620 bar; Granat- und Plagioklasränder (d) wasserkonservierende Reaktionen, (e) alle Reaktionen, (f) T-X_{CO2} Diagramm bei 7790 bar

Decker	10 M-+14+			
Probe:	12, Metapelit	C		
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Chl-Opk	-Gr		
a) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz (Kerne)	455 1 94 04	7 5001	
Resultat:	alle Schnittpunkte	455 ± 34 °C	7201	\pm 803 bar
	ohne kleine Δ 's u. Schnittwinkel	459 ± 31 °C) 7329	\pm 755 bar
	winkelgewichtet	466°C	7448	bar
	$\Delta S, \Delta V$ -gewichtet	$446^{\circ}C$	7135	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$468^{\circ}\mathrm{C}$	7673	bar
b) benutzte Paragenese:	$Grt-Bt-Ms-Pl-Ky-Qtz-St-H_2O$ (Ke	erne)		
Resultat:	alle Schnittpunkte	$465 \pm 27 ^{\circ}\text{C}$	C 7457	\pm 589 bar
	ohne kleine Δ 's u. Schnittwinkel	$467 \pm 13 ^{\circ}$ C	7527	$\pm 425 \mathrm{bar}$
	winkelgewichtet	$466^{\circ}C$	7502 l	bar
	$\Delta S, \Delta V$ -gewichtet	$469^{\circ}\mathrm{C}$	77201	bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$464^{\circ}\mathrm{C}$	7621 l	bar
d) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz (Ränder)			
Resultat:	alle Schnittpunkte	525 ± 42 °C	C 7567	\pm 768 bar
	ohne kleine Δ 's u. Schnittwinkel	$532 \pm 3 \ ^{\circ}\mathrm{C}$	7800	$\pm 213 \mathrm{bar}$
	winkelgewichtet	$532^{\circ}C$	77771	bar
	$\Delta S, \Delta V$ -gewichtet	$512^{\circ}\mathrm{C}$	74151	bar
	winkel- u. ΔS , ΔV -gewichtet	531°C	78791	bar
e) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ Q (Bi	änder)		
Resultat:	alle Schnittpunkte	527 ± 30 °C	7664	$\pm 540 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	530 ± 8 °C	7733	$\pm 278 \mathrm{bar}$
	winkelgewichtet	528°C	77111	bar
	ΔS ΔV -gewichtet	530°C	78711	bar
	winkel- μ , ΔS , ΔV -gewichtet	527°C	77931	bar
bisherige P-T-Abschätzung	Staps-Ohnmacht (1991)	457°C	11001	our
Gleichgewichte in Figur 9.2 (3 linear unabhängig)		ΔS_{-}	ΔV_{π}
$\frac{1}{1} \operatorname{Grs} + 2 \operatorname{Kv} + 2 \operatorname{Otz} = 1$	3 An		139.1	<u>6 59</u>
2 Alm + Ms = aOtz + 2	$K_{V} + A_{nn}$		-6.8	0.90
$\begin{array}{c} 2 \\ 3 \\ \end{array} Phl + Alm - Ann + P \\ \end{array}$	rn		12.0	0.24
$4 = 8 \text{ Alm} \pm 46 \text{ Ky} \pm 12 \text{ W}$	$V = 6 \text{ St} \pm 25 \text{ aOtz}$		576.6	29.74
5 Alm \pm Cre \pm Me $= 3.4$	h = 0.51 + 25 a Q t Z		132.2	7 50
6 12 W \pm 96 Ky \pm 25 Cr	$r_{\rm r} + 8 \text{Alm} = 75 \text{An} \pm 6 \text{St}$		102.2	194 59
7 = 6 St + 48 oOtz + 23 O	$r_{\rm s} = 8 {\rm Alm} + 60 {\rm Am} + 12 {\rm W}$		9699 A	194.09
$9 \text{Prr} + M_0 = 2 K_{rr} + D_0$	$r_{13} = 0$ $r_{111} + 0.0$ $r_{11} + 1.2$ w_{12}		1022.4	0.67
6 FIP + MS = 2 Ky + FI	$11 + a_{VUZ}$		-10.0	0.07
9 0 5t + 25 Ms + 17 Am 10 6 St + 17 oOtz + 8 Ma	r = 25 Ann + 90 Ky + 12 W		-141.1	-1.11
$10 0.51 \pm 17 \text{ a} \text{Q} \text{I} \text{Z} \pm 6 \text{ M} \text{s}$ $11 21 \text{ A} \text{lm} \pm 22 \text{ M} \text{a} \pm 12 \text{ M}$	= 8 Alm + 02 Ky + 12 W N = 6 St + 48 sOts + 22 Amm		-031.3	-22.32
11 31 All $+ 25$ Ms $+ 12$	W = 0.51 + 48 aQ12 + 25 AIII	1	419.2	50.51 97.95
12 8 Ann + 40 Ky + 8 Pr 12 $R_{\rm m}$ + $M_{\rm m}$ + $C_{\rm m}$ - 2 A	p + 12 W = 0 St + 25 aQtz + 8 Pt	11	480.0	27.85
13 $Prp + Ms + Grs = 3 A$	n + Pni		120.2	124.60
14 12 W + 96 Ky + 17 Gr	s + 8 Ann = 51 An + 8 Ms + 6 St	X 7	2995.8	134.02
$10 ext{ 0 St} + 48 ext{ aQtz} + 8 ext{ Ms}$	+ 31 Grs = 8 Ann + 93 An + 12 V		3080.4	181.90
16 12 W + 8 Prp + 96 Ky	+ 25 Grs + 8 Ann = 75 An + 8 P	nl + 6 St	3957.8	192.70
$17 6 ext{ St} + 48 ext{ aQtz} + 8 ext{ Ph}$	1 + 23 Grs = 8 Ann + 69 An + 8 P	rp + 12 W	2718.5	123.81
18 $6 \text{ St} + 17 \text{ Prp} + 25 \text{ Ms}$	= 8 Ann + 96 Ky + 17 Phl + 12 V	N	-951.8	-11.18
		* *		
19 6 St + 25 Prp + 25 Ms	= 8 Alm + 96 Ky + 25 Phl + 12 V	N	-1047.8	-13.07
$\begin{array}{rrrr} 19 & 6 \ \mathrm{St} + 25 \ \mathrm{Prp} + 25 \ \mathrm{Ms} \\ 20 & 8 \ \mathrm{Ann} + 23 \ \mathrm{Ms} + 31 \ \mathrm{P} \\ \end{array}$	= 8 Alm + 96 Ky + 25 Phl + 12 V rp + 12 W = 6 St + 48 aQtz + 31	V Phl	-1047.8 47.0	-13.07 43.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 8 Alm + 96 Ky + 25 Phl + 12 V rp + 12 W = 6 St + 48 aQtz + 31 rp + 12 W = 6 St + 48 aQtz + 23	V Phl Phl	-1047.8 47.0 143.1	-13.07 43.19 45.08

Tab. 9.2: Resultate für 12: Granat- und Plagioklaskerne (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; Granat- und Plagioklasränder (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

9.3 TT513: Granat-Glimmerschiefer

In dieser Probe liegen schwach zonierte Granate vor. Die Kerne weisen etwas höhere Grossular- und Spessartingehalte, dafür aber leicht tiefere Pyrop- und Almandingehalte auf als die Ränder.

Wie in Probe 12 (vgl. Kapitel 9.2) ergeben sich für die Kerne der Granate tiefere P-T-Werte (590 °C/6430 bar) als für die Ränder (634 °C/6660 bar).

Das X_{H_2O} steigt dabei von 0.78 auf 0.94 an, wie aus Figur 9.3 c und f ersichtlich ist. Chlorit ist in beiden Fällen nicht mit den anderen Mineralien im Gleichgewicht und ist wohl retrograd entstanden.

Probe:	TT513, Granat-Glimmerschie	efer		
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Hbl-Chl-Tur-Ap-Ep-Ilm			
a) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz (Kerne)			
Resultat:	alle Schnittpunkte	581 \pm 40 $^{\circ}\mathrm{C}$	6131 ± 63	57 bar
	ohne kleine Δ 's u. Schnittwinkel	$594 \pm 2 \ ^{\circ}\mathrm{C}$	6409 ± 13	58 bar
	winkelgewichtet	$594^{\circ}\mathrm{C}$	$6400\mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$569^{\circ}\mathrm{C}$	$5994\mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$594^{\circ}\mathrm{C}$	$6470\mathrm{bar}$	
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O (K	erne)		
Resultat:	alle Schnittpunkte	$592 \pm 13 \ ^{\circ}\mathrm{C}$	6344 ± 23	$85\mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$593 \pm 7 \ ^{\circ}\mathrm{C}$	6369 ± 20	$05\mathrm{bar}$
	winkelgewichtet	$592^{\circ}\mathrm{C}$	$6361\mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$593^{\circ}\mathrm{C}$	$6479\mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$590^{\circ}\mathrm{C}$	$6431\mathrm{bar}$	
d) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz (Ränder)			
Resultat:	alle Schnittpunkte	617 ± 30 °C	6622 ± 42	20 bar
	ohne kleine Δ 's u. Schnittwinkel	$625 \pm 4 \ ^{\circ}\mathrm{C}$	$6662 \pm 2'$	79 bar
	winkelgewichtet	$626^{\circ}\mathrm{C}$	$6668 \mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$622^{\circ}\mathrm{C}$	$6514\mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$626^{\circ}\mathrm{C}$	$6547\mathrm{bar}$	
e) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O (Ra	änder)		
Resultat:	alle Schnittpunkte	$628 \pm 17 \ ^{\circ}\mathrm{C}$	6746 ± 4	16 bar
	ohne kleine Δ 's u. Schnittwinkel	627 ± 10 $^{\circ}\mathrm{C}$	6726 ± 32	$23\mathrm{bar}$
	winkelgewichtet	$631^{\circ}\mathrm{C}$	$6776\mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$628^{\circ}\mathrm{C}$	$6550\mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$634^{\circ}\mathrm{C}$	$6659\mathrm{bar}$	
Gleichgewichte in Figur 9	0.3 (3 linear unabhängig)		ΔS_r	ΔV_r
1 $Grs + 2 Ky + aQtz$	z = 3 An		139.1	6.59
2 Alm + Ms = aQtz	+ 2 Ky + Ann		-6.8	0.90
3 Phl + Alm = Ann	+ Prp		12.0	0.24
4 8 Alm + 46 Ky + 1	12 W = 6 St + 25 aQtz		576.6	29.74
5 $\operatorname{Alm} + \operatorname{Grs} + \operatorname{Ms} =$	= 3 An + Ann		132.2	7.50
6 12 W + 96 Ky + 28	5 Grs + 8 Alm = 75 An + 6 St		4053.8	194.59
7 6 St + 48 aQtz + 2	3 Grs = 8 Alm + 69 An + 12 W		2622.4	121.92
$8 \Pr + Ms = 2 \text{ Ky} -$	+ Phl + aQtz		-18.8	0.67
9 6 St + 25 Ms + 17	Alm = 25 Ann + 96 Ky + 12 W		-747.7	-7.17
10 6 St + 17 aQtz + 8	Ms = 8 Ann + 62 Ky + 12 W		-631.3	-22.52
11 31 Alm $+$ 23 Ms $+$	12 W = 6 St + 48 aQtz + 23 Ann		419.2	50.51
12 8 Ann + 46 Ky + 8	3 Prp + 12 W = 6 St + 25 aQtz + 8	8 Phl	480.5	27.85
13 $Prp + Ms + Grs =$	3 An + Phl		120.2	7.26
14 12 W + 96 Ky + 1'	7 Grs + 8 Ann = 51 An + 8 Ms + 6	5 St	2995.8	134.62
15 6 St + 48 aQtz + 8	Ms + 31 Grs = 8 Ann + 93 An + 93 Grs = 8 Ann + 93 An	12 W	3680.4	181.90
16 12 W + 8 Prp + 96	$5 \text{ Ky} + 25 \text{ Grs} + 8 \text{ Ann} = 75 \text{ An} + 1000 \text{ Grs} + 10000 \text{ Grs} + 100000 \text$	8 Phl + 6 St	3957.8	192.70
17 6 St + 48 aQtz + 8	Phl + 23 Grs = 8 Ann + 69 An +	$8 \operatorname{Prp} + 12 \operatorname{W}$	2718.5	123.81
18 6 St + 17 Prp + 25	Ms = 8 Ann + 96 Ky + 17 Phl +	12 W	-951.8	-11.18
19 6 St + 25 Prp + 25	Ms = 8 Alm + 96 Ky + 25 Phl +	12 W	-1047.8	-13.07
20 8 Ann + 23 Ms + 3	31 Prp + 12 W = 6 St + 48 aQtz +	31 Phl	47.0	43.19
21 8 Alm + 23 Ms + 2	23 Prp + 12 W = 6 St + 48 aQtz +	23 Phl	143.1	45.08

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 9.3: Resultate für TT513: Granatkerne (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; Granatränder (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

Fig. 9.3: TT513: Granatkerne (a) wasserkonservierende Reaktionen, (b) alle Reaktionen, (c) T- X_{CO_2} Diagramm bei 6450 bar; Granatränder (d) wasserkonservierende Reaktionen, (e) alle Reaktionen, (f) T- X_{CO_2} Diagramm bei 6660 bar

9.4 77: Metapelit

Da keine Angaben über Zonierungen der Mineralien verfügbar waren, wurden alle Analysen gemittelt. Es liegt eine gute Konvergenz aller Kurven vor, abgesehen von Reaktion 2, die jedoch die kleinsten ΔS - und ΔV -Werte aufweist.

Obwohl der Hellglimmer einen grossen Paragonitanteil enthält, liegen Gleichgewichte, die Paragonit involvieren, weit abseits, deuten Ungleichgewicht an und wurden deshalb weggelassen.

Auch Chlorit ist nicht im Gleichgewicht mit den anderen Phasen. Es handelt sich wahrscheinlich um sekundären Chlorit (vgl. auch Beschreibungen und Dünnschliffoto S. 28 in STAPS-OHNMACHT, 1991).

Bei einem X_{H_2O} von 0.68 konvergieren auch wasserhaltige Reaktionen (vgl. Fig. 9.4 a-c und Tab. 9.4 a-c).

9.5 NW76: Granat-Glimmer-Gneis

Es sind 6 wasserfreie Reaktionen formulierbar, die sich, abgesehen von Reaktion 2, in einem relativ eng begrenzten Feld schneiden (vgl. Tab. 9.4 d und Fig. 9.4 d); 3 davon sind linear unabhängig. Reaktion 2 weist sehr kleine ΔS - und ΔV -Werte auf, und somit kann ihre Lage sehr stark variieren bei nur sehr kleinen Änderungen der Aktivität oder Zusammensetzung einer der involvierten Phasen.

Bezieht man noch die wasserfreisetzenden Reaktionen in die Berechnung ein, so ändert sich bei einem X_{H_2O} von 0.7 das gewichtete Mittel für P und T nur unwesentlich; die Abseitslage der wasserfreien Reaktion 2 bewirkt jedoch vor allem beim Druck eine sehr grosse Unsicherheit.

Chlorit gehört nicht zur Paragenese und ist wohl retrograd entstanden.

9.6 NW77: Staurolith-Disthen-Granat-Glimmerschiefer

Ohne Staurolithanalyse resultieren nur wasserfreie Reaktionen; davon sind 3 linear unabhängig (vgl. Fig. 9.4 f und Tab. 9.4 f).

Die Drucke sind sehr hoch. Mögliche Gründe dafür sind die von WABER (1986) beschriebene Saussuritisierung und Albitisierung der Plagioklase, die eine Reduktion des Anorthitgehaltes bewirken. Dies führt zu einer Vergrösserung des Stabilitätsfeldes von Anorthit, was sich in einer Verschiebung der Reaktionen 1, 5 und 13 gegen höhere Drucke äussert.

Fig. 9.4: 77: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; (c) T- X_{CO_2} Diagramm bei 7730 bar; NW76: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen; NW77: (f) wasserfreie Reaktionen

a) Probe:	77, Metapelit		
Mineralogie:	Grt- Bt - Pl - Hgl - Qtz - Ky - St - Chl - Gr -	Ilm	
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky		
Resultat:	alle Schnittpunkte	$567 \pm 16 \ ^{\circ}{\rm C}$	$7548 \pm 277 \text{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$567 \pm 16 ^{\circ}\text{C}$	$7592 \pm 271 \mathrm{bar}$
	winkelgewichtet	567°C	7492 bar
	$\Delta S, \Delta V$ -gewichtet	565°C	7608 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	569°C	7678 bar
b) benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky-St-H ₂ O		
Resultat:	alle Schnittpunkte	$574 \pm 23 ^{\circ}\text{C}$	$7607 \pm 577 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	572 ± 11 °C	$7605 \pm 281 \mathrm{bar}$
	winkelgewichtet	570°C	7554 bar
	$\Delta S, \Delta V$ -gewichtet	577°C	7851 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	570°C	7727 bar
bisherige P-T-Abschätzung	: Staps-Ohnmacht (1991)	535-575°C	6700-7500 bar
d) Probe:	NW76, Granat-Glimmer-Gne	is	
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-Ky-St-Chl-Zrn-	-Tur-Ap-Rt-Mag-	Hem-And-Gr-Opk
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky		
Resultat:	alle Schnittpunkte	$565 \pm 24 ^{\circ}\text{C}$	$6865 \pm 1957 \mathrm{bar}$
	onne kleine Δ 's u. Schnittwinkel	$565 \pm 25 \ ^{\circ}C$	$6566 \pm 1778 \mathrm{bar}$
	winkelgewichtet	567°C	6531 bar
	$\Delta S, \Delta V$ -gewichtet	569°C	5812 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	571°C	5835 bar
e) benutzte Paragenese:	Grt-Bt-PI-Ms-Qtz-Ky-St-H ₂ O	FOR 1 0.0	
Resultat:	alle Schnittpunkte	$581 \pm 59 ^{\circ}\text{C}$	$7182 \pm 2032 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	583 ± 60 °C	$6832 \pm 1877 \mathrm{bar}$
	winkelgewichtet	601°C	7068 bar
	$\Delta S, \Delta V$ -gewichtet	587°C	6005 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	618°C	6509 bar
f) Probe:	NW77, Staurolith-Disthen-G	ranat-Glimmer	schiefer
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-Ky-St-Chl-Opk	-Zrn-Tur-Toz-Rt	-Gr-Hem-Ilm-And-A
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky	F40 110 0 C	
Resultat:	alle Schnittpunkte	540 ± 113 °C	7472 ± 2487 bar
	obno kloino A'a n Sobnittminkol	$552 \pm 103 {}^\circ\mathrm{C}$	7873 ± 2349 bar
	onne kienie Δ s u. Schnittwinker	F 000 C	00001
	winkelgewichtet	569°C	8089 bar
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet	569°C 510°C	8089 bar 7314 bar
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet	569°C 510°C 578°C	8089 bar 7314 bar 8862 bar
Gleichgewichte in Figur 9.4	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig)	569°C 510°C 578°C	$\begin{array}{c} 8089 \text{ bar} \\ 7314 \text{ bar} \\ 8862 \text{ bar} \\ \Delta S_r \Delta V_r \end{array}$
$\begin{array}{l} \text{Gleichgewichte in Figur 9.4} \\ 1 \text{Grs} + 2 \text{ Ky} + a \text{Qtz} = \end{array}$	binle klenie Δ 's u. Schnittwinker winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig) = 3 An	569°C 510°C 578°C Δ	$\begin{array}{c} 8089 \text{ bar} \\ 7314 \text{ bar} \\ 8862 \text{ bar} \\ \hline \Delta S_r \Delta V_r \\ \hline 39.1 6.59 \end{array}$
$\begin{array}{l} \mbox{Gleichgewichte in Figur 9.4}\\ \mbox{1} & \mbox{Grs}+2 \ \mbox{Ky}+a\mbox{Qtz}=\\ \mbox{2} & \mbox{Alm}+\mbox{Ms}=a\mbox{Qtz}+\\ \end{array}$	binle klenie Δ 's u. Schnittwinker winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig) = 3 An 2 Ky + Ann	569°C 510°C 578°C <u>2</u>	$ \begin{array}{r} 8089 \text{ bar} \\ 7314 \text{ bar} \\ 8862 \text{ bar} \\ \overline{\Delta S_r \Delta V_r} \\ 39.1 6.59 \\ -6.8 0.90 \\ \end{array} $
$\begin{array}{llllllllllllllllllllllllllllllllllll$	binle klenie Δ 's u. Schnittwinker winkelgewichtet $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig) = 3 An 2 Ky + Ann Prp	569°C 510°C 578°C Δ	
$\begin{array}{c} \mbox{Gleichgewichte in Figur 9.4}\\ \hline 1 & \mbox{Grs}+2 \ \mbox{Ky}+a \mbox{Qtz}=\\ 2 & \mbox{Alm}+M \mbox{s}=a \mbox{Qtz}+\\ 3 & \mbox{Phl}+A \mbox{lm}=A \mbox{nn}+\\ 4 & \mbox{8} \ \mbox{Alm}+46 \ \mbox{Ky}+12 \end{array}$	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz	569°C 510°C 578°C Δ	$\begin{array}{c c} 8089 \text{ bar} \\ \hline 7314 \text{ bar} \\ \hline 8862 \text{ bar} \\ \hline \Delta S_r & \Delta V_r \\ \hline 39.1 & 6.59 \\ \hline -6.8 & 0.90 \\ \hline 12.0 & 0.24 \\ \hline 76.6 & 29.74 \\ \end{array}$
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann	569°C 510°C 578°C 1 1	$\begin{array}{c c} 8089 \text{ bar} \\ \hline 7314 \text{ bar} \\ \hline 8862 \text{ bar} \\ \hline \Delta S_r & \Delta V_r \\ \hline 39.1 & 6.59 \\ \hline -6.8 & 0.90 \\ 12.0 & 0.24 \\ \hline 76.6 & 29.74 \\ \hline 32.2 & 7.50 \\ \end{array}$
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet 4 (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St	569°C 510°C 578°C 1 1 578°C	$\begin{array}{c c} 8089 \text{ bar} \\ \hline 7314 \text{ bar} \\ \hline 8862 \text{ bar} \\ \hline \Delta S_r & \Delta V_r \\ \hline 39.1 & 6.59 \\ \hline -6.8 & 0.90 \\ 12.0 & 0.24 \\ \hline 76.6 & 29.74 \\ \hline 32.2 & 7.50 \\ \hline 53.8 & 194.59 \\ \end{array}$
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W	569°C 510°C 578°C 1 1 578°C 1 40 26	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz	569°C 510°C 578°C 1 1 40 26	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W	569°C 510°C 578°C 1 40 26 -7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W	569°C 510°C 578°C 1 1 40 26 -7 -7 -6	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann	569°C 510°C 578°C 2 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \hline \text{Gleichgewichte in Figur 9.4} \\ \hline 1 & \text{Grs} + 2 \ \text{Ky} + a \text{Qtz} = \\ 2 & \text{Alm} + \text{Ms} = a \text{Qtz} + \\ 3 & \text{Phl} + \text{Alm} = \text{Ann} + \\ 4 & 8 \ \text{Alm} + 46 \ \text{Ky} + 12 \\ 5 & \text{Alm} + \text{Grs} + \text{Ms} = 3 \\ 6 & 12 \ \text{W} + 96 \ \text{Ky} + 25 \ \text{G} \\ 7 & 6 \ \text{St} + 48 \ \text{aQtz} + 23 \\ 8 & \text{Prp} + \text{Ms} = 2 \ \text{Ky} + \\ 9 & 6 \ \text{St} + 25 \ \text{Ms} + 17 \ \text{A} \\ 10 & 6 \ \text{St} + 17 \ \text{aQtz} + 8 \ \text{M} \\ 11 & 31 \ \text{Alm} + 23 \ \text{Ms} + 12 \\ 12 & 8 \ \text{Ann} + 46 \ \text{Ky} + 8 \ \text{F} \\ \end{array} $	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Ph	569°C 510°C 578°C 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c} \hline Gleichgewichte in Figur 9.4\\ \hline 1 & Grs + 2 \ Ky + aQtz = \\ 2 & Alm + Ms = aQtz + \\ 3 & Phl + Alm = Ann + \\ 4 & 8 \ Alm + 46 \ Ky + 12 \\ 5 & Alm + Grs + Ms = 3 \\ 6 & 12 \ W + 96 \ Ky + 25 \ G \\ 7 & 6 \ St + 48 \ aQtz + 23 \\ 8 & Prp + Ms = 2 \ Ky + \\ 9 & 6 \ St + 25 \ Ms + 17 \ A \\ 10 & 6 \ St + 17 \ aQtz + 8 \ M \\ 11 & 31 \ Alm + 23 \ Ms + 12 \\ 12 & 8 \ Ann + 46 \ Ky + 8 \ H \\ 13 & Prp + Ms + Grs = 3 \\ \end{array}$	winkelgewichtet ΔS , ΔV -gewichtet winkel- u. ΔS , ΔV -gewichtet 4 (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Ph An + Phl	569°C 510°C 578°C 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} \hline \text{Gleichgewichte in Figur 9.4} \\ \hline \text{Grs} + 2 \ \text{Ky} + a \ \text{Qtz} = \\ 2 & \text{Alm} + \ \text{Ms} = a \ \text{Qtz} + \\ 3 & \text{Phl} + \ \text{Alm} = \ \text{Ann} + \\ 4 & 8 \ \text{Alm} + 46 \ \text{Ky} + 12 \\ 5 & \text{Alm} + \ \text{Grs} + \ \text{Ms} = 3 \\ 6 & 12 \ \text{W} + 96 \ \text{Ky} + 25 \ \text{G} \\ 7 & 6 \ \text{St} + 48 \ \text{a} \ \text{Qtz} + 23 \\ 8 & \ \text{Prp} + \ \text{Ms} = 2 \ \text{Ky} + \\ 9 & 6 \ \text{St} + 25 \ \text{Ms} + 17 \ \text{A} \\ 10 & 6 \ \text{St} + 17 \ \text{a} \ \text{Qtz} + 8 \ \text{M} \\ 1 & 31 \ \text{Alm} + 23 \ \text{Ms} + 12 \\ 12 & 8 \ \text{Ann} + 46 \ \text{Ky} + 8 \ \text{H} \\ 13 & \ \text{Alm} + 23 \ \text{Ms} + 12 \\ 12 & 8 \ \text{Ann} + 46 \ \text{Ky} + 8 \ \text{H} \\ 3 & \ \text{Prp} + \ \text{Ms} + \ \text{Grs} = 3 \\ 14 & \ 12 \ \text{W} + 96 \ \text{Ky} + 17 \ \text{C} \\ \end{array} $	winkelgewichtet ΔS , ΔV -gewichtet winkel- u. ΔS , ΔV -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz lm = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W $\Delta s = 8 Ann + 62 Ky + 12 W$ $\Delta s = 6 St + 48 aQtz + 23 Ann$ Prp + 12 W = 6 St + 25 aQtz + 8 Ph An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St	569°C 510°C 578°C 2 2 4 4 26 -7 -6 4 4 1 26 -7 -6 4 4 1 26 -7 -6 4 1 -7 -6 -7 -6 -7 -6 -7 -6 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Ph An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St As + 31 Grs = 8 Ann + 93 An + 12 W	569°C 510°C 578°C 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Ph An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St As + 31 Grs = 8 Ann + 93 An + 12 V Sy + 25 Grs + 8 Ann = 75 An + 8 Pi		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Ph An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St As + 31 Grs = 8 Ann + 93 An + 12 V Sy + 25 Grs + 8 Ann = 75 An + 8 Ph Phl + 23 Grs = 8 Ann + 69 An + 8 Ph	$ \begin{array}{r} 569^{\circ}C \\ 510^{\circ}C \\ 578^{\circ}C \\ \end{array} $ $ \begin{array}{r} 24 \\ 40 \\ 26 \\ -7 \\ -6 \\ 41 \\ 26 \\ -7 \\ -6 \\ 41 \\ 26 \\ -7 \\ -6 \\ 41 \\ 26 \\ -7 \\ -6 \\ 41 \\ 11 \\ 29 \\ N \\ 36 \\ hl + 6 \\ St \\ 39 \\ rp + 12 \\ W \\ 27 \\ 27 \\ P $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W (3 S = 8 Ann + 62 Ky + 12 W) (4 S = 8 Ann + 62 Ky + 12 W) (5 S = 8 Ann + 62 Ky + 12 W) (5 S = 8 Ann + 65 St + 25 aQtz + 8 Ph An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St (5 S + 3 Ann = 75 An + 8 Ph As + 31 Grs = 8 Ann + 93 An + 12 V) (5 Y + 25 Grs + 8 Ann = 75 An + 8 Ph H + 23 Grs = 8 Ann + 69 An + 8 Ph (5 S = 8 Ann + 96 Ky + 17 Phl + 12 V)	$\begin{array}{c} 569^{\circ}\mathrm{C} \\ 510^{\circ}\mathrm{C} \\ 578^{\circ}\mathrm{C} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \hline \mbox{Gleichgewichte in Figur 9.4} \\ \hline 1 & \mbox{Grs}+2 \ \mbox{Ky}+a \ \mbox{Qtz}+2 \\ \hline 2 & \mbox{Alm}+Ms=a \ \mbox{Qtz}+3 \\ \hline 3 & \mbox{Phl}+Alm=Ann+4 \\ \hline 4 & \mbox{8 Alm}+46 \ \mbox{Ky}+12 \\ \hline 5 & \mbox{Alm}+Grs+Ms=3 \\ \hline 6 & \mbox{12 W}+96 \ \mbox{Ky}+25 \ \mbox{G} \\ \hline 7 & \mbox{6 St}+48 \ \mbox{a} \ \mbox{Qtz}+23 \\ \hline 8 & \mbox{Prp}+Ms=2 \ \mbox{Ky}+9 \\ \hline 9 & \mbox{6 St}+25 \ \mbox{Ms}+17 \ \mbox{Alm}+23 \ \mbox{Ms}+17 \\ \hline 12 & \mbox{8 Ann}+46 \ \mbox{Ky}+8 \ \mbox{H} \\ \hline 13 & \mbox{Alm}+23 \ \mbox{Ms}+17 \\ \hline 12 & \mbox{8 Ann}+46 \ \mbox{Ky}+8 \ \mbox{H} \\ \hline 13 & \mbox{Prp}+Ms+\ \mbox{Grs}=3 \\ \hline 14 & \mbox{12 W}+96 \ \mbox{Ky}+17 \ \mbox{G} \\ \hline 15 & \mbox{6 St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{M} \\ \hline 12 \ \ \mbox{W}+8 \ \mbox{Prp}+96 \ \mbox{H} \\ \hline 17 & \mbox{6 St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+48 \ \mbox{a} \ \mbox{Qtz}+8 \ \mbox{H} \\ \hline 16 & \mbox{St}+425 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 19 & \mbox{6 St}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{St}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{St}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{Prp}+25 \ \mbox{M} \\ \hline 10 & \mbox{Ct}+25 \ \mbox{R} \\ \hline 10 & \mbox{R}+25 \ $	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Pf An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St Ms + 31 Grs = 8 Ann + 93 An + 12 V Ky + 25 Grs + 8 Ann = 75 An + 8 P Phl + 23 Grs = 8 Ann + 69 An + 8 P As = 8 Ann + 96 Ky + 17 Phl + 12 V Ms = 8 Alm + 96 Ky + 25 Phl + 12 V	$\begin{array}{c} 569^{\circ}\mathrm{C} \\ 510^{\circ}\mathrm{C} \\ 578^{\circ}\mathrm{C} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \hline \mbox{Gleichgewichte in Figur 9.4} \\ \hline 1 & \mbox{Grs}+2 \ {\rm Ky}+{\rm aQtz}= \\ 2 & \mbox{Alm}+{\rm Ms}={\rm aQtz}+ \\ 3 & \mbox{Phl}+{\rm Alm}={\rm Ann}+ \\ 4 & \mbox{8 Alm}+46 \ {\rm Ky}+12 \\ 5 & \mbox{Alm}+{\rm Grs}+{\rm Ms}=3 \\ 6 & \mbox{12 W}+96 \ {\rm Ky}+25 \ {\rm G} \\ 7 & \mbox{6 St}+48 \ {\rm aQtz}+23 \\ 8 & \mbox{Prp}+{\rm Ms}=2 \ {\rm Ky}+ \\ 9 & \mbox{6 St}+25 \ {\rm Ms}+17 \ {\rm A} \\ 10 & \mbox{6 St}+17 \ {\rm aQtz}+8 \ {\rm M} \\ 11 & \mbox{31 Alm}+23 \ {\rm Ms}+12 \\ 12 & \mbox{8 Ann}+46 \ {\rm Ky}+8 \ {\rm F} \\ 13 & \mbox{Prp}+{\rm Ms}+{\rm Grs}=3 \\ 14 & \mbox{12 W}+96 \ {\rm Ky}+17 \ {\rm G} \\ 15 & \mbox{6 St}+48 \ {\rm aQtz}+8 \ {\rm M} \\ 11 & \mbox{12 W}+8 \ {\rm Prp}+96 \ {\rm H} \\ 12 & \mbox{W}+8 \ {\rm Prp}+96 \ {\rm H} \\ 15 & \mbox{6 St}+48 \ {\rm aQtz}+8 \ {\rm H} \\ 16 & \mbox{12 W}+8 \ {\rm Prp}+96 \ {\rm H} \\ 16 & \mbox{12 W}+8 \ {\rm Aprp}+25 \ {\rm M} \\ 18 & \mbox{6 St}+25 \ {\rm Prp}+25 \ {\rm M} \\ 9 & \mbox{6 St}+23 \ {\rm Ms}+31 \\ \end{array}$	winkelgewichtet $\Delta S, \Delta V$ -gewichtet winkel- u. $\Delta S, \Delta V$ -gewichtet (3 linear unabhängig) = 3 An 2 Ky + Ann Prp W = 6 St + 25 aQtz 3 An + Ann Grs + 8 Alm = 75 An + 6 St Grs = 8 Alm + 69 An + 12 W Phl + aQtz Im = 25 Ann + 96 Ky + 12 W As = 8 Ann + 62 Ky + 12 W 2 W = 6 St + 48 aQtz + 23 Ann Prp + 12 W = 6 St + 25 aQtz + 8 Pf An + Phl Grs + 8 Ann = 51 An + 8 Ms + 6 St Ms + 31 Grs = 8 Ann + 93 An + 12 V Ky + 25 Grs + 8 Ann = 75 An + 8 P As = 8 Ann + 96 Ky + 17 Phl + 12 V S = 8 Ann + 96 Ky + 25 Phl + 12 V Ms = 8 Alm + 96 Ky + 25 Phl + 12 V Prp + 12 W = 6 St + 48 aQtz + 31	$\begin{array}{c} 569^{\circ}\mathrm{C} \\ 510^{\circ}\mathrm{C} \\ 578^{\circ}\mathrm{C} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 9.4: 77: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; NW76: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen; NW77: (f) wasserfreie Reaktionen

9.7 TT379: Granat-Glimmerschiefer

Mit den Granatrandanalysen und den Durchschnittsanalysen der restlichen Mineralien ergeben sich im wasserfreien System 3 linear unabhängige Reaktionen, die sich in einem eng begrenzten P-T-Feld schneiden. Reaktion 2 ist der übliche Ausreisser mit den niedrigen ΔS -und ΔV -Werten.

Bei einem X_{H_2O} von 0.7 konvergieren auch wasserführende Reaktionen mit Staurolith (vgl. Fig. 9.5 a-c).

Gleichgewichte mit Chlorit streuen weit; Chlorit gehört offenbar nicht zur Paragenese, ist wohl retrograd entstanden und wurde deshalb aus der Berechnung ausgeschlossen. Obwohl der Hellglimmer einen grossen Paragonitanteil aufweist, musste auch Paragonit aus der Berechnung ausgeschlossen werden, da auch Reaktionen mit Paragonit weit streuen.

Probe:	Probe: TT379, Granat-Glimmerschiefer				
a) Mineralogie:	Grt- Bt - Pl - Hgl - Qtz - Ky - St -Chl-Ilm-Tur				
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky	Grt-Bt-Pl-Ms-Qtz-Ky			
Resultat:	8541 ± 37	72 bar			
	ohne kleine Δ 's u. Schnittwinkel	$574 \pm 23 \ ^{\circ}\mathrm{C}$	8596 ± 37	70 bar	
	winkelgewichtet	$574^{\circ}C$	$8487\mathrm{bar}$		
	$\Delta S, \Delta V$ -gewichtet	$572^{\circ}\mathrm{C}$	$8613\mathrm{bar}$		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$577^{\circ}\mathrm{C}$	$8727 \mathrm{bar}$		
b) benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky-St-H ₂ O				
Resultat:	alle Schnittpunkte	581 ± 16 $^{\circ}\mathrm{C}$	8692 ± 44	$46 \mathrm{bar}$	
	ohne kleine Δ 's u. Schnittwinkel	579 ± 13 °C	8650 ± 32	20 bar	
	winkelgewichtet	$578^{\circ}\mathrm{C}$	$8579\mathrm{bar}$		
	$\Delta S, \Delta V$ -gewichtet	$582^{\circ}\mathrm{C}$	$8851\mathrm{bar}$		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$577^{\circ}\mathrm{C}$	$8735\mathrm{bar}$		
Gleichgewichte in Figur	9.5 a-c (3 linear unabhängig)		ΔS_r	ΔV_r	
1 Grs + 2 Ky + a Qt	z = 3 An		139.1	6.59	
2 Alm + Ms = a Qtz	+ 2 Ky + Ann		-6.8	0.90	
3 Phl + Alm = Ann	+ Prp		12.0	0.24	
4 8 Alm + 46 Ky +	12 W = 6 St + 25 aQtz		576.6	29.74	
5 Alm + Grs + Ms =	= 3 An + Ann		132.2	7.50	
6 12 W + 96 Ky + 25 Grs + 8 Alm = 75 An + 6 St 4053.8				194.59	
7 $6 \text{ St} + 48 \text{ aQtz} + 23 \text{ Grs} = 8 \text{ Alm} + 69 \text{ An} + 12 \text{ W}$			2622.4	121.92	
8 $Prp + Ms = 2 Ky$	+ Phl + aQtz		-18.8	0.67	
9 6 St + 25 Ms + 17	Alm = 25 Ann + 96 Ky + 12 W		-747.7	-7.17	
10 6 St + 17 aQtz + 3	8 Ms = 8 Ann + 62 Ky + 12 W		-631.3	-22.52	
11 31 Alm $+$ 23 Ms $+$	12 W = 6 St + 48 aQtz + 23 Ann		419.2	50.51	
12 8 Ann + 46 Ky +	8 Prp + 12 W = 6 St + 25 aQtz + 8	Phl	480.5	27.85	
13 Prp + Ms + Grs =	$3 \operatorname{An} + \operatorname{Phl}$		120.2	7.26	
14 12 W + 96 Ky + 1	7 Grs + 8 Ann = 51 An + 8 Ms + 6	St	2995.8	134.62	
15 6 St + 48 aQtz + 3	8 Ms + 31 Grs = 8 Ann + 93 An + 3	12 W	3680.4	181.90	
16 12 W + 8 Prp + 9	6 Ky + 25 Grs + 8 Ann = 75 An + 3	8 Phl + 6 St	3957.8	192.70	
17 6 St + 48 aQtz + 3	8 Phl + 23 Grs = 8 Ann + 69 An + 69	$8 \operatorname{Prp} + 12 \operatorname{W}$	2718.5	123.81	
18 6 St + 17 Prp + 28	5 Ms = 8 Ann + 96 Ky + 17 Phl + 1	12 W	-951.8	-11.18	
19 6 St + 25 Prp + 2	5 Ms = 8 Alm + 96 Ky + 25 Phl + 100000000000000000000000000000000000	12 W	-1047.8	-13.07	
20 8 Ann + 23 Ms +	31 Prp + 12 W = 6 St + 48 aQtz +	31 Phl	47.0	43.19	
21 8 Alm + 23 Ms +	23 Prp + 12 W = 6 St + 48 aQtz +	23 Phl	143.1	45.08	
ΔS_r in $J \cdot K^{-1}$; ΔV_r in	$J \cdot bar^{-1}$				

Tab. 9.5: Resultate für TT379: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen

Fig. 9.5: TT379: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; (c) T-X_{CO2} Diagramm bei 8800 bar; TT480: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen, (f) T-X_{CO2} Diagramm bei 6850 bar

9.8 TT480: Granat-Glimmerschiefer

Mit den Kernmessungen der Granate und den Durchschnittsanalysen der restlichen Mineralien resultieren im wasserfreien System 3 linear unabhängige Reaktionen. Gleichgewichte mit Chlorit und Wasser konvergieren bei einem X_{H_2O} von 0.71 (vgl. Fig. 9.5 d-f).

Probe:	TT480, Granat-Glimmerschiefer				
Mineralogie:	Grt-Bt-Pl-Hgl-Qtz-Ky-Chl-Czo-Ilm-Rt-Tur				
d) benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky				
Resultat:	alle Schnittpunkte	546 \pm 34 °C	6589 :	\pm 596 bar	
	ohne kleine Δ 's u. Schnittwinkel	556 \pm 2 °C	6830	$\pm 149 \mathrm{bar}$	
	winkelgewichtet	$556^{\circ}\mathrm{C}$	6820 ł	bar	
	$\Delta S, \Delta V$ -gewichtet	$535^{\circ}\mathrm{C}$	$6467 \mathrm{k}$	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$555^{\circ}\mathrm{C}$	6888 b	bar	
e) benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky-Chl-H ₂ O				
Resultat:	alle Schnittpunkte	554 ± 10 $^{\circ}\mathrm{C}$	$6785 \pm 251 \mathrm{bar}$		
	ohne kleine Δ 's u. Schnittwinkel	$554\pm3~^{\circ}\mathrm{C}$	6809	$\pm 162 \mathrm{bar}$	
	winkelgewichtet	$555^{\circ}\mathrm{C}$	6824 k	bar	
	$\Delta S, \Delta V$ -gewichtet	$554^{\circ}\mathrm{C}$	6826 k	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$554^{\circ}\mathrm{C}$	$6859 \mathrm{k}$	bar	
Gleichgewichte in Figur	9.5 d-f (3 linear unabhängig)		ΔS_r	ΔV_r	
1 5 Alm + Grs + 5 I	Phl + 12 W = 3 aQtz + 3 Chl + 3 A	n + 5 Ann	503.5	32.53	
2 $12 \text{ W} + 5 \text{ Phl} + 5 \text{ Alm} = 5 \text{ Ann} + 3 \text{ Chl} + 2 \text{ Ky} + 4 \text{ aQtz}$		364.4	25.94		
3 4 Ann + 3 Chl + Ms + 3 aQtz = 12 W + 5 Phl + 4 Alm		-371.2	-25.04		
4 $Phl + Alm = Ann + Py$		12.0	0.24		
5 aQtz + 2 Ky + Gr	s = 3 An		139.1	6.59	
6 12 W + 5 Phl + 6 Ky + 4 Grs + 5 Alm = 5 Ann + 12 An + 3 Chl			920.8	52.32	
7 $Ms + Grs + Alm = Ann + 3 An$			132.2	7.50	
8 3 aQtz + 5 Ms + 4 Grs + 3 Chl = 12 An + 5 Phl + 12 W			157.7	4.95	
9 $12 \text{ W} + 5 \text{ Py} + \text{Grs} = 3 \text{ An} + 3 \text{ Chl} + 3 \text{ aQtz}$		443.5	31.36		
10 Alm + Ms = aQtz	+ 2 Ky + Ann		-6.8	0.90	
11 Ann $+$ 3 Chl $+$ 4 l	Ms = 12 W + 5 Phl + 6 Ky + Alm		-391.8	-22.33	
12 3 Chl + 5 Ms = 12 W + aQtz + 5 Phl + 8 Ky			-398.6	-21.43	
13 3 Chl + 2 Ky + 4	aQtz = 12 W + 5 Py		-304.4	-24.76	
14 $\operatorname{Alm} + 3 \operatorname{Chl} + \operatorname{Ms} + 3 \operatorname{aQtz} = 12 \operatorname{W} + 5 \operatorname{Py} + \operatorname{Ann}$		-311.2	-23.86		
15 3 Chl + Ms + 3 aQtz = 12 W + 4 Py + Phl			-323.2	-24.09	
16 5 Ms + Grs + 3 Chl = 3 An + 6 Ky + 5 Phl + 12 W			-259.5	-14.83	
17 $12 \text{ W} + 5 \text{ Py} + 6 \text{ Ky} + 4 \text{ Grs} = 12 \text{ An} + 3 \text{ Chl}$		860.7	51.14		
18 $Py + Ms + Grs = 3 An + Phl$			120.2	7.26	
19 $Ms + Py = aQtz + Phl + 2 Ky$		-18.8	0.67		
20 4 Alm + 3 Chl + 4	4 Ms = 12 W + 5 Py + 6 Ky + 4 Ar	n	-331.7	-21.15	
21 3 Chl + 4 Ms = 12	2 W + Py + 4 Phl + 6 Ky		-379.8	-22.09	
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$					

Tab. 9.6: Resultate für TT480: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

9.9 TT416: Granat-Glimmerschiefer

Mit den Durchschnittsanalysen der Mineralien resultieren im wasserfreien System 3 linear unabhängige Reaktionen. Reaktion 10 ist der übliche Ausreisser.

Gleichgewichte mit Chlorit und Wasser konvergieren bei einem \mathbf{X}_{H_2O} von 0.67 (vgl. Fig. 9.6 a-c).

9.10 TT479: Granat-Glimmerschiefer

Mit den Durchschnittsanalysen der Mineralien resultieren im wasserfreien System 3 linear unabhängige Reaktionen. Reaktion 10 ist der übliche Ausreisser.

Gleichgewichte mit Chlorit und Wasser konvergieren bei einem X_{H_2O} von 0.71 (vgl. Fig. 9.6 d-f).

Fig. 9.6: TT416: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; (c) T-X_{CO2} Diagramm bei 6300 bar; TT479: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen, (f) T-X_{CO2} Diagramm bei 7100 bar

a) Probe:	TT416. Granat-Glimmerschie	TT416 Cranat-Climmerschiefer				
Mineralogie:	Grt-Bt-Pl-Hal-Qtz-Ku-Chl-Hbl-Ca	<i>Grt-Bt-Pl-Hal-Otz-Ku-Chl</i> -Hbl-Czo-Cal-Dol-Tur-Rt-Ilm				
benutzte Paragenese:	Grt-Bt-Pl-Ms-Otz-Kv					
Resultat:	alle Schnittpunkte	508 ± 118 °C	5226	$\pm 1776 \rm bar$		
	ohne kleine Δ 's u. Schnittwinkel	562 ± 50 °C	6124	$\pm 673 \mathrm{bar}$		
	winkelgewichtet	555°C	6053	bar		
	$\Delta S, \Delta V$ -gewichtet	471°C	4940	bar		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$549^{\circ}\mathrm{C}$	6263	bar		
b) benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Kv-Chl-H ₂ O					
Resultat:	alle Schnittpunkte	550 \pm 35 $^{\circ}\mathrm{C}$	$5841 \pm 851 \mathrm{bar}$			
	ohne kleine Δ 's u. Schnittwinkel	555 ± 17 °C	$6066 \pm 593 \mathrm{bar}$			
	winkelgewichtet	$555^{\circ}C$	6156	bar		
	$\Delta S, \Delta V$ -gewichtet	$553^{\circ}C$	6073	bar		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$554^{\circ}\mathrm{C}$	6348	bar		
d) Probe:	TT479, Granat-Glimmerschie	fer				
Mineralogie:	Grt-Bt-Pl-Hql-Qtz-Ky-Chl-Czo-Tur-Rt-Ilm					
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky					
Resultat:	alle Schnittpunkte	570 ± 17 °C	8209	$\pm~1466\mathrm{bar}$		
	ohne kleine Δ 's u. Schnittwinkel	$571 \pm 18 \ ^{\circ}\mathrm{C}$	7987	$\pm 1335 \mathrm{bar}$		
	winkelgewichtet	$572^{\circ}\mathrm{C}$	7988	bar		
	$\Delta S, \Delta V$ -gewichtet	$573^{\circ}\mathrm{C}$	7426	bar		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$575^{\circ}\mathrm{C}$	7450	bar		
e) benutzte Paragenese:	$Grt-Bt-Pl-Ms-Qtz-Ky-Chl-H_2O$					
Resultat:	alle Schnittpunkte	554 \pm 17 $^{\circ}\mathrm{C}$	8079	$\pm 1615 \mathrm{bar}$		
	ohne kleine $\Delta \mathbf{\dot{s}}$ u. Schnittwinkel	555 \pm 21 $^{\circ}\mathrm{C}$	$7552\pm1035\mathrm{bar}$			
	winkelgewichtet $553^{\circ}C$		$7427 \mathrm{bar}$			
	$\Delta S, \Delta V$ -gewichtet	$555^{\circ}\mathrm{C}$	7723 bar			
	winkel- u. $\Delta S, \Delta V$ -gewichtet 555° C		7095 bar			
Gleichgewichte in Figur 9.6 (3 linear unabhängig)			ΔS_r	ΔV_r		
1 5 Alm + Grs + 5 Phl + 12 W = 3 aQtz + 3 Chl + 3 An + 5 Ann			503.5	32.53		
2 12 W + 5 Phl + 5 A	AIm = 5 Ann + 3 Chl + 2 Ky + 4 a	aQtz	364.4	25.94		
3 4 Ann + 3 Chl + M	ls + 3 aQtz = 12 W + 5 Phl + 4 A	Im	-371.2	-25.04		
4 $Phl + Alm = Ann -$	4 $Phl + Alm = Ann + Py$			0.24		
5 aQtz + 2 Ky + Grs	= 3 An		139.1	6.59		
6 12 W + 5 Phl + 6 I	Ky + 4 Grs + 5 Alm = 5 Ann + 12	An + 3 Chl	920.8	52.32		
7 Ms + Grs + Alm =	7 $Ms + Grs + Alm = Ann + 3 An$			7.50		
δ 3 aQtz + 5 Ms + 4	8 $3 \text{ aQtz} + 5 \text{ Ms} + 4 \text{ Grs} + 3 \text{ Chl} = 12 \text{ An} + 5 \text{ Phl} + 12 \text{ W}$			4.95		
9 $12 \text{ W} + 5 \text{ Py} + \text{Grs}$	9 12 W + 5 Py + Grs = 3 An + 3 Chl + 3 aQtz		443.5	31.36		
10 Alm + Ms = aQtz - 11 Arm + 2 Chl + 4 M	+ 2 Ky + Ann		-6.8	0.90		
11 Ann $+ 3$ Chl $+ 4$ M	11 Ann + 3 Chi + 4 Ms = 12 W + 5 Phi + 6 Ky + Alm 12 -2 Chi + 5 Mz = 10 W + 5 Chi + 5 Phi + 6 Ky		-391.8	-22.33		
12 3 Chl + 5 Ms = 12 12 $2 \text{ Chl} + 2 \text{ Kee} + 4$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		-398.0	-21.43 24.76		
15 $3 \text{ Oni} + 2 \text{ Ky} + 4 \text{ aUtz} = 12 \text{ W} + 5 \text{ Py}$ 14 $A \text{ Im} + 2 \text{ Ch} + M \text{ a} + 2 \text{ aOtr} = 12 \text{ W} + 5 \text{ Pr}$		-304.4	-24.10			
14 AIM + 3 Chl + Ms + 3 aQtz = 12 W + 5 Py + Ann 15 2 Chl + Ms + 2 aQtz = 12 W + 4 Dz + Dhl			-311.2	-23.80 24.00		
15 $3 \text{ Cni} + \text{Ms} + 3 \text{ aQtz} = 12 \text{ W} + 4 \text{ Py} + \text{Ph}$ 16 $5 \text{ Ma} + \text{Cra} + 2 \text{ Ch} = 2 \text{ Arg} + 6 \text{ Vg} + 5 \text{ Ph} + 12 \text{ W}$			-323.2 250 5	-24.09 14.89		
10 $\exists MS + GrS + \exists Cnl = \exists An + b Ky + \beta Pnl + 12 W$ 17 $\exists 2W + 5P_{W} + 6K_{W} + 4C_{PS} = \exists 2A_{W} + 2C_{Pl}$			-209.0 860.7	-14.00 51.14		
11 12 w + 5 ry + 6 Ky + 4 Grs = 12 An + 3 Chi 18 $P_{W} + M_{C} + Crs = 3 An + Ph$			120.2	01.14 7.96		
10 $\Gamma y + MS + GS = 3 An + \Gamma m$ 10 $M_{S} + P_{V} - 2Otz + Pbl + 2 K_{V}$			120.2	1.20		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		-10.0 331-7	0.07			
20 $4 \text{ Ann} + 5 \text{ On} + 4 \text{ Ms} = 12 \text{ W} + 5 \text{ Fy} + 6 \text{ Ky} + 4 \text{ Ann}$ 21 $3 \text{ Chl} + 4 \text{ Ms} = 12 \text{ W} + \text{Py} + 4 \text{ Phl} + 6 \text{ Ky}$			-351.7	-21.10 -22.00		
ΔS in $L, K^{-1}, \Delta V$ in	$VV \pm 1 y \pm 41 \text{ m} \pm 0 \text{ Ky}$ $I \cdot har^{-1}$		-513.0	-22.03		
$\Delta v_r m v \cdot n , \Delta v_r m $	y 000					

Tab. 9.7: TT416: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; TT479: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen

9.11 TT337: Granat-Glimmerschiefer

In dieser Probe fehlt Disthen. Chloritoid musste ausgeschlossen werden, weil Gleichgewichte mit Chloritoid weit abseits lagen. Trotzdem resultieren 3 linear unabhängige Reaktionen, die ein eng begrenztes P-T-Feld beschreiben.

Reaktionen mit Wasser, Staurolith und Chlorit konvergieren in das gleiche P-T-Feld bei einem X_{H_2O} von 0.68 (vgl. Fig. 9.7 a-c und Tab. 9.10 a,b). 4 Reaktionen sind dann linear unabhängig.

9.12 38: Metapelit

Der Anorthitgehalt im Plagioklas ist relativ gering, in dieser Probe jedoch etwas höher als in 133 (STAPS-OHNMACHT [1991] weist eine kontinuierliche Zunahme des An-Gehaltes von Norden nach Süden nach). Die Plagioklase zeigen eine Zunahme des Anorthitgehaltes vom Kern gegen den Rand.

Mit der Plagioklas-Randanalyse (maximaler An-Gehalt) und den Durchschnittsanalysen der restlichen Mineralien resultieren im wasserfreien System 4 linear unabhängige Reaktionen, die sich in einem eng begrenzten P-T-Feld schneiden. Der Druck ist allerdings sehr hoch: 9350 bar bei 560 °C (STAPS-OHNMACHT [1991] erhält 10'100-13'800 bar, je nach angenommener Temperatur). Man beachte, dass Reaktion 10 zwei Äste aufweist.

Bei einem X_{H_2O} von 0.68 verlaufen auch wasserführende Gleichgewichte durch das P-T-Feld, das von den wasserfreien beschrieben wird. 5 Gleichgewichte sind jetzt linear unabhängig (vgl. Fig. 9.7 d-f und Tab. 9.9 und 9.8).

d) Probe:	38, Metapelit		
Mineralogie:	Grt- Bt - Ms - Pl - St - Chl - Qtz - Ky - Gr		
benutzte Paragenese:	Grt-Bt-Ms-Pl-St-Chl-Qtz-Ky		
Resultat:	alle Schnittpunkte	557 \pm 38 $^{\circ}\mathrm{C}$	$9123\pm874\mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	564 ± 17 $^{\circ}\mathrm{C}$	$9287 \pm 421 \mathrm{bar}$
	winkelgewichtet	$565^{\circ}\mathrm{C}$	9261 bar
	$\Delta S, \Delta V$ -gewichtet	$560^{\circ}\mathrm{C}$	9371 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$560^{\circ}\mathrm{C}$	$9350\mathrm{bar}$
e) benutzte Paragenese:	Grt-Bt-Ms-Pl-St-Chl-Qtz-Ky-H ₂ O		
Resultat:	alle Schnittpunkte	561 ± 19 °C	$9311 \pm 609 \mathrm{bar}$
	ohne kleine Δ 's u. Schnittwinkel	$562\pm9~^{\circ}\mathrm{C}$	$9314 \pm 295 \mathrm{bar}$
	winkelgewichtet	$563^{\circ}\mathrm{C}$	9277 bar
	$\Delta S, \Delta V$ -gewichtet	$561^{\circ}\mathrm{C}$	9361 bar
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$561^{\circ}\mathrm{C}$	9382 bar
bisherige P-T-Abschätzung:	Staps-Ohnmacht (1991)	$450-540^{\circ}\mathrm{C}$	10'100-13'800 bar

Tab. 9.8: Resultate für 38: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen
Glei	chgewichte in Figur 9.7 d-f (4 linear unabhängig)	ΔS_r	ΔV_r
1	5 Alm + Grs + 5 Phl + 12 W = 3 aQtz + 3 Chl + 3 An + 5 Ann	503.5	32.53
2	12 W + 5 Phl + 5 Alm = 5 Ann + 3 Chl + 2 Ky + 4 aQtz	364.4	25.94
3	12 W + 5 Phl + 4 Alm = 4 Ann + 3 Chl + Ms + 3 aQtz	371.2	25.04
4 5	PhI + AIm = Ann + Prp 288 W + 115 PhI + 122 Alm = 115 Ann + 60 ChI + 117 pOtz + 6 St	12.0	0.24
5 6	288 W + 113 Fm + 123 Am = 113 Am + 69 Cm + 117 ag(2 + 6 St) 20tz + 2 Ky + Grs - 3 Am	1391.0	6 59
7	12 W + 5 Phl + 6 Kv + 4 Grs + 5 Alm = 5 Ann + 12 An + 3 Chl	920.8	52.32
8	Ms + Grs + Alm = Ann + 3 An	132.2	7.50
9	3 aQtz + 5 Ms + 4 Grs + 3 Chl = 12 An + 5 Phl + 12 W	157.7	4.95
10	12 W + 5 Prp + Grs = 3 An + 3 Chl + 3 aQtz	443.5	31.36
11	6 St + 45 aQtz + 5 Phl + 24 Grs = 3 Alm + 5 Ann + 72 An + 3 Chl	3125.9	154.46
12	180 W + 6 St + 80 Phl + 39 Grs + 72 Alm = 80 Ann + 117 An + 48 Chl	10678.2	642.48
13	23 Grs + 48 aQtz + 0 St = 12 W + 09 An + 8 Aim 36 W + 30 St + 216 $_{2}$ Otz + 40 Pbl + 123 Grs - 40 Ann + 360 An + 24 Cbl	2622.4	121.92
15	Alm + Ms = aQtz + 2 Kv + Ann	-6.8	0.90
16	Ann + 3 Chl + 4 Ms = 12 W + 5 Phl + 6 Ky + Alm	-391.8	-22.33
17	3 Chl + 5 Ms = 12 W + a Qtz + 5 Phl + 8 Ky	-398.6	-21.43
18	12 W + 5 Prp = 3 Chl + 2 Ky + 4 aQtz	304.4	24.76
19	3 Alm + 5 Ann + 3 Chl + 48 Ky = 6 St + 21 aQtz + 5 Phl	212.2	3.80
20	252 W + 24 St + 125 Phl + 93 Alm = 125 Ann + 75 Chl + 234 Ky	6803.6	529.56
21	12 W + 46 Ky + 8 Alm = 25 aQtz + 6 St	576.6	29.74
22	40 Ann + 24 Cni + 240 Ky = 50 W + 50 St + 95 aQtz + 40 Fm 4 lm + 3 Chl + Ms + 3 aOtz - 12 W + 5 Prp + Ann	-32.2	-00.02
24	12 W + 4 Prp + Ph = 3 Chl + Ms + 3 aQtz	323.2	24.09
25	27 Alm + 3 Chl + 24 Ms = 6 St + 45 aQtz + 5 Phl + 19 Ann	47.9	25.47
26	41 Ann + 48 Chl + 39 Ms = 180 W + 6 St + 80 Phl + 33 Alm	-5520.7	-350.10
27	12 W + 23 Ms + 31 Alm = 23 Ann + 48 aQtz + 6 St	419.2	50.51
28	32 Ann + 93 Chl + 123 Ms = 324 W + 24 St + 99 aQtz + 155 Phl	-9831.7	-574.14
29	32 Alm + 69 Chl + 115 Ms = 228 W + 24 St + 123 aQtz + 115 Phl	-6861.8	-373.83
30	$288 \text{ W} \pm 123 \text{ Prp} \pm 8 \text{ Ann} = 69 \text{ Chl} \pm 8 \text{ Phl} \pm 117 \text{ aQtz} \pm 6 \text{ St}$	7481.0	599.24
32	5 Ms + Grs + 3 Chl = 3 An + 6 Kv + 5 Phl + 12 W	-259.5	-14.83
33	12 W + 5 Prp + 6 Ky + 4 Grs = 12 An + 3 Chl	860.7	51.14
34	3 Alm + 5 Ann + 3 Chl + 21 Grs + 90 Ky = 6 St + 5 Phl + 63 An	3133.1	142.27
35	12 W + 96 Ky + 25 Grs + 8 Alm = 75 An + 6 St	4053.8	194.59
36	40 Ann + 24 Chl + 93 Grs + 432 Ky = 36 W + 30 St + 40 Phl + 279 An	12903.0	554.42
37	Prp + Ms + Grs = 3 An + Phl	120.2	7.26
38	6 St + 45 aQtz + 5 PhI + 3 Ms + 27 Grs = 8 Ann + 81 An + 3 ChI	3522.7	176.95
39 40	6 St + 45 aQtz + 5 PnI + 19 Grs = 8 AIm + 57 An + 3 CnI + 5 Ms 8 Ann + 48 Chl + 33 Crs + 72 Ms - 180 W + 6 St + 80 Phl + 99 An	2464.7	-102 70
40	8 Alm + 48 Chl + 41 Grs + 80 Ms = 180 W + 6 St + 80 Phl + 123 An	-1150.0	-42.72
42	31 Grs + 8 Ms + 48 aQtz + 6 St = 12 W + 93 An + 8 Ann	3680.4	181.90
43	6 St + 45 aQtz + 5 Prp + 24 Grs = 8 Alm + 72 An + 3 Chl	3065.9	153.28
44	24 Gr s $+$ 8 Phl $+$ 45 a Qtz $+$ 6 St $=$ 3 Prp $+$ 3 Chl $+$ 72 An $+$ 8 Ann	3161.9	155.16
45	180 W + 6 St + 80 Prp + 39 Grs = 8 Alm + 117 An + 48 Chl	9717.7	623.60
46	180 W + 6 St + 72 Prp + 8 Phl + 39 Grs = 8 Ann + 117 An + 48 Chl	9813.8	625.49
47	6 St + 48 aQtz + 8 Phl + 23 Grs = 8 Ann + 69 An + 8 Prp + 12 W	2718.5	123.81
40	A Alm + 3 Chl + 4 Ms - 12 W + 5 Prp + 6 Ky + 4 Ann	-331.7	-21.15
50	3 Chl + 4 Ms = 12 W + Prp + 4 Phl + 6 Ky	-379.8	-22.09
51	6 St + 5 Phl + 21 Ms + 18 Alm = 26 Ann + 3 Chl + 90 Ky	-355.9	15.16
52	8 Ann + 3 Chl + 54 Ky = 6 St + 18 aQtz + 5 Phl + 3 Ms	232.7	1.09
53	8 Alm + 3 Chl + 38 Ky + 5 Ms = 6 St + 26 aQtz + 5 Phl	178.0	8.31
54	17 Alm + 25 Ms + 6 St = 12 W + 96 Ky + 25 Ann	-747.7	-7.17
55	51 ChI + 93 Ms + 6 St = 216 W + 85 PhI + 198 Ky + 8 Ann 6 St + 195 Ms + 75 ChI = 8 Abs + 946 Ks + 195 PhI + 219 W	-7407.8	-386.76
57	6 St + 125 Ms + 75 Cm = 8 Am + 246 Ky + 125 Fm + 512 W 8 Ms + 17 sOtz + 6 St - 12 W + 62 Ky + 8 App	-10542.0	-000.09
58	8 Alm + 3 Chl + 48 Ky = 6 St + 21 aOtz + 5 Prp	272.2	4.98
59	8 Ann + 3 Chl + 48 Ky + 3 Prp = 6 St + 21 aQtz + 8 Phl	176.2	3.09
60	32 Alm + 75 Chl + 234 Ky = 252 W + 24 St + 125 Prp	-5302.8	-500.06
61	252 W + 24 St + 93 Prp + 32 Phl = 32 Ann + 75 Chl + 234 Ky	5687.0	507.61
62	8 Ann + 46 Ky + 8 Prp + 12 W = 6 St + 25 aQtz + 8 Phl	480.5	27.85
63	32 Alm + 3 Chl + 24 Ms = 6 St + 45 aQtz + 5 Prp + 24 Ann	108.0	26.65
64 65	8 Ann + 3 Chi + 24 Ms + 27 Prp = 0 St + 45 aQtz + 32 Phi 8 Alm + 3 Chi + 24 Ms + 10 Prp = 6 St + 45 aQtz + 24 Phi	-270.2	19.10
66	47 Alm + 48 Chl + 39 Ms = 180 W + 6 St + 80 Prp + 39 Ann	-4560.2	-331 22
67	8 Ann + 48 Chl + 39 Ms = 180 W + 6 St + 33 Prp + 47 Phl	-5124.5	-342.31
68	8 Alm + 48 Chl + 39 Ms = 180 W + 6 St + 41 Prp + 39 Phl	-5028.4	-340.42
69	8 Ann + 155 Prp + 384 W = 6 St + 141 a Qtz + 8 Ms + 93 Chl	10066.8	790.11
70	8 Ann + 23 Ms + 31 Prp + 12 W = 6 St + 48 aQtz + 31 Phl	47.0	43.19
71	8 Alm + 23 Ms + 23 Prp + 12 W = 6 St + 48 aQtz + 23 Phl	143.1	45.08
72	8 Ann + 3 Chl + 18 Grs + 90 Ky = 6 St + 5 Phl + 3 Ms + 54 An	2736.3	119.78
13 74	0 Ann + 3 Oni + 20 Grs + 90 Ky + 3 Ms = 0 St + 3 Pni + 78 An $ 8 Ann + 17 Grs + 96 Ky + 12 W - 6 St + 8 Ms + 51 An$	3794.3 2005 8	134 69
75	8 Alm + 3 Chl + 21 Grs + 90 Ky = 6 St + 5 Prb + 63 An	3193.1	143.45
76	3 Prp + 90 Ky + 21 Grs + 3 Chl + 8 Ann = 63 An + 8 Phl + 6 St	3097.0	141.57
77	8 Ann + 25 Grs + 96 Ky + 8 Prp + 12 W = 6 St + 8 Phl + 75 An	3957.8	192.70
78	6 St + 45 aQtz + 5 Prp + 8 Ms + 32 Grs = 8 Ann + 96 An + 3 Chl	4123.8	213.25
79	180 W + 6 St + 80 Prp + 8 Ms + 47 Grs = 8 Ann + 141 An + 48 Chl	10775.7	683.58
80	6 St + 5 Prp + 21 Ms + 13 Alm = 21 Ann + 3 Chl + 90 Ky	-415.9	13.98
81 80	0.51 + 10 Frp + 21 Ms = 8 Ann + 3 Chl + 90 Ky + 13 Phl 6 St + 26 Prp + 21 Ms = 8 Alm + 3 Chl + 00 Ky + 21 Phl	-572.0	10.91
82 83	6 St + 20 FIP + 21 MS = 6 AIII + 3 CIII + 30 Ky + 21 PII 6 St + 13 aOtz + 5 Prp + 8 Ms = 8 Ann + 3 ChI + 64 Ky	-008.1	9.03 2.24
84	156 W + 24 St + 85 Prp + 32 Ms = 32 Ann + 51 Chl + 282 Kv	2648.9	330.87
85	6 St + 17 Prp + 25 Ms = 8 Ann + 96 Ky + 17 Phl + 12 W	-951.8	-11.18
86	6 St + 25 Prp + 25 Ms = 8 Alm + 96 Ky + 25 Phl + 12 W	-1047.8	-13.07
87	8 Ann + 3 Chl + 13 Grs + 90 Ky = 6 St + 5 Prp + 8 Ms + 39 An	-2135.1	-83.48

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 9.9: Reaktionen für 38

Fig. 9.7: TT337: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen; (c) T-X_{CO2} Diagramm bei 6000 bar; 38: (d) wasserkonservierende Reaktionen, (e) alle Reaktionen, (f) T-X_{CO2} Diagramm bei 9380 bar

a) Probe:	TT337, Granat-Glimmerschie	efer		
Mineralogie:	Grt-Bt-Ms-Pl-Qtz-St-Chl-Cld-Tur-Ap-Ep-Ilm-Opk			
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-St-Chl			
Resultat:	alle Schnittpunkte	543 \pm 84 $^{\circ}\mathrm{C}$	6107 ± 1610 bar	
	ohne kleine Δ 's u. Schnittwinkel	543 \pm 21 $^{\circ}\mathrm{C}$	$6124\pm529\mathrm{bar}$	
	winkelgewichtet	$542^{\circ}\mathrm{C}$	$6085\mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$553^{\circ}\mathrm{C}$	$6132 \mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$547^{\circ}\mathrm{C}$	6006 bar	
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-St-Chl-H ₂ O			_
Resultat:	alle Schnittpunkte	$543 \pm 28 \ ^{\circ}\mathrm{C}$	$6110\pm678\mathrm{bar}$	
	ohne kleine Δ 's u. Schnittwinkel	$543 \pm 11 \ ^\circ\mathrm{C}$	$6121 \pm 434 \mathrm{bar}$	
	winkelgewichtet	$544^{\circ}\mathrm{C}$	$6149\mathrm{bar}$	
	$\Delta S, \Delta V$ -gewichtet	$543^{\circ}\mathrm{C}$	$6024 \mathrm{bar}$	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$543^{\circ}\mathrm{C}$	5971 bar	
Gleichgewichte in Figur	9.7 a-c (3 linear unabhängig)		ΔS_r	ΔV_r
1 5 Alm + Grs + 5 F	Phl + 12 W = 3 aQtz + 3 Chl + 3 A	n + 5 Ann	503.5	5 32.53
2 4 Ann + 3 Chl + N	Ms + 3 aQtz = 12 W + 5 Phl + 4 A	lm	-371.2	2 -25.04
3 Phl + Alm = Ann	+ Prp		12.0	0.24
4 288 W + 115 Phl +	+ 123 Alm = 115 Ann + 69 Chl + 1	17 aQtz + 6 St	8957.8	626.38
5 Ms + Grs + Alm =	= Ann + 3 An		132.2	2 7.50
6 3 aQtz + 5 Ms + 4	Grs + 3 Chl = 12 An + 5 Phl + 12	2 W	157.7	4.95
7 12 W + 5 Prp + G	rs = 3 An + 3 Chl + 3 aQtz		443.5	5 31.36
8 6 St + 45 aQtz + 5	5 Phl + 24 Grs = 3 Alm + 5 Ann +	72 An + 3 Chl	3125.9) 154.46
9 $180 \text{ W} + 6 \text{ St} + 80$	Phl + 39 Grs + 72 Alm = 80 Ann	+ 117 An + 48	Chl 10678.2	2 642.48
10 23 Grs + 48 aQtz -	+ 6 St = 12 W + 69 An + 8 Alm		2622.4	1 121.92
11 $36 \text{ W} + 30 \text{ St} + 21$	6 aQtz + 40 Phl + 123 Grs = 40 Arc	nn + 369 An + 2	24 Chl 17140.1	869.88
12 $\operatorname{Alm} + 3 \operatorname{Chl} + \operatorname{Ms}$	a + 3 aQtz = 12 W + 5 Prp + Ann		-311.2	2 -23.86
13 3 Chl + Ms + 3 aC	Qtz = 12 W + 4 Prp + Phl		-323.2	2 -24.09
14 27 Alm + 3 Chl +	24 Ms = 6 St + 45 a Qtz + 5 Phl +	19 Ann	47.9	25.47
15 41 Ann + 48 Chl +	-39 Ms = 180 W + 6 St + 80 Phl +	- 33 Alm	-5520.7	-350.10
16 12 W + 23 Ms + 3	1 Alm = 23 Ann + 48 aQtz + 6 St		419.2	2 50.51
17 32 Ann $+$ 93 Chl $+$	-123 Ms = 324 W + 24 St + 99 aQ	tz + 155 Phl	-9831.7	-574.14
18 32 Alm + 69 Chl +	-115 Ms = 228 W + 24 St + 123 ac	Qtz + 115 Phl	-6861.8	3 -373.83
19 69 Chl + 117 aQtz	+ 6 St = 288 W + 115 Prp + 8 Alm	n	-7577.1	-599.24
20 69 Chl + 8 Phl + 1	117 aQtz + 6 St = 288 W + 123 Prp	0 + 8 Ann	-7481.0) -597.36
21 Prp + Ms + Grs =	$3 \operatorname{An} + \operatorname{Phl}$		120.2	2 7.26
22 $6 \text{ St} + 45 \text{ aQtz} + 5$	5 Phl + 3 Ms + 27 Grs = 8 Ann + 8	31 An + 3 Chl	3522.7	7 176.95
23 $6 \text{ St} + 45 \text{ aQtz} + 5$	5 Phl + 19 Grs = 8 Alm + 57 An +	3 Chl + 5 Ms	2464.7	7 116.97
24 8 Ann + 48 Chl +	33 Grs + 72 Ms = 180 W + 6 St +	80 Phl + 99 An	-1156.6	6 -102.70
25 8 Alm + 48 Chl +	41 Grs + 80 Ms = 180 W + 6 St +	80 Phl + 123 As	n -98.7	-42.72
26 31 Grs $+ 8$ Ms $+ 4$	8 aQtz + 6 St = 12 W + 93 An + 8	3 Ann	3680.4	181.90
27 6 St + 45 aQtz + 5	5 Prp + 24 Grs = 8 Alm + 72 An +	3 Chl	3065.9	153.28
28 24 Grs + 8 Phl + 4	45 aQtz + 6 St = 3 Prp + 3 Chl + 7	72 An + 8 Ann	3161.9	155.16
29 $180 \text{ W} + 6 \text{ St} + 80$	Prp + 39 Grs = 8 Alm + 117 An + 117 A	- 48 Chl	9717.7	623.60
30 180 W + 6 St + 72	$2 \operatorname{Prp} + 8 \operatorname{Phl} + 39 \operatorname{Grs} = 8 \operatorname{Ann} +$	117 An + 48 Ch	1 9813.8	625.49
31 6 St + 48 aQtz + 8	3 Phl + 23 Grs = 8 Ann + 69 An + 69	$8 \operatorname{Prp} + 12 \operatorname{W}$	2718.5	5 123.81
32 32 Alm + 3 Chl +	24 Ms = 6 St + 45 aQtz + 5 Prp +	24 Ann	108.0	26.65
33 8 Ann + 3 Chl + 2	4 Ms + 27 Prp = 6 St + 45 aQtz +	32 Phl	-276.2	2 19.10
34 8 Alm + 3 Chl + 2	4 Ms + 19 Prp = 6 St + 45 aQtz +	24 Phl	-180.2	2 20.99
35 47 Alm + 48 Chl +	-39 Ms = 180 W + 6 St + 80 Prp +	- 39 Ann	-4560.2	2 -331.22
36 8 Ann + 48 Chl + 36 8 Ann + 48 Chl + 36 8	39 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 W + 6 St + 33 Prp + 32 Ms = 180 Ms = 18	47 Phl	-5124.8	-342.31
37 8 Alm + 48 Chl +	39 Ms = 180 W + 6 St + 41 Prp +	39 Phl	-5028.4	-340.42
38 6 St + 141 aQtz + 141	8 Ms + 93 Chl = 8 Ann + 155 Prp	+ 384 W	-10066.8	-790.11
39 8 Ann + 23 Ms + 3	31 Prp + 12 W = 6 St + 48 aQtz + 48 aQtz + 12 W = 6 St + 48 aQtz + 12 W = 6 St + 12 W = 12 W = 12 St + 12 W = 12 W	31 Phl	47.0) 43.19
40 8 Alm + 23 Ms + 2	23 Prp + 12 W = 6 St + 48 aQtz + 48 aQtz + 12 W = 6 St + 48 aQtz + 12 W = 12 W	23 Phl	143.1	45.08
41 6 St + 45 aQtz + 5	Prp + 8 Ms + 32 Grs = 8 Ann + 9	96 An + 3 Chl	4123.8	3 213.25
$\frac{42}{180} + 6 \text{ St} + 80$	$0 \operatorname{Prp} + 8 \operatorname{Ms} + 47 \operatorname{Grs} = 8 \operatorname{Ann} + 1$	141 An + 48 Chl	10775.7	683.58
ΔS_r in $J \cdot K^{-1}$; ΔV_r in	$J \cdot bar^{-1}$			

Tab. 9.10: Resultate für TT337: (a) wasserkonservierende Reaktionen, (b) alle Reaktionen

9.13 133: Metapelit

Der Plagioklas dieser Probe weist einen ausserordentlich geringen Anorthitgehalt auf (1%) und ist womöglich nachträglich albitisiert worden. Verwendet man die Durchschnittsanalysen (keine deutliche Zonierung feststellbar!), so ist klar ersichtlich, dass der Plagioklas mit diesem geringen Anorthitgehalt nicht im Gleichgewicht mit den anderen Phasen steht. Dies trifft auch dann zu, wenn man eine Rand-Analyse mit dem maximalen Anorthit-Gehalt nimmt (1.2% An). Die Gleichgewichte mit Anorthit verschieben sich stark gegen tiefere Temperaturen und damit gegen höhere Drucke (vgl. Fig 9.8).

Obwohl der Hellglimmer eine relativ grosse Paragonitkomponente enthält (ca 25%), liegen Gleichgewichte mit Paragonit weit abseits und deuten Ungleichgewicht an. Ebenso streuen Gleichgewichte mit Chlorit extrem weit.

Einzig das Granat-Biotit-Thermometer scheint ein Resultat zu geben, das etwa dem der umliegenden Proben entspricht (545 °C bei angenommenen 6000 bar).

9.14 NW80: Staurolith-Disthen-Granat-Glimmerschiefer

Mit den zur Verfügung stehenden Analysen lassen sich nur 2 wasserkonservierende Reaktionen berechnen (vgl. Tab. 9.11 b), die sich bei 564 °C und 4793 bar schneiden (vgl. Fig. 9.8 b).

9.15 59: Metapelit

Der Granat dieser Probe ist deutlich zoniert. Die Kerne weisen etwas höhere Grossular- und Spessartingehalte, dafür aber tiefere Pyrop- und Almandingehalte auf als die Ränder. Nur 2 linear unabhängige Reaktionen sind formulierbar (vgl. Fig. 9.8 c und Tab. 9.11 c). Es wurden Granatkern- und Granatrandanalysen unterschieden. Wieder ergeben die Granatränder höhere Werte (573°C/8700 bar) als die Granatkerne (500°C/6757 bar). Der Chlorit ist ein retrogrades Produkt, wie aus einem Dünnschliffoto auf S. 28 der Dissertation von STAPS-OHNMACHT (1991) ersichtlich ist.

9.16 NW142, NW158, NW33, MF1755 und MF1746

Es handelt sich um folgende Gesteine:

NW142: Biotit-Granat-Gneis
NW158: Biotit-Gneis
NW33: Staurolith-Disthen-Granat-Glimmerschiefer
MF1755: Laminierter Schiefer
MF1746: Laminierter Schiefer

Die oben aufgeführten Handstücke konnten nur für die Granat-Biotit-Thermometrie verwendet werden, weil nur Granat- bzw. Biotitanalysen vorhanden sind. Die Druckvorgabe stammt aus P-T-Berechnungen von Gesteinsproben aus der Nähe. Für alle Proben wurden die gleichen Mischungsmodelle verwendet (Granat: BERMAN [1990], Biotit: INDARES and MARTIGNOLE [1985]) (vgl. Tab. 9.11 d und Fig. 9.8 d).

Fig. 9.8: (a) 133, (b) NW80, (c) 59, (d) Granat-Biotit-Temperaturen von NW142, NW158, NW33, MF1755 und MF1746

a) Probe:	133. Metapelit		
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-Ku-St	-Chl-Gr	
benutzte Paragenese:	Grt-Bt-Pl-Ms-Qtz-Ky		
Resultat:		545 °C	6000 bar (Annahme)
bisherige T-Abschätzung:	Staps-Ohnmacht (1991)	$540^{\circ}C$	
b) Probe:	NW80, Staurolith-Dis	sthen-Granat-	Glimmerschiefer
Mineralogie:	Grt-Bt-Pl-Hal-Qtz-Ky-St	-Chl-And-Opk-	Fur-Zrn-Ap-Gr-Hem-Ilm
benutzte Paragenese:	Grt-Bt-Pl-Qtz-Ky		I -
Resultat:	Schnittpunkt	$564 ^{\circ}\mathrm{C}$	4793 bar
c) Probe:	59, Metapelit		
Mineralogie:	, 1	Grt-Bt-	Pl-Hql-Qtz-Ky-St-Chl-Gr
benutzte Paragenese:	Grt-Bt-Pl-Qtz-Ky		5 0 0
Resultat:	Granatkern	$500 \ ^{\circ}\mathrm{C}$	6757 bar
Resultat:	Granatrand	$574 \ ^{\circ}\mathrm{C}$	8700 bar
Resultat:	Mittelwert	544 °C	7910 bar
bisherige P-T-Abschätzung:	Staps-Ohnmacht (1991)	$504-532^{\circ}\mathrm{C}$	7500-7800 bar
d) benutzte Paragenese:	Grt-Bt		
Probe:	NW142, Biotit-Grana	t-Gneis	
Mineralogie:	Grt-Bt-Pl-Ms-Kfs-Qtz-C	hl-Ep-Czo-Cld-(Dpk
Resultat:		574 °C	6000 bar (Annahme)
bisherige T-Abschätzung:	Waber (1986)	$481^{\circ}\mathrm{C}$	
Probe:	NW158, Biotit-Gneis		
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-Hbl-C	hl	
Resultat:	-	618 °C	6000 bar (Annahme)
Probe:	NW33, Staurolith-Dis	sthen-Granat-	Glimmerschiefer
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-St-Ky	-Chl-Gr-Opk-Iln	n-Tur-Hem
Resultat:		591 °C	6000 bar (Annahme)
bisherige T-Abschätzung:	Waber (1986)	$577^{\circ}\mathrm{C}$	
Probe:	MF1755, Laminierter	Schiefer	
Mineralogie:	Grt-Bt-Hgl-Qtz-Czo-Cal-	Dol-Chl-Ilm-Po	-Tur-Gr
Resultat:		566 °C	6000 bar (Annahme)
bisherige T-Abschätzung:	Fischer (1986)	513 \pm 35 $^{\rm o}{\rm C}$	
Probe:	MF1746, Laminierter	Schiefer	
Mineralogie:	Grt-Bt-Hal-Qtz-Czo-Cal-	Chl-Ilm-Po-Tur	-Gr-Opk
Resultat:		576 °C	6000 bar (Annahme)
bisherige T-Abschätzung:	Fischer (1986)	510 \pm 40 $^{\circ}\mathrm{C}$	
Gleichgewichte in Figur 9.8 a	-d (3 linear unabhängig)	$\Delta S_r = \Delta V_r$	
$\frac{3}{1} aQtz + 2 Ky + Grs = 3$	An	139.1 6.59	
2 Alm + Ms = aQtz + 2 H	Ky + Ann	-6.8 0.90	
3 $Phl + Alm = Ann + Pr$	0	12.0 0.24	
4 $Ms + Grs + Alm = Ann$	+3 An	132.2 7.50	
5 $Prp + Ms = 2 Kv + Phl$	+ aQtz	-18.8 0.67	
6 $Prp + Ms + Grs = 3 Ar$	+ Phl	120.2 7.26	

 $\frac{1}{\Delta S_r \text{ in } J \cdot K^{-1}; \ \Delta V_r \text{ in } J \cdot bar^{-1}}{\Delta S_r \text{ in } J \cdot K^{-1}; \ \Delta V_r \text{ in } J \cdot bar^{-1}}$

Tab. 9.11: (a) 133, (b) NW80, (c) 59, (d) NW142, NW158, NW33, MF1755, 1746

9.17 NW79, 121a, 14 und 10

Es handelt sich um folgende Gesteine:

NW79: Staurolith-Disthen-Granat-Glimmerschiefer
121a: Metapelit
14: Metapelit
10: Metapelit

Da in allen diesen Proben die Plagioklasanalyse fehlt, lässt sich kein gutes Barometer formulieren. In den Proben NW79 und 121a resultieren zwar 3 linear unabhängige Reaktionen, die aber nicht alle wasserfrei sind. Die wasserfreien und linear abhängigen (Nr. 1, 2 und 4 in Tabelle 9.12) schneiden sich bei 571 °C und 7040 bar für Probe NW79, resp. bei 526 °C und 4560 bar für Probe 121a. Setzt man $X_{H_2O} = 0.59$ resp. 0.47, so verlaufen auch die wasserführenden Reaktionen durch diesen Punkt (vgl. Fig. 9.9 a und b).

In den Proben 14 und 10 können nur die 3 linear abhängigen, wasserfreien Reaktionen 1, 2 und 4 formuliert werden.

Reaktion 2 (Granat-Biotit-Thermometer) bestimmt die Temperatur.

Fig. 9.9: (a) NW79, (b) 121a, (c) 14, (d) 10

a) Probe:	NW79, Staurolith-Dis	then-Gra	nat-Glimmers	schiefer
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-Ky-St-Chl-And-Zrn-Gr-Opk-Ilm-Tur-Hem-Mnz			
benutzte Paragenese:	Grt-Bt-Ms-Qtz-Ky-St-H ₂	0		
Resultat:	Schnittpunkt	571 $^{\circ}\mathrm{C}$	$7040\mathrm{bar}$	
bisherige T-Abschätzung:	Waber (1986)	$558^{\circ}\mathrm{C}$		
b) Probe:	121a, Metapelit			
Mineralogie:	Grt- Bt - Pl - Hgl - Qtz - St - Ky	-Chl-Gr		
benutzte Paragenese:	$Grt-Bt-Ms-Qtz-St-Ky-H_2$	0		
Resultat:	alle Schnittpunkte	526 °C	$4560\mathrm{bar}$	
c) Probe:	$14, { m Metapelit}$			
Mineralogie:	Grt-Bt-Pl-Ms-Qtz-St-Ky-	-Chl-Gr		
benutzte Paragenese:	Grt-Bt-Ms-Qtz-Ky			
Resultat:	alle Schnittpunkte	$615 \ ^{\circ}\mathrm{C}$	$5593\mathrm{bar}$	
bisherige T-Abschätzung:	Staps-Ohnmacht (1991)	$570^{\circ}\mathrm{C}$		
d) Probe:	10, Metapelit			
Mineralogie:	Grt- Bt - Pl - Hgl - Qtz - St - Ky	-Chl-Gr-Iln	n	
benutzte Paragenese:	Grt-Bt-Ms-Qtz-Ky			
Resultat:	alle Schnittpunkte	504 °C	$7921 \mathrm{bar}$	
bisherige T-Abschätzung: Staps-Ohnmacht (1991) 478°C				
Gleichgewichte in Figur 9.9 (3 linear unabhängig) $\Delta S_r = \Delta V_r$			ΔV_r	
1 Alm + Ms = aQtz +	2 Ky + Ann		-6.8	0.90
2 Phl + Alm = Ann +	Prp		12.0	0.24
3 8 Alm + 46 Ky + 12	W = 6 St + 25 aQtz		576.6	29.74
$4 \Pr + Ms = 2 \text{ Ky} + $	Phl + aQtz		-18.8	0.67
5 6 St + 25 Ms + 17 A	lm = 25 Ann + 96 Ky + 1	2 W	-747.7	-7.17
6 6 St + 17 aQtz + 8 M	As = 8 Ann + 62 Ky + 12	W	-631.3	-22.52
7 $31 \text{ Alm} + 23 \text{ Ms} + 12$	2 W = 6 St + 48 aQtz + 2	3 Ann	419.2	50.51
8 8 Ann + 46 Ky + 8 I	Prp + 12 W = 6 St + 25 a	Qtz + 8 Ph	l 480.5	27.85
9 6 St + 17 Prp + 25 Ms = 8 Ann + 96 Ky + 17 Phl + 12 W -951.8 -11.18			-11.18	
10 6 St + 25 Prp + 25 Ms = 8 Alm + 96 Ky + 25 Phl + 12 W -1047.8 -13.07			-13.07	
11 8 Ann + 23 Ms + 31	Prp + 12 W = 6 St + 48 a	aQtz + 31	Phl 47.0	43.19
12 8 Alm + 23 Ms + 23	Prp + 12 W = 6 St + 48 z	aQtz + 23	Phl 143.1	45.08
ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$				

Tab. 9.12: (a) NW79, (b) 121a, (c) 14, (d) 10

Kapitel 10 Alpe Sponda

10.1 DS7: Granat-Disthen-Staurolith-Glimmerschiefer

Die Analysen der einzelnen Mineralien wurden jeweils gemittelt, da die Mineralien keine nennenswerte Zonierung aufweisen. Die wasserfreien Reaktionen (3 linear unabhängige) schneiden sich in einem sehr kleinen Bereich (Fig. 10.1 a und Tab. 10.2).

Bei einem X_{H_2O} von 0.75 schneiden sich die wasserführenden Reaktionen im gleichen Bereich wie die wasserkonservierenden (vgl. Fig. 10.1 b), wie das T- X_{CO_2} -Diagramm bei 6230 bar bestätigt (vgl. Fig. 10.1 c und d). Der Hellglimmer weist eine relativ hohe Paragonitkomponente auf, weshalb auch Paragonit mit in die Berechnung einbezogen wurde.

Chlorit kann texturell von der Paragenese ausgeschlossen werden (pseudomorph nach Biotit und Staurolith, also wohl retrograd). Die Berechnung bestätigt diese Beobachtung, denn Reaktionen mit Chlorit liegen bei viel tieferen Temperaturen. Ebenso liegen Reaktionen mit Ilmenit bei tieferen Temperaturen.

10.2 DS8: Disthen-Staurolith-Granat-Glimmerschiefer

Abgesehen von Reaktion 2, welche die kleinsten ΔS - und ΔV -Werte aufweist und folglich am empfindlichsten auf kleine Änderungen in der Aktivität oder Zusammensetzung einer involvierten Phase ist (BERMAN, 1991), schneiden sich die wasserkonservierenden Reaktionen (3 linear unabhängige) in einem engen Druck-Temperatur-Bereich (vgl. Fig. 10.1 e und Tab. 10.1).

Bei $X_{H_2O} = 0.75$ verlaufen auch die meisten wasserfreisetzenden Reaktionen durch diesen P-T-Bereich (vgl. Tab. 10.1).

Die linear abhängigen Reaktionen 2, 4, 9, 10 und 11 schneiden sich bei viel höheren Drucken (ca. 7000 bar). Diese Abseitslage ist unabhängig vom X_{H_2O} – Reaktion 2 ist wasserkonservierend und liegt abseits – und muss zurückzuführen sein auf den Chemismus der festen Phasen (Messfehler, Ungleichgewicht aufgrund retrograder Veränderung, Probleme mit den eng verknüpften Aktivitätsmodellen von Almandin und Annit).

Die Paragonitkomponente im Hellglimmer ist relativ klein (1-15%), Ungenauigkeiten bezüglich Paragonit sind folglich gross; Reaktionen mit Paragonit streuen auch dementsprechend weit und wurden hier weggelassen.

Chlorit kann wie bei Probe DS7 (vgl. Kapitel 10.1) texturell von der Paragenese ausgeschlossen werden (retrograd, pseudomorph nach Biotit und Staurolith entstanden). Auch hier bestätigt die Rechnung diese Beobachtung, da Reaktionen mit Chlorit bei viel tieferen

Temperaturen liegen.

Probe: DS8, Disthen-Staurolith-Granat-Glimmerschiefer					
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Ilm-Chl-Ap-Zrn				
e) benutzte Paragenese: Grt-Bt-Ms-Pl-Ky-Qtz					
Resultat:	alle Schnittpunkte	582 ± 10 °C	$5650 \pm 759 \mathrm{bar}$		
	ohne kleine Δ 's u. Schnittwinkel	582 ± 11 °C	5534 ± 69	91 bar	
	winkelgewichtet	$583^{\circ}\mathrm{C}$	$5571 \mathrm{bar}$		
	$\Delta S, \Delta V$ -gewichtet	$584^{\circ}\mathrm{C}$	$5245\mathrm{bar}$		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$585^{\circ}\mathrm{C}$	$5260 \mathrm{bar}$		
f) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O				
Resultat:	alle Schnittpunkte	593 \pm 26 $^{\circ}\mathrm{C}$	5593 ± 97	71 bar	
	ohne kleine Δ 's u. Schnittwinkel	592 ± 22 °C	5679 ± 73	$37\mathrm{bar}$	
	winkelgewichtet	$599^{\circ}\mathrm{C}$	$5775\mathrm{bar}$		
	$\Delta S, \Delta V$ -gewichtet	$595^{\circ}\mathrm{C}$	$5365 \mathrm{bar}$		
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$608^{\circ}\mathrm{C}$	$5580\mathrm{bar}$		
Gleichgewichte in Figur	10.1 e und f (3 linear unabhängig)		ΔS_r	ΔV_r	
1 Grs + 2 Ky + a Qt	z = 3 An		139.1	6.59	
2 Alm + Ms = aQtz	+ 2 Ky + Ann		-6.8	0.90	
3 $Phl + Alm = Ann + Prp$			12.0	0.24	
4 8 Alm + 46 Ky + 12 W = 6 St + 25 aQtz			576.6	29.74	
5 Alm + Grs + Ms =	= 3 An + Ann		132.2	7.50	
6 12 W + 96 Ky + 25 Grs + 8 Alm = 75 An + 6 St			4053.8	194.59	
7 6 St + 48 aQtz + 23 Grs = 8 Alm + 69 An + 12 W 2622.4 121.9			121.92		
8 $Prp + Ms = 2 Ky$	+ Phl + aQtz		-18.8	0.67	
9 6 St + 25 Ms + 17	Alm = 25 Ann + 96 Ky + 12 W		-747.7	-7.17	
10 6 St + 17 aQtz + 3	8 Ms = 8 Ann + 62 Ky + 12 W		-631.3	-22.52	
11 31 Alm $+$ 23 Ms $+$	12 W = 6 St + 48 aQtz + 23 Ann		419.2	50.51	
12 8 Ann + 46 Ky +	8 Prp + 12 W = 6 St + 25 aQtz + 8	8 Phl	480.5	27.85	
13 Prp + Ms + Grs =	$3 \operatorname{An} + \operatorname{Phl}$		120.2	7.26	
14 12 W + 96 Ky + 1	7 Grs + 8 Ann = 51 An + 8 Ms + 6	$5 { m St}$	2995.8	134.62	
15 6 St + 48 aQtz + 3	8 Ms + 31 Grs = 8 Ann + 93 An +	12 W	3680.4	181.90	
16 12 W + 8 Prp + 9	6 Ky + 25 Grs + 8 Ann = 75 An +	8 Phl + 6 St	3957.8	192.70	
17 6 St + 48 aQtz + 3	8 Phl + 23 Grs = 8 Ann + 69 An + 69	$8 \operatorname{Prp} + 12 \operatorname{W}$	2718.5	123.81	
18 6 St + 17 Prp + 28	18 $6 \text{ St} + 17 \text{ Prp} + 25 \text{ Ms} = 8 \text{ Ann} + 96 \text{ Ky} + 17 \text{ Phl} + 12 \text{ W}$ -951.8 -11.18				
19 6 St + 25 Prp + 28	5 Ms = 8 Alm + 96 Ky + 25 Phl + 1000	12 W	-1047.8	-13.07	
20 8 Ann + 23 Ms +	31 Prp + 12 W = 6 St + 48 aQtz +	31 Phl	47.0	43.19	
21 8 Alm + 23 Ms +	23 Prp + 12 W = 6 St + 48 aQtz +	23 Phl	143.1	45.08	
ΔS_r in $J \cdot K^{-1}$; ΔV_r in	ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$				

Tab. 10.1: DS8: (e) wasserkonservierende Reaktionen, (f) sämtliche Reaktionen

Probe:	DS7. Granat-Disthen-Staurolith-	Glimmerso	hiefer	
Mineralogie:	Grt-Bt-Hal-Pl-Ku-Qtz-St-Ilm-Chl-Opk	-Ap-Zrn		
a) benutzte Paragenese:	Grt-Bt-Ms-Pl-Kv-Otz	inp bin		
Resultat:	alle Schnittpunkte 610	$0 + 19 ^{\circ}\text{C}$	6546 +	356 bar
1000010000	ohne kleine Λ 's u Schnittwinkel 60	$1 \pm 1^{\circ}C$	$6358 \pm$	87 bar
	winkelgewichtet 60	1°C	6366 ba	r
	$\Delta S \Delta V$ gowichtet 61	5°C	6604 ba	r
	$\Delta S, \Delta V$ -gewichtet 01	1°C	6201 ba	.u
a) hamutata Danamanaga	$\frac{1}{C_{rt}} \frac{D_{rt}}{D_{rt}} \frac{D_{rt}}{D_{rt$	1.0	0521 Da	ur
C) Denutzte Faragenese.	ollo Sobnittounkto	$0 \pm 20 \circ C$	6947 -	161 har
Resultat:	ane Schnitzpunkte 000	0 ± 20^{-1} C	$0247 \pm$	404 bar 202 har
	onne kleine Δ 's u. Schnittwinkel 599	$9 \pm 13 ^{\circ}\mathrm{C}$	$6222 \pm$	303 bar
	winkelgewichtet 593	8°C	6206 ba	ır
	$\Delta S, \Delta V$ -gewichtet 599	9°C	6258 ba	ır
	winkel- u. $\Delta S, \Delta V$ -gewichtet 59'	7°C	6228 ba	ır
Gleichgewichte in Figur 10.1a	a-d (3 linear unabhängig)		ΔS_r	ΔV_r
$\begin{array}{ccc} 1 & \text{Grs} + 2 & \text{Ky} + a \text{Qtz} = \\ 2 & \text{Alm} + \text{Ms} = a \text{Qtz} + 2 \end{array}$	Kv + Ann		-6.8	0.90
3 $Pg + aQtz = W + Ky$	+ Ab		-12.3	-0.99
4 Phl + Alm = Ann + F	rp		12.0	0.24
5 8 Alm + 46 Ky + 12 V 6 Alm + Cra + Ma = 2	V = 6 St + 25 aQtz		576.6 122.2	29.74
7 W + 3 Ky + Grs + Ab	p = 3 An + Pg		152.2 151.4	7.58
3 aQtz + 2 Pg + Grs =	= 2 Ab + 3 An + 2 W		114.5	4.61
9 12 W + 96 Ky + 25 G	rs + 8 Alm = 75 An + 6 St		4053.8	194.59
10 6 St + 48 aQtz + 23 G 11 Alm + Ms + Pg - W	rs = 8 Alm + 69 An + 12 W $+ 3 Ky + Ann + Ab$		2622.4 _19.2	-0.09
12 $3 aQtz + 2 Pg + Ann$	= 2 Ab + Alm + Ms + 2 W		-17.8	-2.88
13 $Prp + Ms = 2 Ky + P$	hl + aQtz		-18.8	0.67
14 6 St + 25 Ms + 17 Alr	n = 25 Ann + 96 Ky + 12 W		-747.7	-7.17
15 0.5t + 17 aQtz + 8 Ms 16 31 Alm + 23 Ms + 12	S = 8 Ann + 62 Ky + 12 W W = 6 St + 48 aOtz + 23 Ann		-031.3 419.2	-22.52 50.51
17 8 Alm + 34 Ky + 12 F	g = 6 St + 13 aQtz + 12 Ab		428.8	17.86
18 8 Alm + 21 Ky + 25 F	g = 13 W + 6 St + 25 Ab		268.7	4.99
19 8 Alm + 46 Pg + 21 at 20 8 App + 46 Ky + 8 Pr	Qtz = 34 W + 6 St + 46 Ab		10.0	-15.80
20 8 Ann + 40 Ky + 8 F 21 $Prp + Ms + Grs = 3 A$	p + 12 W = 0 St + 25 aQtz + 8 Fm an + Phl		120.2	7.26
22 $12 \text{ W} + 96 \text{ Ky} + 17 \text{ G}$	rs + 8 Ann = 51 An + 8 Ms + 6 St		2995.8	134.62
23 $6 \text{ St} + 48 \text{ aQtz} + 8 \text{ Ms}$	s + 31 Grs = 8 Ann + 93 An + 12 W		3680.4	181.90
24 12 Pg + 60 Ky + 13 G 25 6 St + 30 $_{2}$ Otz + 17 G	rs + 8 Alm = 12 Ab + 39 An + 6 St rs + 12 Ab - 8 Alm + 51 An + 12 Pg		2236.9 1035.7	103.58
$26 20 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 20 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 20 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 6 \text{ St} + 7 \text{ Grs} - 26 \text{ W} + 16 \text$	+ 32 Ab = 8 Alm + 21 An + 32 Pg		791.2	48.10
12 W + 8 Prp + 96 Ky	r + 25 Grs + 8 Ann = 75 An + 8 Phl + 6 St		3957.8	192.70
28 = 6 St + 48 aQtz + 8 Ph	1 + 23 Grs = 8 Ann + 69 An + 8 Prp + 12 W	7	2718.5	123.81
$\begin{array}{ccc} 29 & \text{Prp} + \text{Pg} + \text{Ms} = \text{Ab} \\ 30 & 2 \text{ Pg} + \text{Phl} + 3 \text{ aOtz} = \end{array}$	+ 3 Ky + PnI + W = 2 W + Prp + Ms + 2 Ab		-31.2	-0.32
31 13 Ann + 60 Ky + 12	Pg = 6 St + 13 Ms + 5 Alm + 12 Ab		517.8	6.12
32 8 Ann + 50 Ky + 12 F	g = 6 St + 5 aQtz + 8 Ms + 12 Ab		483.5	10.64
33 25 Alm + 17 Ms + 12 24 8 Arm + 45 Km + 17 T	Pg = 6 St + 30 aQtz + 17 Ann + 12 Ab		312.4	33.21
34 8 Ann + 43 Ky + 17 F 35 15 Alm + 7 Ms + 32 F	g = 5 W + 6 St + 8 Ms + 17 Ab g = 20 W + 6 St + 7 Ann + 32 Ab		$\frac{422.0}{134.5}$	4.38
36 8 Ann + 62 Pg + 45 a	Qtz = 50 W + 6 St + 8 Ms + 62 Ab		-132.3	-38.86
37 6 St + 17 Prp + 25 Ms	s = 8 Ann + 96 Ky + 17 Phl + 12 W		-951.8	-11.18
38 6 St + 25 Prp + 25 Ms 30 8 App + 23 Ms + 31 F	s = 8 Alm + 96 Ky + 25 Phl + 12 W		-1047.8	-13.07
40 8 Alm + 23 Ms + 31 F	rp + 12 W = 6 St + 48 aQt2 + 31 I m rp + 12 W = 6 St + 48 aQt2 + 23 Phl		143.1	45.08
41 8 Ann + 34 Ky + 12 F	g + 8 Prp = 6 St + 13 aQtz + 8 Phl + 12 Ab)	332.7	15.97
42 8 Ann + 21 Ky + 25 F	g + 8 Prp = 13 W + 6 St + 8 Phl + 25 Ab		172.6	3.10
43 8 Ann + 46 Pg + 8 Pr 44 12 Pg + 60 Ky + 5 Gr	p + 21 aQtz = 34 W + 6 St + 8 Phl + 46 Ab s + 8 App - 12 Ab + 15 Ap + 8 Ms + 6 St		-86.0 1179.0	-17.69 43.61
45 6 St + 30 aQtz + 8 Ms	s + 25 Grs + 12 Ab = 8 Ann + 75 An + 12 Ps	g	2993.7	154.21
46 20 W + 6 St + 8 Ms +	15 Grs + 32 Ab = 8 Ann + 45 An + 32 Pg	-	1849.1	108.07
47 8 $Prp + 12 Pg + 60 Kg$	y + 13 Grs + 8 Ann = 12 Ab + 39 An + 8 Ph	l + 6 St	2140.9	101.69
48 $b St + 30 aQtz + 8 Ph$ 49 20 W + 6 St + 8 Ph	1 + 17 Grs + 12 Ab = 8 Ann + 51 An + 12 P -7 Grs + 32 Ab = 8 Ann + 21 Ap + 32 Pg +	rg + 8 Prp 8 Prp	2031.8 887.2	96.12 49.98
$50 = 8 \text{ Ann} + 60 \text{ Ky} + 12 \text{ Fm}^2$	g + 5 Phl = 6 St + 5 Prp + 13 Ms + 12 Ab	orth	577.8	7.30
51 8 Alm + 60 Ky + 12 F	g + 13 Phl = 6 St + 13 Prp + 13 Ms + 12 Al	Ь	673.8	9.19
52 8 Ann + 17 Ms + 12 F	g + 25 Prp = 6 St + 30 aQtz + 25 Phl + 12	Ab	12.3	27.31
33 8 AIM + 17 Ms + 12 F 54 8 Ann + 7 Ms + 32 Po	g + 17 Prp = 0 St + 30 aQtz + 17 Pnl + 12. r + 15 Prp = 20 W + 6 St + 15 Phl + 32 Ab	AD	-45.5	29.20
55 8 Alm + 7 Ms + 32 Pg	+ 7 Prp = 20 W + 6 St + 7 Phl + 32 Ab		50.5	2.73

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 10.2: DS7: (a) wasserkonservierende Reaktionen, (c) sämtliche Reaktionen, Paragonit eingeschlossen

Fig. 10.1: DS7: (a) wasserkonservierende Reaktionen, (b) wasserführende Reaktionen eingeschlossen, ohne Paragonit, (c) sämtliche Reaktionen, Paragonit eingeschlossen (d) $T-X_{CO_2}$ -Diagramm bei 6230 bar; DS8: (e) wasserkonservierende Reaktionen, (f) wasserführende Reaktionen eingeschlossen

10.3 AI349: Cordieritgestein mit Paragonit

Die wasserkonservierenden Reaktionen beschreiben ein eng definiertes P-T-Feld; Reaktion 2 mit den kleinsten ΔS - und ΔV -Werten liegt etwas abseits, fällt aber bei der gewichteten Mittelwertsbildung nicht ins Gewicht (vgl. Tab. 10.3 a und Fig. 10.2 a). Obwohl der Hellglimmer einen grossen Paragonitanteil enthält, musste Paragonit aus der Berechnung ausgeschlossen werden, weil weit streuende Gleichgewichtskurven resultieren, die als Ungleichgewichte gewertet werden.

Bei einem \mathbf{X}_{H_2O} von 0.73 verlaufen auch Gleichgewichte mit Staurolith und H_2O durch diesen Punkt.

10.4 AI405: Granatfels

In dieser Probe fehlt Disthen als Matrixmineral. Trotzdem lassen sich 3 linear unabhängige Reaktionen formulieren, eine davon ist jedoch abhängig von der Zusammensetzung der fluiden Phase und geht bei einem X_{H_2O} von 0.80 genau durch den Schnittpunkt der beiden anderen (vgl. Tab. 10.3 c und Fig. 10.2 c). Der P-T-Punkt wird von den Reaktionen 3 (Granat-Biotit-Thermometer) und 13 bestimmt.

Die Paragonitkomponente ist sehr klein im Hellglimmer; Paragonit wurde deshalb aus der Berechnung ausgeschlossen, ebenso Chlorit, der nur im Granat auf Spaltrissen vorkommt, also retrograd entstanden ist. Disthen liegt nur als Einschluss im Granat vor. Gleichgewichte mit Disthen streuen weit und deuten Ungleichgewicht an.

10.5 AI378: Staurolith-Disthen-Glimmerschiefer

Mit den vorhandenen Analysen lässt sich nur das Granat-Biotit-Thermometer anwenden. Bei einem angenommenen Druck von 6.5 kbar ergibt sich eine Temperatur von 597 °C, was genau dem von IROUSCHEK (1983) angegebenen Wert entspricht.

10.6 AI518: Staurolith-Disthen-Glimmerschiefer mit Sillimanit

Mit den verfügbaren Analysen kann nur das Anorthit-Grossular-Barometer und das Granat-Biotit-Thermometer angewendet werden. Mit Disthen ergibt sich 650 °C/7893 bar, mit Sillimanit 651 °C/8130 bar. Beide Punkte fallen somit ins Stabilitätsfeld des Disthens, liegen jedoch ganz in der Nähe der Disthen-Sillimanit-Reaktion.

Fig. 10.2: AI349: (a) wasserkonservierende Reaktionen, (b) wasserführende Reaktionen eingeschlossen; AI405: (c) sämtliche Reaktionen, $X_{H_2O} = 0.80$ (d) T- X_{CO_2} -Diagramm bei 7090 bar; AI378: (e) Granat-Biotit-Thermometer; AI518: (f) Granat-Biotit-Thermometer und Anorthit-Grossular-Barometer

a) Probe:	a) Probe: AI349, Cordieritgestein mit Paragonit				
Mineralogie:	ineralogie: $Grt-Bt-Hgl-Pl-Ky-Qtz-St-Crd-Chl$				
benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz				
Resultat:	alle Schnittpunkte	$552 \pm 24 ^{\circ}\text{C}$	6616	\pm 399 bar	
	ohne kleine Δ 's u. Schnittwinkel	$553 \pm 24 ^{\circ}\text{C}$	6681	\pm 389 bar	
	winkelgewichtet	$552^{\circ}C$	6543	bar	
	$\Delta S, \Delta V$ -gewichtet	$550^{\circ}C$	6708	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$555^{\circ}C$	6814	bar	
b) benutzte Paragenese:	Grt-Bt-Ms-Pl-Ky-Qtz-St-H ₂ O				
Resultat:	alle Schnittpunkte	$564 \pm 27 \ ^{\circ}\text{C}$	6652	\pm 763 bar	
	ohne kleine Δ 's u. Schnittwinkel	562 ± 19 °C	6726	$\pm 494 \mathrm{bar}$	
	winkelgewichtet	$558^{\circ}C$	6644	bar	
	$\Delta S, \Delta V$ -gewichtet	$569^{\circ}C$	7066	bar	
	winkel- u. $\Delta S, \Delta V$ -gewichtet	$560^{\circ}\mathrm{C}$	6922	bar	
c) Probe:	AI405, Granatfels				
Mineralogie:	Grt-Bt-Hgl-Pl-Qtz-St-Ky-Ap-Chl-	Ep			
benutzte Paragenese:	Grt-Bt-Ms-Pl-Qtz-St-H ₂ O	-			
Resultat:	Schnittpunkt	$593^{\circ}\mathrm{C}$	7089	bar	
bisherige P-T-Abschätzung:	Irouschek (1983)	$470-640^{\circ}C$			
e) Probe:	AI378, Staurolith-Disthen-Gl	immerschief	er		
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Qtz-St-Chl-Ilm-	Rt-Ap-Tur-Gr			
benutzte Paragenese:	Grt-Bt	-			
Resultat:		$597^{\circ}C$	6500	bar (anger	ommen)
bisherige P-T-Abschätzung:	Irouschek (1983)	$595 \pm 27 \ ^{\circ}C$	6800-	9900 bar	
f) Probe:	AI518, Staurolith-Disthen-Gl	immerschief	er mit S	illimanit	
Mineralogie:	Grt-Bt-Ms-Pl-Ky-Sil-Qtz-St				
benutzte Paragenese:	Grt-Bt-Pl-Kv-Qtz				
Resultat:	Schnittpunkt	$650 \ ^{\circ}\mathrm{C}$	7893	bar	
bisherige P-T-Abschätzung:	Irouschek (1983)	$622-655^{\circ}C$	6500-	9000 bar	
Gleichgewichte in Figur 10.2;	a-f (3 linear unabhängig)		ΔS_{r}	ΔV_{π}	
$\frac{1}{1} \operatorname{Grs} + 2 \operatorname{Kv} + a \operatorname{Otz} = 3$	An		139.1	6.59	
2 Alm + Ms = aOtz + 2	Kv + Ann		-6.8	0.90	
3 Phl + Alm = Ann + Pl	rp		12.0	0.24	
4 8 Alm + 46 Kv + 12 W	V = 6 St + 25 aQtz		576.6	29.74	
5 Alm + Grs + Ms = 3 A	n + Ann		132.2	7 50	
6 12 W + 96 Kv + 25 Gr	s + 8 Alm = 75 An + 6 St		4053.8	194 59	
7 = 6 St + 48 aOtz + 23 Gt	rs = 8 Alm + 69 An + 12 W		2622.4	121.00	
8 $Prn + Ms = 2 Kv + Pt$	a = 0 min + 00 min + 12 m		-18.8	0.67	
9 6 St + 25 Ms + 17 Alm	-25 Ann + 96 Ky + 12 W		-747 7	-7.17	
10 6 St + 17 aOtz + 8 Ms	- 8 Ann + 62 Ky + 12 W		-631.3	-92 52	
$11 31 \text{ Alm} \pm 23 \text{ Ms} \pm 12 \text{ Ms}$	N = 6 St + 48 aOtz + 23 Ann		419.2	50.51	
12 8 Ann ± 46 Ky ± 8 Prr	$w = 0.8t + 40.4c_{2}t_{2} + 20.7t_{1}t_{1}$	1	480.5	27.85	
12 $O R m + 40 Ry + 0 H m$	p + 12 W = 0.5t + 25 a Q t 2 + 0.11	.1	120.2	21.00	
$13 11p \pm ms \pm 01s = 3 \text{ A}$ $14 12 \text{ W} \pm 06 \text{ K}_{W} \pm 17 \text{ Cr}$	n + 1 m s + 8 App = 51 Ap + 8 Ms + 6 St		2005.8	134.62	
14 12 W + 30 Ry + 17 GI $15 6 St \pm 48 \text{ oOt} = 18 M_{\odot}$	± 31 Cre = 8 App ± 02 Ap ± 123	λ/	2990.0	181.02	
$16 12 W \perp 8 Drn \perp 06 V.$	+ 51 G15 $-$ 6 Anii $+$ 55 Ali $+$ 12 V + 25 Cre $+$ 8 Ann $-$ 75 An $+$ 9 D	$hl \perp 6 St$	3057 8	102.90	
10 12 vv + 0 rrp + 90 Ky 17 6 St + 49 cot + 9 Dt	+ 20 GIS + 0 AIII = 10 AII + 8 P	$m \pm 0.50$	0901.0 0719 E	192.10	
11 0.51 + 48 aQtz + 8 Phi	+ 23 Grs = 8 Ann + 09 An + 8 P	1p + 12 W	2/18.0	120.81	
10 0 St + 17 Prp + 25 Ms	= 0 Alm + 90 Ky + 17 Phl + 12 V	V X 7	-901.8	-11.18	
19 0 St + 25 Prp + 25 Ms	= 0 AIM + 90 Ky + 25 PhI + 12 V	7V D 1, 1	-1047.8	-13.07	
20 = 8 Ann + 23 Ms + 31 Pi	rp + 12 W = 0 St + 48 aQtz + 31		47.0	45.19	
21 8 Alm + 23 Ms + 23 Pi	rp + 12 W = 6 St + 48 aQtz + 23	Phl	143.1	45.08	

 ΔS_r in $J \cdot K^{-1}$; ΔV_r in $J \cdot bar^{-1}$

Tab. 10.3: AI349: (a) wasserkonservierende Reaktionen, (b) wasserführende Reaktionen eingeschlossen; AI405: (c) sämtliche Reaktionen; AI378: (e) Granat-Biotit-Thermometer; AI518: (f) Granat-Biotit-Thermometer und Anorthit-Grossular-Barometer

Kapitel 10. Alpe Sponda

Kapitel 11

Vergleich der PTAX-Resultate mit denen der Literatur

Im folgenden sollen die Druck- und Temperaturabschätzungen dieser Arbeit denjenigen der Literatur gegenübergestellt werden.

Viele Autoren wendeten dabei ausschliesslich das Granat-Biotit-Thermometer und das Anorthit-Grossular-Barometer an.

In der Literatur finden sich verschiedene Formate für Temperatur- und Druckangaben. Es kommen sowohl genaue Einzelwerte oder Durchschnittswerte mehrerer Berechnungen, beide mit oder ohne Fehlerangaben, als auch Intervallangaben vor. Damit man die Resultate besser miteinander vergleichen kann, wurden hier alle Angaben auf das gleiche Format gebracht. Bei Intervallangaben wurde der Mittelwert berechnet und die halbe Intervallgrösse als Streubereich angenommen. Wo Fehlerangaben für Einzel- oder Durchschnittswerte vorliegen, wurden diese Fehler als Streubereich der P-T-Daten interpretiert.

11.1 Das Granat-Biotit-Thermometer

Die mit PTAX neuberechneten Temperaturen weichen zum Teil deutlich von den Granat-Biotit-Temperaturen der Literatur ab, wie Figur 11.1a zeigt.

Oberhalb von ca 500 °C liegen die Temperaturen dieser Arbeit systematisch etwas höher als die Granat-Biotit-Temperaturen der Literatur. Dies kommt auch im Histogramm (Figur 11.1b) zum Ausdruck. Die Säulenbreite entspricht dem grob abgeschätzten mittleren Fehler der Temperaturen aus der Literatur.

Unter 500 °C streuen die Temperaturen der Literatur unsystematisch und weit ober- und unterhalb der mit PTAX berechneten. Die durchschnittliche Abweichung aller Literaturwerte von den PTAX-Temperaturen beträgt -32 ± 52 °C.

11.2 Das Anorthit-Grossular-Barometer

Die Druckwerte aus der Literatur streuen völlig unsystematisch um diejenigen dieser Arbeit (vgl. Fig.11.2a). In der gleichen Probe können sich die neuberechneten Drucke um bis zu 2500 bar von denen der Literatur unterscheiden.

In den mittleren Bereichen (6000-8000 bar) kann man eine geringere Abweichung der Literaturwerte von den PTAX-Werten feststellen. Die durchschnittliche Abweichung aller Drucke

Fig. 11.1: (a) Temperaturvergleich anhand eines $T_{Lit}-T_{PTAX}$ -Diagrammes: im mittleren und oberen Bereich liegen die Temperaturen der Literatur systematisch tiefer als die PTAX-Temperaturen; (b) Differenz $T_{Lit}-T_{PTAX}$; die Säulenbreite entspricht dem grob abgeschätzten Fehler der Literaturdaten.

aus der Literatur beträgt zwar nur 55 bar, die Standardabweichung ist mit 1176 bar jedoch ausserordentlich gross.

11.3 Diskussion

Sowohl die Drucke als auch die Temperaturen dieser Arbeit sind oft deutlich verschieden von denen der Literatur. Als Gründe dafür kommen die folgenden Punkte in Frage:

- Entscheidend für die zum Teil sogar systematischen Abweichungen der Werte wirkte sich in erster Linie sicherlich die unterschiedliche Berechnungsmethodik aus! Die Drucke und Temperaturen dieser Arbeit wurden auf der Basis von intern konsistenten, thermodynamischen Daten und Aktivitätsmodellen berechnet, wobei möglichst alle formulierbaren Gleichgewichte einbezogen wurden. Ausserdem wurden für alle Proben immer die gleichen thermodynamischen Daten und Aktivitätsmodelle verwendet. In der hier ausgewählten Literatur kamen hingegen nur das Granat-Biotit-Thermometer und das Anorthit-Grossular-Barometer zum Einsatz.
- Eine Streuung der Resultate war zu erwarten, weil die Autoren unterschiedliche Kalibrierungen sowohl des Thermo- als auch des Barometers verwendeten. Die folgenden Kalibrationen wurden benutzt:

 Grt-Bt: FERRY & SPEAR (1978), THOMPSON (1976), GOLDMAN & ALBEE (1977), INDARES & MARTIGNOLE (1985), HODGES & SPEAR (1982)
 An-Grs: GHENT (1975, 1976), ARANOVICH & PODLESSKII (1980)

- Die Streuung der Resultate kann auch auf die Tatsache zurückgeführt werden, dass in dieser Arbeit kaum jemals die gleichen Mineralanalysen für die Berechnungen verwendet wurden wie in der Literatur! Meistens sind nämlich in der Literatur pro Mineral mehrere Analysen aufgeführt; ein Hinweis auf die Analysen, die in der P-T-Berechnung Verwendung fanden, fehlt jedoch in der Regel. Bei einer anderen Analysenwahl ist aber mit anderen Resultaten zu rechnen!
- Die Fe- und Mg-Diffusion im Granat nimmt gegen tiefere Temperaturen stark ab. Die Schliesstemperatur für die Diffusion ist abhängig von der Abkühlrate und der Grösse des Granates (CYGAN & LASAGA, 1985). THOMPSON & ENGLAND (1984) geben bei einer Abkühlrate von ca. 5 °C/ma für einen kleinen Granat von 0.1 mm Durchmesser eine Schliesstemperatur von etwa 600 °C an. Bei grösseren Körnern liegt sie bedeutend höher.

Gesteine in den äusseren Bereichen der mesoalpinen Metamorphose entstanden unter tieferen Metamorphosebedingungen. Vor allem grössere Granate zeigen deshalb oft ausgeprägte und komplexe Zonierungen (z.B. STAPS-OHNMACHT, 1991), was einen deutlichen Hinweis auf Ungleichgewicht darstellt und auch Schwankungen in den Temperaturabschätzungen erwarten lässt.

- FERRY & SPEAR (1978) kalibrierten die Fe-Mg-Austauschreaktion zwischen Granat und Biotit im Temperaturbereich von 550 °C - 800 °C. Das heisst, dass die Kalibrierung des Thermometers in einem anderen Temperaturbereich stattfand, als es oft angewendet wird. Unterhalb von 550 °C muss extrapoliert werden, was mit Fehlern behaftet sein kann!
- Die Fehleranfälligkeit der Druckbestimmung ist gross, weil selbst die Steigung der «Barometer» im P-T-Diagramm relativ steil ist und die kleinen Schnittwinkel von Gleichgewichtskurven grosse Unsicherheiten bewirken.

Fig. 11.2: (a) Druckvergleich anhand eines $P_{Lit}-P_{PTAX}$ -Diagrammes: Die Streuung ist unsystematisch, die Abweichung der Einzelwerte zum Teil erheblich; (b) Differenz $T_{Lit}-T_{PTAX}$; die Säulenbreite entspricht dem grob abgeschätzten Fehler der Literaturdaten

Kapitel 12

Isothermen- und Isobarenkarte der mesoalpinen Metamorphose

12.1 Voraussetzungen

Die im vorhergehenden Kapitel berechneten Druck- und Temperaturwerte sollen an ihrem geographischen Ort dargestellt und durch Isobaren und Isothermen konturiert werden. Dies ist nur dann sinnvoll, wenn die folgenden beiden Voraussetzungen erfüllt sind:

- 1. Das Einstellen der Druck- und Temperaturwerte fand «posttektonisch» statt.
- 2. Alle errechneten Drucke und Temperaturen beschreiben das gleiche Metamorphoseereignis.

Voraussetzung 1 wird durch die Beobachtungen bestätigt, dass im Bereich der Zentralalpen die Mineralzonen ein grossräumiges, konzentrisches Muster beschreiben, quer über die Deckengrenzen hinweg (z.B. NIGGLI, 1960). Die oft komplex verfalteten Deckengrenzen werden von den steiler einfallenden Isogradenflächen diskordant geschnitten. Daraus folgt, dass das lepontische Metamorphoseereignis nach Abschluss der Deckenbildung stattgefunden oder diese zumindest überdauert haben muss (NIGGLI, 1960; NIGGLI & NIGGLI, 1965, TROMMSDORFF, 1966; FOX, 1975; THOMPSON, 1976).

Postmetamorphe Verstellungen an den Deckenstirnen sind zwar bekannt (z.B. KAMBER, 1992), die Distanzen, über die mesoalpin metamorphe Gesteine transportiert wurden, sind jedoch klein, gemessen an der Grösse des Lepontins, und werden hier vernachlässigt. Sie vermögen das grossräumige Bild nicht zu beeinträchtigen.

Voraussetzung 2 ist aufgrund der polymetamorphen und plurifaziellen Überprägung der Gesteine schwierig zu kontrollieren. Letzte Sicherheit kann eigentlich nur eine detaillierte Altersbestimmung jeder verwendeten Paragenese geben.

Die Zuordnung der Paragenesen zu den einzelnen Metamorphosephasen geschieht nur auf der Basis von texturellen Beobachtungen. Die Metapelite, die in dieser Arbeit zur P-T-Berechnung verwendet wurden, weisen maximal 3 Paragenesen auf. Die erste findet sich, wenn überhaupt noch vorhanden, nur reliktisch als Einschlussparagenese in grossen Porphyroblasten und wird einem frühen Metamorphosereignis zugesprochen. Die zweite, meist als Berührungsparagenese beschrieben, besteht aus den Mineralien mit dem grössten Modalanteil im Gestein und der deutlichsten Textur (Matrixmineralien, die Hauptschieferung bildend) und wird deshalb dem mesoalpinen Metamorphoseereignis zugeordnet. Die dritte entstand zuletzt, meist unter retrograden Bedingungen und besteht aus Umwandlungsprodukten (Chloritisierung, Saussuritisierung) der älteren Mineralien.

Es können mindestens 3 alpine Deformationsphasen (F_1 , F_2 und F_3) nachgewiesen werden. F_1 bewirkte die Platznahme der Decken, F_2 wird mit der Ausbildung der Hauptschieferung in Verbindung gebracht und F_3 mit der Rückfaltung (MILNES, 1974a,b; KLAPER, 1985).

Die mesoalpine Metamorphose erreichte ihren Höhepunkt nach F_2 (posttektonische Einstellung der P- und T-Werte) und bildete somit die Mineralien der Hauptschieferung. Paragenesen, die aus Mineralien der Hauptschieferung bestehen, können deshalb diesem Metamorphoseereignis zugeordnet werden. Die aus diesen Paragenesen abgeleiteten Drucke und Temperaturen sollten also innerhalb des Bereiches der mesoalpinen Metamorphose konturierbar sein.

 $\label{eq:constraint} \mbox{Eine Unterteilung des mesoalpinen Metamorphoseereignisses in verschiedene Phasen - mit verschiedenen Druck- und/oder Temperaturmaxima - kann texturell nicht nachgewiesen werden.$

12.2 Interpolation mit bikubischen Splines

Obwohl die Probenfundorte sehr unregelmässig im Lepontin verstreut sind, wurde versucht, die Temperatur- und Druckwerte mit Hilfe von Splines zu konturieren.

Zur Elimination von redundanten Datenwerten rastert das GMT-Programm *blockmedian* die Region des Lepontins auf und berechnet für jeden Block, der einen Datenwert enthält, eine mittlere Position und einen mittleren Datenwert. Man erzielt die besten Resultate, wenn man die Rastergrösse etwa gleich wählt wie den mittleren Abstand der Probenpunkte, in unserem Fall etwa 4 Kilometer. Eine kleinere Rastergrösse bewirkt irreführende, scheinbare Details mit lokalen Maxima und Minima der Isolinien, bei einer grösseren geht Information verloren. Ein Rundungsfaktor von etwa 6 rundet die Linien leicht ab und hilft so auch, eine scheinbare Detailliertheit zu vermeiden.

surface legt eine kontinuierliche, je nach Wahl des Spannungsfaktors gebogene Splines-Oberfläche durch die gerasterten T- und P-Werte, und *grdcontour* zeichnet darauf die Isothermen bzw. Isobaren (SMITH & WESSEL, 1990; WESSEL & SMITH, 1991).

Der Verlauf der Isolinien ist sehr stark abhängig von der Wahl der Rastergrösse, des Spannungsfaktors der Splineoberfläche und des Rundungsfaktors der Isolinien.

Auf einen erhöhten Spannungsfaktor zur Vermeidung von unerwünschten Oszillationen und lokalen Maxima und Minima wurde verzichtet, weil dieser den Linienverlauf dort am stärksten beeinflusst, wo keine Datenpunkte vorliegen und eine Korrektur deshalb gar nicht angebracht ist. Die Isolinien entsprechen somit natürlichen, bikubischen Splines.

12.3 Probenauswahl und allgemeine Beobachtungen

In dieser Arbeit liegen nur 57 Proben vor, die sehr heterogen über das Lepontin verteilt sind. Fast alle dieser 57 Proben liefern zwar konturierbare Temperaturen, aber nur 45 davon konturierbare Drucke.

Aus KAMBER (1991) konnten noch P-T-Resultate von 10 Proben direkt übernommen werden. Diese Werte wurden mit der gleichen Methodik berechnet, die in dieser Arbeit zur Anwendung kam (PTAX), und sind somit direkt mit unseren Resultaten vergleichbar (vgl. Tab A.11 und A.14). Weil im Westen des Lepontins keine Primärdaten zur Verfügung standen, wurden dort zusätzlich noch Druck- und Temperaturwerte von weiteren 10 Proben direkt aus der Literatur übernommen (FRANK, 1979; vgl. Tab A.11 und A.14). Diese Werte sind jedoch nicht konsistent mit den PTAX-Resultaten und wurden nur der Vollständigkeit halber zugezogen, damit (approximative) Isolinien auch im Westen des Gebietes verfolgt werden können.

Für die Isothermenkarte mussten die Proben Kl264 und Kl285 weggelassen werden, weil das Grt-Cld- und Grt-Bt-Thermometer unrealistisch hohe Temperaturen ergaben, die nicht kontrollierbar sind, da jeweils nur ein Thermometer berechenbar ist. Auch Probe EK50 wurde wegen extrem hoher Druck- und Temperaturwerte weggelassen.

Aufgrund der geringen Datendichte stellen die Isothermen- und Isobarenkarten nur eine grobe Betrachtung der Daten dar. Man sollte nur allgemeine Trends ablesen und darf auf keinen Fall die Lage einer Isolinie als absolut ansehen. Die Verlässlichkeit auf die Lage der Linien nimmt mit zunehmendem Abstand von den Probenfundorten ab. Der genaue Verlauf der Linien ist besonders dort unsicher, wo weite Strecken zwischen Datenpunkten interpoliert werden müssen, wie zum Beispiel im zentralen Lepontin, wo keine Daten vorliegen. Bei nur geringfügigen Änderungen der Konturierungsparameter (Rastergrösse, Spannungsfaktor) verschieben sich die Isolinien hier am stärksten (Oszillation der Splines). Dies gilt auch für die Bereiche ausserhalb der Zone der Probenfundorte, wo extrapoliert werden muss.

Mit Vorsicht sind auch lokale Maxima und Minima zu interpretieren, die durch Oszillationen der Splines zustande kommen können und dann geologisch keine Bedeutung haben.

Der Einfluss der Topographie wurde nicht berücksichtigt, obwohl die Höhendifferenz der verschiedenen Proben ziemlich gross ist (Berggipfel bis Talsohle und Bohrung).

12.3.1 Isothermenkarte

Die Isothermen spiegeln das bekannte Bild des konzentrischen Isogradenmusters wider (vgl. Fig. 12.1); das Zentrum dieses Musters liegt etwa bei Bellinzona. Die Temperatur nimmt gegen die Insubrische Linie hin zu, wo sich das Temperaturmaximum befindet.

Aus der Dichte der Isothermen kann man den Temperaturgradienten qualitativ abschätzen. Er nimmt von den externen, kühleren Teilen der Zentralalpen (Nufenengebiet) gegen das wärmere Zentrum hin deutlich ab.

Der etwas zweifelhafte Verlauf der 550 °C-Isotherme im Gebiet südlich des Lukmanierpasses ist auf die Verteilung der Temperaturwerte zurückzuführen, die keinen Gradient erkennen lässt, was auch schon in den Berechnungen von STAPS-OHNMACHT (1991) zum Ausdruck kam.

Das Ausschweifen der 600 °C-Isotherme bei Mesocco kann als Artefakt angesehen werden, hervorgerufen durch die geringe Probendichte in diesem Bereich, die ein Oszillieren der Splines bewirkt.

12.3.2 Isobarenkarte

Die Isobaren beschreiben zwar auch ein grobes, konzentrisches Muster, das Druckmaximum fällt jedoch nicht mit dem Temperaturmaximum zusammen, sondern liegt etwa auf der Höhe von Biasca. Gegen die Insubrische Linie hin fällt der Druck ab.

Der steile Druckgradient in den nördlichen Regionen (Nufenen- und Lukmaniergebiet) nimmt gegen Süden stark ab.

Im zentralen Lepontin ist die Probendichte gering und die Druckverteilung flach, der Verlauf der Isobaren somit sehr unsicher.

Fig. 12.1: Isothermenkarte der mesoalpinen Metamorphose; die Konturierung erfolgte durch Splinesinterpolation

Der erneute Druckanstieg gegen SW bei Crevola ist nur auf eine einzige Probe zurückzuführen und muss keine Bedeutung haben, speziell da der Datenpunkt aus der Literatur übernommen werden musste.

Fig. 12.2: Isobarenkarte der mesoalpinen Metamorphose; die Konturierung erfolgte durch Splinesinterpolation

Kapitel 13 Diskussion und Schlussfolgerungen

Die Mineralien einer Paragenese equilibrierten (gemäss Definition) zur gleichen Zeit, unter ganz bestimmten Druck- und Temperaturbedingungen. Diese lassen sich im Idealfall bestimmen, sofern die Paragenese auf dem Weg des Gesteins an die Oberfläche erhalten blieb. In der vorliegenden Arbeit wurden so an 57 Gesteinen der Zentralalpen P-T-Bedingungen bestimmt. In Übereinstimmung mit früheren Untersuchungen belegen diese Daten eine Zunahme des Metamorphosegrades von Norden nach Süden.

Die heute an der Erdoberfläche aufgeschlossenen Mineralparagenesen können einer Faziesserie vom Barrow-Typus zugeordnet werden, die von unmetamorphen Sedimenten bis zur höchsten Amphibolitfazies in den tiefsten tektonischen Einheiten des Lepontins reicht. Die Mineralparagenesen beschreiben grossräumig ein konzentrisches Muster mit dem Zentrum unmittelbar nördlich der Insubrischen Linie, welche einen Metamorphosesprung markiert.

13.1 Diskussion der Methodik

Was stellen nun diese Faziesserie und die aus den Paragenesen abgeleiteten Drucke und Temperaturen eigentlich dar?

Die Gesamtheit der P-T-Punkte, im Profil durch ein metamorphes Gebiet, liegt im P-T-Diagramm auf einer Kurve, «metamorphe Geotherme» (ENGLAND & RICHARDSON, 1977) oder «P-T-Array» (ENGLAND & THOMPSON, THOMPSON & ENGLAND, 1984) genannt. Weil die einzelnen P-T-Werte von Paragenesen abgeleitet wurden, die zu verschiedenen Zeiten während der Metamorphose entstanden, ist ein P-T-Array keine echte Geotherme.

Es stellt sich mithin die Frage, welcher Teil der P-T-t-Entwicklung durch die Paragenesen belegt wird, die heute an der Erdoberfläche anstehen?

ENGLAND & RICHARDSON (1977) erwarten, dass eine Paragenese im Zustand maximaler Entropie, S_{max} , erhalten bleibt, weil für retrograde Reaktionen auf dem Abkühlweg die treibende Kraft abnimmt. In erster Näherung dürften deshalb die Maximaltemperatur der Metamorphose T_{max} und dementsprechend $P(T_{max})$ belegt sein.

Zudem können Fluids, die von Entwässerungreaktionen produziert werden, das Muttergestein verlassen und deshalb retrograde Reaktionen nicht mehr treiben. Allerdings durchlaufen hochgradige Gesteine einen langen Dekompressionsweg nahe $T = T_{max}$, so dass nach THOMPSON & ENGLAND (1984) diachrone Paragenesen zu erwarten sind.

Speziell können auf dem retrograden Teil des P-T-Weges fluidunabhängige Reaktionen ablaufen, z.B. die Umwandlung von Al_2SiO_5 -Polymorphen oder kontinuierliche Kationen-Aus-

tauschreaktionen (THOMPSON & ENGLAND, 1984). Gerade diese Austauschreaktionen können sehr temperaturabhängig sein. Oft erlauben texturelle Beobachtungen neben Sondendaten (Zonierung) ein Erkennen solch retrograder Veränderungen; dennoch kann nicht ausgeschlossen werden, dass zuweilen $T < T_{max}$ und $P(T < T_{max})$ belegt worden sind. Dies trifft speziell bei hochgradigen Paragenesen zu.

Da im Bereich der mesoalpinen Metamorphose in verschiedenen Regionen unterschiedliche Temperaturen erreicht wurden, kann man auch verschiedene Stadien in den Reaktionsabläufen erwarten. Die P-T-Bestimmungen in den äusseren, kühleren Bereichen der Metamorphose dürften also nicht den gleichen (Zeit-)Punkt auf dem P-T-t-Weg repräsentieren wie in den zentralen, heisseren Regionen.

Dies lässt sich am Beispiel von Granat verdeutlichen. In den untersuchten Metapeliten spielt Granat als Reaktant eine Hauptrolle, sowohl in Reaktionen mit grosser als auch mit kleiner Steigung (Thermometer bzw. Barometer) im P-T-Diagramm. In vielen Paragenesen ist Granat das Mineral der Paragenese mit der geringsten Diffusivität, weshalb die Diffusion von Ionen im System von jener der Ionen im Granat kontrolliert wird. Diese Diffusivität ist stark temperaturabhängig und kommt beim Unterschreiten einer bestimmten Temperatur praktisch zum Stillstand. Die Schliesstemperatur wiederum ist abhängig von der Geometrie des Granates und der Abkühlrate (CYGAN & LASAGA, 1985).

Für Granat mit einem Durchmesser von 0.1 bis 1 mm liegt die Schliesstemperatur bei einer – für das Lepontin zutreffenden – Abkühlrate (5-10 °C/Ma) zwischen 600-680 °C (THOMPSON & ENGLAND, 1984)¹.

Bei der mesoalpinen Metamorphose herrschten in den äusseren Bereichen des Lepontins Temperaturen, die weit unterhalb dieser Schliesstemperaturen lagen (vgl. z.B. Nufenengebiet, Lukmaniergebiet). In diesen kühleren Regionen besteht somit eher die Chance, dass Wachstumszonierungen von Granaten erhalten bleiben und damit auch ein Erinnerungsvermögen an P-T-Bedingungen vor Erreichen von T_{max} und $P(T_{max})$.

Dagegen lagen die Temperaturen im Bereich der höchsten Metamorphose (Region Bellinzona) deutlich über den Schliesstemperaturen. Hier mag das Erinnerungsvermögen der Paragenesen infolge Diffusion z.T. ausgelöscht sein, weil sich die Paragenesen aufgrund von Diffusionsreaktionen nach Erreichen von T_{max} und $P(T_{max})$ an tiefere Bedingungen anpassten!

Tatsächlich beobachteten beispielsweise KLAPER (1985) im Nufenenpassgebiet und STAPS-OHNMACHT (1991) im Lukmaniergebiet eine ausgesprochene Wachstumszonierung im Granat. Aus dem Gebiet der Alpe Sponda beschreibt IROUSCHEK (1983) Granate, welche neben einer deutlichen Wachstumszonierung auch einen Abkühlrand aufweisen. Die von BÜHL (1981) in der Zone von Bellinzona beschriebenen Granate sind praktisch homogen, abgesehen von einem Abkühlrand.

Wie unsicher bzw. wie genau sind die P-T-Bestimmungen mit der hier angewendeten Methodik?

Je mehr linear unabhängige Reaktionen formulier- und berechenbar sind, desto besser lässt sich die Qualität der P-T-Daten abschätzen. Als grobes Mass ist die Streuung der Schnittpunkte dieser Reaktionskurven zu gebrauchen. Diese Streuung überschätzt die P-T-Ungenauigkeit im allgemeinen, dies als Folge von zwei möglichen Effekten:

1. geringe ΔS - und ΔV einzelner Gleichgewichte

 $^{^1{\}rm Für}$ das Lepontin gibt Hurford (1986) anfängliche Abkühl
raten von 10-12 °C/Ma während des Oligozäns an.

2. geringe Schnittwinkel durch ähnliche P-T-Steigung von Gleichgewichten

Als besserer Indikator für die («a priori») Fehler in den P-T-Bestimmungen kann deshalb ein gewichtetes Streumass berechnet werden.

Die regionale Verbreitung der gewichteten Mittelwerte erlaubt ebenfalls eine Einschätzung dieses Fehlers, nun «a posteriori».

Geht man von der Annahme aus, dass die Paragenesen während des gleichen, mesoalpinen Metamorphoseereignisses entstanden, so sollten geographisch benachbarte Proben innerhalb der («a priori») Fehlergrenzen etwa die gleichen Drucke und Temperaturen ergeben. Relativ stark voneinander abweichende Resultate treten jedoch auch für benachbarte Proben auf, z.B. aus dem Lukmaniergebiet. Speziell die Druckwerte variieren stark, auch bei Proben, die aus der gleichen lithologischen Einheit stammen. Einige Proben wurden aufgrund äusserst unwahrscheinlicher Resultate ausgeschlossen; die Resultate waren aufgrund der geringen Anzahl berechenbarer Gleichgewichte unkontrollierbar.

Die Gründe dafür können vielfältig sein. Fehler in der Mikrosondenanalytik bewirken Ungenauigkeiten in der Mineralchemie, was sich direkt in den Druck- und Temperaturabschätzungen niederschlägt. Ebenso sind die thermodynamischen Mineraldaten und die verwendeten Aktivitätsmodelle mit einem (unbekannten) Fehler behaftet.

13.2 Geologische Interpretation

Die deutliche Druckabnahme südlich von Biasca in der Isobarenkarte (vgl. Fig. 12.2) könnte auf eine Anpassung der Paragenesen an tiefere Metamorphosebedingungen zurückzuführen sein. Begünstigt würde dies z.B. durch die hohen Temperaturen, die in diesem Bereich deutlich über der Diffusionsschliesstemperatur des Granates liegen (siehe oben). Die tatsächlichen Werte für $P(T_{max})$ waren im Süden wohl etwas höher (6.5-8.5 kbar in der Zone von Bellinzona, SCHMIDT [1989]).

Grossräumige postmetamorphe Deformationen können das Isothermen- und Isobarenmuster stören. KAMBER (1991) beschreibt beispielsweise im Nufenenpassgebiet einen Metamorphosesprung zwischen penninischen (520 °C/6000 bar) und helvetischen Einheiten (470 °C/5200 bar), den er auf ein postmetamorphes Anheben der penninischen Einheiten relativ zu den helvetischen interpretiert. Verläuft die Verschiebungsfläche etwa parallel zu den Isothermen oder Isobaren wie im Nufenengebiet, so kann sich eine derartige Diskontinuität in einer Verdichtung der Isothermen bzw. Isobaren äussern.

Für die Alpen allgemein anerkannt ist, dass nach einer eoalpinen Hochdruckmetamorphose, hervorgerufen durch Subduktion von ozeanischer und ausgedünnter kontinentaler Kruste während der Annäherung von Afrika an Europa, eine spätkretazische bis paläogene Kontinentalkollision der Adriatischen Platte mit Europa stattgefunden hat (z.B. COWARD & DIETRICH, 1989; HUNZIKER et al., 1989). Die anschliessende thermische Erholung der verdickten kontinentalen Kruste bewirkte die mesoalpine Metamorphose.

Aufgrund von Altersdatierungen wurde die Hochdruckmetamorphose, deren Relikte sich in der Cima-Lunga- und Adula-Decke in Form von Eklogiten und Peridotiten finden (z.B. HEIN-RICH, 1983), bisher in der Kreidezeit angesiedelt (eoalpine Phase).

Neueste Altersdatierungen stellen jedoch dies in Frage. Sm-Nd-Mineralalter von Granatperidotiten und Eklogiten aus der Cima-Lunga-Decke (40 Ma) deuten jedoch auf ein eozänes Alter der Hochdruckmetamorphose in der Cima-Lunga-Decke hin, solche aus der Adula-Decke (93 Ma) auf eine kretazische Hochdruckmetamorphose in der Adula-Decke (BECKER, 1992; GEBAUER et al., 1991). BECKER (1992) deutet deshalb die mesoalpine Regionalmetamorphose der Simano-Decke (Barrow-Typ) als Resultat einer Überschiebung der heissen Cima-Lunga-Decke auf die Simano-Decke, die dadurch von Süden nach Norden aufgeheizt wurde. Begründet wird dies einerseits mit der unterschiedlichen Metamorphosegeschichte von Cima-Lunga- und Simano-Decke: Während die Cima-Lunga-Gesteine Anzeichen von isothermaler Dekompression und damit eine retrograde Entwicklung zeigen, weist die Simano-Decke von Süden nach Norden eine prograde Metamorphoseentwicklung auf. Zudem sind U-Pb-Monazitalter von 27 Ma (KÖPPEL & GRÜNENFELDER, 1975) aus der südlichen Simano-Decke bekannt, d.h. die Aufheizung der Simano-Decke auf Amphibolitfaziesbedingungen soll 13–15 Ma gedauert haben.

Die Konsequenzen dieser neuen Befunde sind noch nicht vollständig diskutiert. Immerhin hätten Adula- und Simano-Decke eine unterschiedliche Geschichte, was die Annahme in Frage stellt, dass beide einmal eine zusammenhängende Decke bildeten (vgl. EVANS & TROMMS-DORFF, 1978). Die Mineralisograde der mesoalpinen Barrow-Metamorphose im südlichen Lepontin wären zudem nicht zur gleichen Zeit entstanden, und somit sollten Isothermen und Isobaren nicht über die gesamte Region durchgezogen werden.

Junge U-Pb-Alter von Granaträndern von ca 28.0 ± 2.5 Ma und damit übereinstimmende Rb-Sr-Alter von Amphibolen von 27.7 ± 1.1 Ma aus den südlichen Lepontinischen Alpen sollen Stadien auf dem prograden Weg der mesoalpinen Metamorphose darstellen (VANCE & O'NIONS, 1991). Dadurch müsste die Klimax der mesoalpinen Metamorphose, die bisher zwischen 21 und 35 Ma angenommen wurde (JÄGER, 1973; KÖPPEL & GRÜNENFELDER, 1975; DEUTSCH & STEIGER, 1985), bedeutend später stattgefunden haben!

Aufgrund dieser momentan noch laufenden Diskussion können die P-T-Daten dieser Arbeit noch nicht vollständig regionalgeologisch und genetisch interpretiert werden.

Literatur

[ABLM85] Aurisicchio, C., Bocchio, R., Liborio, G., and Mottana, A. Petrogenesis of the eclogites from Soazza, Switzerland. *Chemical Geology*, 50:47–65, 1985.

[Abr52] Abrecht, H. Zur mineralchemischen Kenntnis von Anhydrit und Albit als Zerrkluftmineralien aus dem Simplontunnel. Dissertation, Universität Bern, 1952.

- [Abr75] Abrecht, J. Die Granit-Kontaktzone und die Migmatitischen Gesteine im Gebiet des Grubenund Aerlen-Gletschers (Haslital, Schweiz). Dissertation, Universität Bern, 1975.
- [ACR75] Adams, H., Cohen, L., and Rosenfeld, J. Solid inclusion piezometry: II. Geometric basis, calibration for the association quartz-garnet, and application to some pelitic schists. *American Mineralogist*, 60:584–598, 1975.
- [Aeb85] Aebischer, F. G. Struktur und Petrographie im Gebiet Tremorgio-Campolungo. Diplomarbeit, ETH Zürich, 1985.
- [Aem76] Aemissegger, B. Der Nordrand des Malenco-Serpentinites, Piz Fora und Sasso d'Entova. Diplomarbeit, ETH Zürich, 1976.

[AH79] Abrecht, T. and Hänni, H. Eine Beryll-Phenakit (Be₂SiO₄)-Paragenese aus dem Rotondo-Granit. Schweiz. Mineral. Petrogr. Mitt., 59:1–4, 1979.

- [AJ65] Arnold, A. and Jäger, E. Rb-Sr Altersbestimmungen an Glimmern im Grenzbereich zwischen voralpinen Alterswerten und alpiner Verjüngung des Biotits. Eclogae geologicae Helvetiae, 58(1):369–390, 1965.
- [AJE66] Armstrong, R., Jäger, E., and Eberhardt, . A comparison of K-Ar and Rb-Sr ages on alpine biotites. *Earth and Planetary Science Letters*, 1:13–19, 1966.
- [Amm73] Ammann, P. Geologia e petrographia della regione del Pizzo Molare. Dissertation, ETH Zürich, 1973.
- [Ams71] Amstutz, A. Formation des Alpes dans le segment Ossola Tessin. Eclogae geologicae Helvetiae, 64(1):149–150, 1971.
- [Ams74] Amstutz, A. Structures alpines autour de San Lorenzo et mécanismes orogéniques. *Eclogae* geologicae Helvetiae, 67(1):91–99, 1974.

[AP80] Aranovich, L. and Podlesskii, K. The Garnet-Plagioclase Barometer. Doklady, Earth Science Sections, 251:101–103, 1980.

- [Arn68] Arnold, A. Die Gesteine der Region Nalps-Curnera im nordöstlichen Gotthardmassiv, ihre Metamorphose und ihre Kalksilikatfels-Einschlüsse (Petrographische Untersuchungen im Bereich der Anlagen der Kraftwerke Vorderrhein). Dissertation, Universität Bern, 1968.
- [Bal89] Baltzer, D. Petrographie, Geochemie, Tektonik, Metamorphose und Geochronologie im nordwestlichen Teil der Suretta-Decke. Lizentiatsarbeit, Universität Bern, 1989.
- [Ban78] Bangerter, G. C. Struktur und Metamorphose im Grenzgebiet des Malenco-Serpentins und der Margna-Decke im Gebiet des Monte Braccia (Provinz Sondrio, Italien). Diplomarbeit, ETH und Universität Zürich, 1978.
- [Bau79] Baumann, W. Die Goldvererzungen der Antiform von Vanzone (Prov. Novara, Italien). Diplomarbeit, Universität Zürich, 1979.
- [Bau82] Baumgartner, L. Petrologie der Alp Confin, Misox (GR/Schweiz). Diplomarbeit, Universität Basel, 1982.
- [BB80] Bernotat, W. and Bambauer, H. Die Mikroklin/Sanidin-Isograde in Aar- und Gotthardmassiv. Eclogae geologicae Helvetiae, 73(2):559–561, 1980.
- [BB82a] Bambauer, H. and Bernotat, W. The Microcline/Sanidine Transformation Isograd in Metamorphic Regions. I. Composition and structural state of alkali feldspars from granitoid rocks of two N-S traverses across the Aar massif and Gotthard "Massif", Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 62:185–230, 1982.
- [BB82b] Bernotat, W. and Bambauer, H. The Microcline/Sanidine Transformation Isograd in Meta-

morphic Regions. II. The region of Lepontine metamorphism. Central Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 62:231–244, 1982.

[BBI⁺80] Bolli, H., Burri, M., Isler, A., Nabholz, W., Pantić, N., and P., P. Der nordpenninische Saum zwischen Westgraubünden und Brig. Eclogae geologicae Helvetiae, 73(3):779–797, 1980.

[Bea52] Bearth, P. Über einen Wechsel der Mineralfazies in der Wurzelzone des Penninikums. Schweiz. Mineral. Petrogr. Mitt., 38:363–373, 1952.

- [Bec92] Becker, H. Garnet peridotite and eclogite Sm-Nd mineral ages from the Lepontine dome (Switzerland): New evidence for Eocene high-pressure metamorphism in the Central Alps. in prep., 1992.
- [BEGB86] Berman, R., Engi, M., Greenwood, H., and Brown, T. Derivation of Internally-Consistent Thermodynamic Data by the Technique of Mathematical Programming: a Review with Application to the System MgO-SiO₂-H₂O. *Journal of Petrology*, 27(6):1331–1364, 1986.
- [Ber88] Berman, R. Internally-Consistent Thermodynamic Data for Minerals in the System Na₂O-K₂O-CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂. Journal of Petrology, 29(2):445–522, 1988.
- [Ber90] Berman, R. Mixing properties of Ca-Mg-Fe-Mn garnets. *American Mineralogist*, 75:328–344, 1990.

[Ber91] Berman, R. Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. *Canadian Mineralogist*, 29:833–855, 1991.

- [Bia60] Bianconi, F. Geologia della Regione del Campolungo con speciale Riguardo alle Formatione Triassiche. Diplomarbeit, ETH Zürich, 1960.
- [Bia71a] Bianconi, F. Geologia e petrographia della regione del Campolungo. Beiträge zur Geologischen Karte der Schweiz, 142, 1971.
- [Bia71b] Bianconi, F. Geologia e petrographia della regione del Campolungo. Dissertation, ETH Zürich, 1971.

[BL83a] Baumgartner, L. and Löw, S. Deformation und Metamorphose der Adula-Decke südwestlich San Bernadino. Schweiz. Mineral. Petrogr. Mitt., 63:215–232, 1983.

[Bl"83b] Bläuer, C. Geologische und petrographische Untersuchungen in der Aroser Zone zwischen Weisshorn und Prätsch. Lizentiatsarbeit, Universität Bern, 1983.

- [Bla65a] Blanc, B. L. Zur Geologie Zwischen Madesino und Chiavenna. Dissertation, Universität Zürich, 1965.
- [Bla65b] Blattner, P. Ein anatektisches Gneissmassiv zwischen Valle Bodengo und Valle de Livo (Prov. Sondrio und Como). Schweiz. Mineral. Petrogr. Mitt., 45:973–1071, 1965.
- [Bla72] Blattner, P. Oxygen Isotopic Composition of Minerals from Lepontine Gneisses, Valle Bodengo (Prov. di Sondrio, Italia). Schweiz. Mineral. Petrogr. Mitt., 52:33–37, 1972.
- [BLM85] Bocchio, R., Liborio, G., and Mottana, A. Petrology of the amphibolitized eclogites of Gorduno, Lepontine alps, Switzerland. *Chemical Geology*, 50:65–86, 1985.
- [BND83] Bucher-Nurminen, K. and Droop, G. The metamorphic evolution of garnet-cordieritesillimanite-gneiss of the Gruf-Complex, Eastern Pennine Alps. Contrib Mineral Petrol, 84:215– 227, 1983.
- [BNFF83] Bucher-Nurminen, K., Frank, E., and Frey, M. A model for the progressive regional metamorphism of margarite bearing rocks in the central alps. *American Journal of Science*, 283(A):370– 395, 1983.

[Bö86] Böhm, C. Geologie und Petrographie im Gebiet von Val Russein und Val Gliems, Graubünden. Lizentiatsarbeit, Universität Bern, 1986.

- [Bos81] Bossart, P. J. Geologie des südlichen Gotthardkristallins und dessen Sedimenthülle im Raum Blinnental-Merengenbachtal (Goms, VS). Diplomarbeit, ETH Zürich, 1981.
- [BP73] Bucher, K. and Pfeiffer, H.-R. Ueber Metamorphose und Deformation der östlichen Malenco-Ultramafitite und deren Rahmengesteinen (Provinz Sondrio, Nord-Italien). Schweiz. Mineral. Petrogr. Mitt., 53(2):231–241, 1973.
- [Bru65] Bruggmann, H. O. Geologie und Petrographie des südlichen Misox (Val Grono, Val Leggia, Val Cama). Dissertation, Universität Zürich, 1965.
- [Bü80] Bühl, H. Petrographie, Metamorphose und Strukturen in der Zone von Bellinzona im Gebiet des Corno di Gesero (GR/TI). Diplomarbeit, ETH Zürich, 1980.
- [Bü81] Bühl, H. Zur Sillimanitbildung in den Gneisen der Zone von Bellinzona. Schweiz. Mineral. Petrogr. Mitt., 61:275–295, 1981.
- [Bü83] Bühler, C. Petrographische und Geochemische Untersuchungen im Gebiet La Tscheppa Lagrev (Julier- Bernina-Decke). Lizentiatsarbeit, Universität Bern, 1983.
- [Buc72] Bucher, K. Geologie und Petrographie des Malenco-Serpentinites, nördlicher Kontakt. Diplom-

	arbeit, ETH Zürich, 1972.
[Bur42]	Burckhardt, C. Geologie und Petrographie des Basodino-Gebietes. Schweiz. Mineral. Petrogr.
	Mitt., 22(1):99–186, 1942.
[Bur89]	Burchard, U. Geologie und Petrographie des Schwarzenberges (Mattmark, Saastal, VS) – Die
	Manganvorkommen zwischen Monte Rosa- und Dent Blanche-Decke in den Gebieten Zermatt
	- Saas Fee und Alagna. Lizentiatsarbeit, Universität Bern, 1989.
[CD73]	Chinner, G. and Dixon, J. Some high-pressure paragenesis of the Allalin-Gabbro, Valais,
	Switzerland. Journal of Petrology, 14:185–202, 1973.
[CD89]	Coward, M. and Dietrich, D. Alpine tectonics – an overview. In Coward, M., Dietrich, D.,
	and Park, R., editors, Alpine tectonics, volume 45, pages 1–29, 1989.
[CF75]	Chatterjee, N. and Froese, E. A thermodynamic study of the pseudobinary join muscovite-
	paragonite in the system KAlSi ₃ O ₈ -NaAlSi ₃ O ₈ -Al ₂ O ₃ -SiO ₂ -H ₂ O. American Mineralogist.
	60:985-993, 1975.
[Cha61]	Chatterjee, N. The alpine metamorphism in the Simplon Area, Switzerland and Italy. Geolo-
	gische Rundschau, 51:1-72, 1961.
[Cha65]	Chadwick, B. The structural and metamorphic geology of the Lukmanier region, Ticino -
	Grisons. Dissertation, Imperial College, London, 1965.
[Cha68]	Chadwick, B. Deformation and Metamorphism in the Lukmanier Region, Central Switzerland.
	Bull. geol. Soc. Amer., 79:1123–1150, 1968.
[CL85]	Cygan, R. and Lasaga, A. Self-Diffusion of Magnesium in Garnet at 750 °C to 900 °C. American
	Journal of Science, 285:328–350, 1985.
[Cod70]	Codd, E. A Relational Model of Data for Large Shared Data Banks. Communications of the
	ACM, 13(6):377–387, 1970.
[Cod81]	Codoni, A. G. Geologia e Petrografia della regione del Pizzo di Claro. Dissertation, ETH
	Zürich, 1981.
[Col83]	Colombi, A. Contribution a l'étude géologique de la région de Bosco Gurin (TI). Diplomarbeit,
	Université de Lausanne, 1983.
[Col88]	Colombi, A. Métamorphisme et Géochimie des roches mafiques des alpes ouest-centrales
	(Géoprofil Viège-Domodossola-Locarno). Dissertation, Université de Lausanne, 1988.
[Cor74]	Corfu, F. Geologisch-Petrographische-Strukturelle Untersuchungen in den Ophiolith-Zonen des
	mittleren Val Madris (Alp Merla). Diplomarbeit, ETH Zürich, 1974.
[Dat87]	Date, C. A guide to INGRES. Addison-Wesley, 1987.
[DBN84]	Droop, G. and Bucher-Nurminen, K. Reaction Textures and Metamorphic Evolution of
	Sapphirine-bearing Granulites from the Gruf Complex, Italian Central Alps. Journal of Petro-
	logy, 25:766-803, 1984.
[deC83]	deCapitani, C. Petrographische Untersuchungen in der Gegend Furtschellas - Grialetsch (Ober-
	engadin) unter besonderer Berücksichtigung der Manganerz-Vorkommen. Lizentiatsarbeit, Uni-
	versität Bern, 1983.
[Deu79]	Deutsch, A. Serpentinite und Rodingite der Cima Sgiu (NW Adula-Decke, Tessin). Schweiz.
	Mineral. Petrogr. Mitt., 59:319–347, 1979.
[Die 84]	Diethelm, K. Geologie und Petrographie des Bergel-Ostrandes II. Diplomarbeit, ETH Zürich,
	1984.
[DN87]	DelMoro, A. and Notarpietro, A. Rb-Sr geochemistry of some hercynian granitoids overprinted
	by eoalpine metamorphism in the upper Valtellina, central alps, Switzerland. Schweiz. Mineral.
	Petrogr. $Mitt., 67(3), 1987.$
[DS85a]	Deutsch, A. and Steiger, R. A reassessment appraised: comment on "hornblende K-Ar ages
	and the climax of tertiary metamorphism in the lepontine alps (south central switzerland): an
	old problem reassessed" - reply to Peter K. Zeitler and Jan R. Wijbrans. Earth and Planetary
	Science Letters, 76:393–395, 1985.
[DS85b]	Deutsch, A. and Steiger, R. Hornblende K/Ar ages and the climax of Tertiary metamorphism
	in the lepontine Alps (South Central Switzerland): an old ploblem reassessed. Earth and
	Planetary Science Letters, 72:175–189, 1985.
[Egg75]	Egger, A. Petrographische Untersuchungen im nordwestlichen Aarmassiv nördlich Telli bei
feet and a	Blatten - Lötschen, VS. Lizentiatsarbeit, Universität Bern, 1975.
[Egl61]	Egli, W. Geologie der Soja-Schuppe südlich Olivone. Diplomarbeit, ETH Zürich, 1961.
[Egl66]	Egli, W. Geologisch-Petrographische Untersuchungen in der NW-Aduladecke und in der Soja-
	schuppe (Bieniotal, Kanton Tessin). Dissertation, ETH Zürich, 1966.
[Eng73]	Engi, M. Strukturen und Metamorphose im Kontaktbereich des südwestlichen Malenco. Di-
	piomarbeit, ETH Zurich, 1973.

[Eng78]	England, P. Some thermal considerations of the alpine metamorphism - past, present, and future. Testemorphism 46:21, 40, 1078
$[\mathbf{F}_{mn}77]$	Inture. <i>Tectonophysics</i> , 40:21–40, 1978.
	Switzenland Lewmol of Detrology 18/2)-271 208 1077
[Em 79]	Switzerlähl. Journal of Febroalogy, 10(5):571-590, 1977.
[E11170]	Detrology 10:241 202 1072
[FT70]	France P. W. and Trammadorff V. Pasional Matamarhiam of Illtramatic Dealer in the
	Evans, D. W. and Hommisdon, V. Regional Metamorphism of Ontramanc Rocks in the Control Alpe: Parageneses in the System CoO MgO SiO ₂ H ₂ O Schweiz Mineral Patroan
	Mitt 50.481 402 1070
[FT74]	Mull., 50.461-492, 1970.
	metaparidetite Val d'ofra Lopontino Alps, American Lowrad of Science 274:274, 206, 1074
[FT79]	France P. W. and Trommadorff V. Detrogenesis of cornet labracite. Cime di Cornera
[E170]	Loponting Alpone Farth and Planetary Science Letters 40.222 248 1078
[FT93]	Exponence Alps. Latin and Flancuary Science Letters, 40.555–546, 1978.
[E109]	lised garnet peridetite: compositional controls and petrologic significance. American Journal
	of Coience 282(A):255 260 1082
[FTC91]	0) Science, 265(A).555-509, 1965. Evens P. W. Trommadouff V. and Colos C. C. Coochemistry of high grade coloritor and
[E1G01]	Evans, D. W., Hommsdorn, V., and Goles, G. G. Geochemistry of high-glade eclogites and motored ingites from the Control Alne. Control Minard Potrol 76:201 211 1081
[FTP 70]	France P. W. Trommedorff V. and Pichter W. Detrology of an calegite metanodingite suite
[E1679]	Evans, D. W., Hommisdoni, V., and Kichter, W. Febbology of an eclogice-inetatodingite suite at Cima di Cognona Tigina Switzerland American Minaralagiat 64:15–21, 1070
[F++97]	Ettor II Stratigraphicabo and strukturacologische Unterguehangen im Cotthardmassinischen
	Maagraihum zwischen dem Luhmaniernage und der Cegend von Hang Dissortation. Universität
	Resolution 2005 Ren all Dakmanier pass and der Gegena von nanz. Dissertation, Omversität
[FRFM80	Defil, 1907. I Frey M. Bucher F. Frank F. and Mullis, I. Alpine Metamorphism along the geotraverse
	Basol Chipsson a roviow. Ecloage geologicae Helvetiae 73(2):527-546 1080
[FBFS82]	Froy M Bucher K Frank F and Schwander H Margarite in the Control Alps Schweiz
[I DI 502	Mineral Petroar Mitt 62.21-45 1082
[Fob 22]	Fohr W. Ceologisch netrographische Untersuchungen im zentralen Teile der südlichen Cneise
[1.61122]	dee Aarmaeeine Dissortation Universität Born 1022
[Fer64]	Ferrini D. Le nietre verdi dei Dintorni di Chiavenna. Diplomarbeit ETH Zürich 1964
[FGT85]	Früh-Green G and Thompson A Stable isotope indications of fluid motion in the amphibo-
	litisation of eclogites in the Adula name. Terra cognita $5:0-336$ 1985
$[FHF^+74$	Frey M Hunziker I Frank W Boquet I Dal Piaz G Jäger E and Niggli E Alnine
	metamorphism of the Alps a Review Schweiz Mineral Petroor Mitt 54.247–290 1974
[FHJS83]	Frey, M., Hunziker, J., Jäger, F., and Stern, W., Regional distribution of white K-mica poly-
[1 110.000]	morphs and their phengite content in the Central Alps. <i>Contrib Mineral Petrol.</i> 83:185–197.
	1983.
[Fis23]	Fischer, E. H. Petrographische Untersuchungen im westlichen Gotthardmasiv. Dissertation.
[1 10=0]	Universität Bern, 1923.
[Fis86]	Fischer, M. Zur Petrographie der Bohrung Sta. Maria I. Lukmanierpass. Diplomarbeit.
[]	Universität Basel. 1986.
[Fis88]	Fischer, M. Petrographie, Mineralchemie und Metamorphose von Metasedimenten der Son-
[]	dierbohrung Sta. Maria I. Lukmanierpass. Schweiz. Mineral. Petroor. Mitt., 68:55–66, 1988.
[Fis89]	Fisch, H. Zur Kinematik der südlichen Steilzone der Zentralalpen E von Bellinzona. Schweiz.
[]	Mineral. Petroar. Mitt., 69(3):377–392, 1989.
[FJN76]	Frev, M., Jäger, E., and Niggli, E. Gesteinsmetamorphose im Bereich der Geotraverse Basel-
[]	Chiasso. Schweiz. Mineral. Petrogr. Mitt., 56:649–659, 1976.
[FL88]	Fuhrman, M. and Lindsley, D. Ternary-feldspar modeling and thermometry. American Mine-
[]	ralogist, 73:201–216, 1988.
[FO74]	Frey, M. and Orville, P. Plagioclase in margarite-bearing rocks. <i>American Journal of Science</i> .
[]	274:31-47. 1974.
[Fox74]	Fox, J. Petrology of some low-variance meta-pelites from the Lukmanier Pass area, Switzerland.
r . 1	Dissertation, Cambridge University, 1974.
[Fox75]	Fox, J. Three-dimensional isograds from the Lukmanier Pass. Switzerland, and their tectonic
r]	significance. Geological Magazine, 112(6):547–564, 1975.
[Fra75]	Frank, E. Mineralogisch-petrographische und geochemische Untersuchungen der Berisal-
	Augengneise und der Bündnerschiefer im östlichen Simplongebiet (Steinental - Alpe Veglia).
	Lizentiatsarbeit, Universität Bern, 1975.
[Fra79a]	Frank, E. Celsian in leucocratic gneisses of the Berisal-complex, Central Alps, Switzerland.

	Schweiz. Mineral. Petrogr. Mitt., 59:245–250, 1979.
[Fra79b]	Frank, E. Metamorphose Mesozoischer Gesteine im Querprofil Brig-Verampio: Mineralogisch- Petrographische und Isotopengeologische Untersuchungen. Dissertation. Universität Bern, 1979.
[Fra83]	Frank E Alpine metamorphism of calcareous rocks along a crosssection in the Central Alps:
[11000]	occurrence and breakdown of muscovite, margarite and paragonite. Schweiz, Mineral, Petroor.
	Mitt., 63:37–93, 1983.
[Fre67]	Frey I. Geologie des Greinagebietes <i>Beiträge zur Geologischen Karte der Schweiz</i> 131:1-
[11001]	110, 9. deologie des cremagebietes. Deur age zar deologischen Harte der Schweiz, 191.1
[Fre69]	Frey M Die Metamorphose des Keuners vom Tafelivra his zum Lukmanier-Gehiet (Verände-
[11005]	rungen tonia-mergeliger Cesteine von Bereich der Diagenese his zur Stauralith-Zone) Disser-
	tation Universität Bern 1960
[Fro74]	From M. Alpino Motomorphism of Politic and Marly Rocks of the Control Alps. Schweize
[FI674]	Mineral Detreem Mitt 54.480 506 1074
[Eno75]	Mineral I corogi, Mall, 94,487 300, 1314.
[[1][675]	Fley, M. Trogressive Low-Grade Metanorphism of a Didek Shale Porthaliton, Central Suiss
	Alps, with Special Reference to Fyrophytice and Margarite Dearing Assemblinges. Habilitation
[E., 70]	Onssentilt, Universität Bern, 1975.
[Fre78]	Frey, M. Progressive Low-Grade Metamorphism of a Black Shale Formation, Central Swiss
	Alps, with Special Reference to Pyrophyllite and Margarite Bearing Assemblages values, Swit-
	zerland. Journal of Petrology, 19:95–135, 1978.
[Fre86]	Frey, M. Very low-grade metamorphism of the Alps - an introduction. Schweiz. Mineral.
	Petrogr. Mitt., 66:13–27, 1986.
[FS78]	Ferry, J. and Spear, F. Experimental calibration of partitioning of Fe and Mg between biotite
	and garnet. Contrib Mineral Petrol, 66:113–117, 1978.
[FS79]	Frank, E. and Stettler, A. K-Ar and ³⁵ Ar - ⁴⁰ Ar systematics of white K-mica from an Alpine
	metamorphic profile in the Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 59:375–394, 1979.
[Fum74]	Fumasoli, M. Geologie des Gebietes nördlich und südlich der Iorio-Tonalen Linie im Westen
	von Gravedona (Como, Italia). Dissertation, ETH Zürich, 1974.
[FW75]	Frey, M. and Wieland, B. Chloritoid in autochton-paraautochtonen Sedimenten des Aarmas-
	sivs. Schweiz. Mineral. Petrogr. Mitt., 55:407–418, 1975.
[GA77]	Goldman, D. and Albee, A. Correlation of Mg/Fe - partitioning between Garnet and Biotite
	with ${}^{18}O/{}^{16}O$ - partitioning between quartz and magnetite. American Journal of Science,
	277:750–767, 1977.
[Gan 37]	Gansser, A. Der Nordrand der Tambodecke (Geologische und Petrographische Untersuchungen
	zwischen San Bernadino und Splügenpass). Schweiz. Mineral. Petrogr. Mitt., 17:294–523, 1937.
[Gan 68]	Gansser, A. The Insubric Line, a major geotectonic problem. Schweiz. Mineral. Petrogr. Mitt.,
	48:132-143, 1968.
[Gan 83]	Ganguin, J. Etude géologique et pétrographique de la Täschalp. Diplomarbeit, Universität
	Bern, 1983.
[Gar 47]	Gard, J. Recherches géologiques dans le Haut Val d'Anniviers (Gardes de Bordon et Val de
	Moiry). Diplomarbeit, ETH Zürich, 1947.
[Gau76]	Gautschi, A. Geologisch-Petrographische Untersuchungen am Südrand des Malenco-Serpenti-
	nites (Prov. Sondrio, N-Italien). Diplomarbeit, ETH Zürich, 1976.
[Gau79]	Gautschi, A. Geologie und Petrologie des Fedozer Gabbros (Östliche Zentralalpen; Provinz
	Sondrio, Nord-Italien/Kanton Graubünden, Schweiz). Schweiz. Mineral. Petrogr. Mitt., 59:423-
	427, 1979.
[Gau 80]	Gautschi, A. Metamorphose und Geochemie der basischen Gesteine des Bergeller Ostrandes
	(Graubünden, Schweiz/Provinz Sondrio, Norditalien). Dissertation, ETH Zürich, 1980.
[Geh81]	Gehring, A. Zur Geologie des Simplonpassgebietes. Diplomarbeit, Universität Zürich, 1981.
[Gen 78]	Genoud, M. Alpe Veglia (Carte Géologique avec notice explicative). Diplomarbeit, Université
	de Lausanne, 1978.
[Ger 66]	Gerber, R. Der Malencoserpentin östlich des Passo d'Ur. Diplomarbeit, ETH Zürich, 1966.
[GGTT91]	Gebauer, D., Grünenfelder, M., Tilton, G., and Trommsdorff, V. The geodynamic evolution
	of the gar-peridotite/eclogite association of Alpe Arami (Central Alps) from early Proterozoic
	to Olligocene HP-metamorphism. Terra Abstracts, 3:5, 1991.
[GH89]	Giger, M. and Hurford, A. Tertiary intrusives of the central alps: their tertiary uplift, erosion,
	redeposition and burial in the south-alpine foreland. Eclogae geologicae Helvetiae, 82(3):857–
	866, 1989.
$[Ch_{2}75]$	Chart E. Town anothing processing and mired relatile aquilibric attending matemanihism of

[Ghe75] Ghent, E. Temperature, pressure and mixed - volatile equilibria attending metamorphism of staurolite-kyanite-bearing assemblages, Esplanade Range, British Columbia. *Geological Society*
[Ghe76]	of America, Bulletin, 86:1654–1660, 1975. Ghent, E. Plagioklase - garnet - Al ₂ SiO ₅ - quartz: a potential geobarometer - geothermometer.
1 cu 1	American Mineralogist, 61:710-714, 1976.
[Gie84]	Giere, R. Geologie und Petrographie des Bergell-Ostrandes. Diplomarbeit, ETH Zürich, 1984.
[Gig85]	Giger, M. Petrographisch-geologische Untersuchungen der Davoser Dorfberg-Decke und ihrer
	benachbarten tektonischen Einheiten im Gebiet Weissfluhjoch - Schafläger - Dorfberg (Davos, Kanton Graubünden), Lizentiatsarbeit, Universität Bern, 1985
[CT 90]	Cuntli D and Linizar M. Matamanhora in dar Marzna Dagla im Parajah Dig da la Marzna
[GL89]	und Piz Fedoz (Oberengadin). Schweiz. Mineral. Petrogr. Mitt., 69:289–301, 1989.
[GM78]	Gautschi, A. and Montrasio, A. Die andesitisch-basaltischen Gänge des Bergeller Ostrandes
	und ihre Beziehung zur Regional- und Kontaktmetamorphose. Schweiz. Mineral. Petrogr. Mitt., 58:329–343, 1978.
[GN67]	Graeser, S. and Niggli, E. Zur Verbreitung der Phengite in den Schweizer Alben: ein Beitrag zur
[]	Zoneographie der alpinen Metamorphose. «Etages tectoniques». « <i>Etages tectoniques</i> » Collog. à Neuâchtel, pages 89–104, 1967.
[Gr"63]	Grünenfelder, M. Heterogenität akzessorischer Zirkone und die petographische Deutung ihrer
[01 00]	Uran-Blei-Zerfallsalter; 1.) Der Zirkon des Granodioritgneises von Acquacalda (Lukmanier- pass). Schweiz. Mineral. Petrogr. Mitt., 43:235–257, 1963.
[Gre76]	Greller M. Zur Geologie des Camuaberg-Moncucco, W.Domodossola (Provinz Novara, Italien)
	Diplomarbeit, Universität Zürich, 1976.
[Gre85]	Greco, A. Analisi strutturale della parte frontale del ricomprimento pennidico dell'Antigorio
_	in Val Formazza (Novara, Italia). Schweiz. Mineral. Petrogr. Mitt., 65:299–323, 1985.
[Gru70]	Grubenmann, J. Die Bündnerschiefer der Val Torta (Val Bedretto). Diplomarbeit, ETH Zürich 1970
[G5570]	Guntnert, A., Stern, W., and Schwander, H. Isochemische Granitgneisbildung im Maggia-
	Lappen (Lepontin der Zentralalpen). Schweiz. Mineral. Petrogr. Mitt., 56:105–143, 1976.
[GSSF85]	Günthert, A., Schwander, H., Stern, W., and Frank, E. Anorthitgehalt von Plagioklasen in
	Karbonatführenden Gesteinen der Amphibolitfazies der Zentralalpen (Tosa - Tessin - Region).
	Schweiz. Mineral. Petrogr. Mitt., 65:159–210, 1985.
[Gü54]	Günthert, A. Beiträge zur Petrographie und Geologie des Maggia-Lappens (NW-Tessin).
	Schweiz. Mineral. Petrogr. Mitt., 34:1–159, 1954.
[Gun 87]	Guntli, P. Geologische und Petrographische Untersuchungen der Margna südlich des Silsersees.
[]	Oberengadin: II Fedoz Diplomarbeit, ETH Zürich, 1987
[Hä72]	Hänny B. Das Migmatitigebiet der Valle Bodengo (östliches Lepontin). Beiträge zur Geologi-
[110/2]	echen Karte der Schunger 145 1072
[H 1 89]	Schen Rube and Schweiz, 149, 1912.
[11A02]	Ticino Switzerland Dissortation FTH Zürich 1082
	Tictuo, Sutizeruna. Dissertation, ETTI Zurich, 1982.
[Hai58]	Hamer, S. Petrographie des sudwestlichen Gotthardmassivs (zwischen Gotthardpass und
[TT 1 4 4]	Nutenenpass). Schweiz. Mineral. Petrogr. Mitt., 38:255–362, 1958.
[Hal44]	Halm, E. Die Kupfer-Wismut-Lagestätten im obern Val d'Anniviers (Wallis). Dissertation,
	Universität Bern, 1944.
[Hal72]	Hall, W. D. M. The structural Geology and metamorphic history of the lower Pennine Nappes,
	Valle di Bosco, Ticino, Switzerland. Dissertation, University of London, 1972.
[Ham 85]	Hammerschlag, JG. Métamorphisme progressif dans la séquence quartzofeldspathique profi
	Aar-Bergell (Alpes Centrales). Dissertation, Université de Lausanne, 1985.
[Han72]	Hansen, J. Zur Geologie, Petrographie und Geochemie der Bündnerschiefer-Serien zwischen
	Nufenenpass (Schweiz) und Cascata Toce (Italia). Schweiz, Mineral, Petrogr. Mitt., 52:109-
	153 1972
[Han81]	Hansmann W. Geologisch-Petrographische Untersuchungen im südlichen Bergell 9 Val Li-
[IIano1]	annia Dialamentali ETH Zinick 1081
[1140]	goneco. Diplomarbert, E111 Zurich, 1981.
[Has49]	Haster, P. Geologie und Petrographie der Sambuco-Massari-Geologisgruppe zwischen der oberen
[TTD cc]	Leventina und Valle Magia. Schweiz. Mineral. Petrogr. Mitt., 29:50–155, 1949.
[HB69]	Hunziker, C. J. and Bearth, P. Rb-Sr-Altersbestimmung aus den Walliser Alpen, Biotitalters-
	werte und ihre Bedeutung für die Abkühlungsgeschichte der alpinen Metamorphose. Eclogae
	$geologicae \ Helvetiae, \ 62(1):205-\ 222, \ 1969.$
[HDM89]	Hunziker, J., Desmons, J., and Martinotti, G. Alpine thermal evolution in the central and
-	western Alps. In Coward, M., Dietrich, D., and Park, R., editors, Alpine tectonics. volume 45.
	pages 353–367, 1989.
[Hei69]	Heitzmann, P. Die Bündnerschiefer zwischen Val Piora und Val Cassinello (Val Bedretto)
0]	

[Hei72]	Diplomarbeit, 1969. Heim, M. Die Geologie des Albrun-Gebietes im hinteren Binntal (Wallis). Diplomarbeit, ETH Zürich 1972
[Hei75]	Heitzmann, P. Zur Metamorphose und Tektonik im südöstlichen Teil der lepontischen Alpen (Provincia di Como, Italia). Schweiz, Mineral, Petroar, Mitt., 55:467–522, 1975.
[Hei78]	 Heinrich, C. Metamorphose und Strukturen der Cima Lunga-Serie. I Cima di Gagnone - Val Motto. Diplomarbeit. ETH Zürich, 1978.
[Hei82]	Heinrich, C. Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and pelitic rocks. Adula nappe, Central Alps. <i>Contrib Mineral Petrol.</i> 81:30–38, 1982.
[Hei83]	Heinrich, C. Die regionale Hochdruckmetamorphose der Aduladecke, Zentralalpen, Schweiz. Dissertation, ETH Zürich, 1983.
[Hei86a]	Heinrich, C. A. Eclogite Facies Regional Metamorphism of Hydrous Mafic Rocks in the Central Alpine Adula Nappe, <i>Journal of Petrology</i> , 27(1):123–154, 1986.
[Hei86b]	Heitzmann, P. Retrograde Metamorphose und Verformung in der Wurzelzone zwischen Ticino und Mera (Lepontinische Alpen). Schweiz. Mineral. Petrogr. Mitt., 66:111–114, 1986.
[Hei87]	Heitzmann, P. Evidence of late oligocene/early miocene backthrusting in the central alpine "root zone". <i>Geochimica Acta (Paris)</i> , 1(3):183–192, 1987.
[Hel77]	Heller, F. Paläomagnetic data from the Western Lepontine area (Central Alps). Schweiz. Mineral. Petrogr. Mitt., 57:135–143, 1977.
[Her81]	Herren, E. Tektonik und Deformation im Gebiet nördlich des Griesgletschers im Obergoms (Wallis). Diplomarbeit, ETH Zürich, 1981.
[HF80]	Hoernes, S. and Friedrichsen, H. Oxygen and hydrogen-isotopic composition of Alpine- and pre-Alpine minerals of the Swiss Central Alps. <i>Contrib Mineral Petrol</i> , 72:19–32, 1980.
[HFJ89]	Hurford, A., Flisch, M., and Jäger, E. Unravelling the thermo-tectonic evolution of the alps: a contribution from fission track analysis and mica dating. In Coward, M., Dietrich, D., and Park, B., editors. <i>Alpine tectonics</i> , volume 45, pages 369–398, 1989.
[HFLV90]	Heitzmann, P., Frei, W., Lehner, P., and Valasek, P. Crustal indentation in the alps - an overview of reflection seismic profiling in Switzerland. American Geophysical Union/ Bayreuth Proceedings 1990
[HGS75]	Hänny, R., Grauert, B., and Soptrajanova, G. Paleozoic Migmatites affected by High Grade Tertiary Metamorphism in the Central Alps (Valle Bodengo, Italy). A geochronological Study. <i>Contrib Mineral Petrol</i> , 51:173–196, 1975
[Hig64a]	Higgins, A. Fossil remains in stau-kya-schists of the Bedretto-Mulde Bündnerschiefer. <i>Eclogae</i> <i>aeologicae Helvetiae</i> , 57(1):151–156, 1964.
[Hig64b]	Higgins, A. K. The Structural and Metamorphic Geology of the area between Nufenenpass and Basodino, Tessin, Schweiz. Dissertation, Imperial College, London, 1964.
[His75a]	Hiss, B. M. Petrographische Untersuchungen der SBB-Sondierbohrung Biaschina (TI). Meta- morpher Anhydrit im Leventina-Gneiss. Diplomarbeit, Universität Basel, 1975.
[His75b]	Hiss, B. Metamorpher Anhydrit im Leventina-Gneiss. Schweiz. Mineral. Petrogr. Mitt., 55:217–225, 1975.
[His75c]	Hiss, B. Petrographische Untersuchung der SBB-Sondierbohrung Biaschina (TI). Schweiz. Mineral. Petrogr. Mitt., 55:201–215, 1975.
[His77]	Hiss, B. M. Feldspäte als petrogenetische Indikatoren in granitoiden Gneissen des Lepontins. Dissertation, Universität Basel, 1977.
[His78]	Hiss, B. M. Feldspäte als petrogenetische Indikatoren in granitoiden Gneissen des Lepontins. Schweiz. Mineral. Petrogr. Mitt., 58:243–288, 1978.
[HRS80]	Huber, M., Ramsay, J., and Simpson, C. Deformation in the Maggia and Antigorio nappes. Lepontine Alps. <i>Eclogae geologicae Helvetiae</i> , 73(2):593–606, 1980.
[HS82]	Hodges, K. and Spear, F. Geothermometry, geobarometry and the Al ₂ SiO ₅ triple point at Mt. Moosilauke, New Hampshire. <i>American Mineralogist</i> , 67:1118, 1982.
[Hü27]	Hügly, W. Petrographisch-geologische Untersuchungen im östlichen Aarmassiv zwischen Wen- denjoch - Wassen - Erstfeld. Dissertation, Universität Bern, 1927.
[Hü88]	Hügi, M. Petrographie und Mineralogie der Lercheltinizone (Monte-Leone-Decke, Binntal, VS) – Die Quarze der Mineraliengrube Lengenbach (Binntal, VS) und ihre Einschlüsse. Lizentiats- arbeit Universität Bern 1988
[Hub22]	Huber, M. Intrusions- und Kontakterscheinungen im Oberhasle. Beitrag zur Petrographie und Geologie des mittleren Aarmassivs. Dissertation. Universität Bern. 1922.
[Hub81]	Huber, M. I. Geologisch-Strukturelle Untersuchungen im oberen Maggiagebiet (Tessin, Schweiz). Dissertation, ETH Zürich, 1981.

[Hun66]	Hunziker, J. Zur Geologie und Geochemie des Gebietes zwischen Valle Antigorio (Provincia di Novara) und Valle di Campo (Kt. Tessin). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 46:473–552, 1966.						
[Hun69]	Hunziker, J. Rb-Sr Altersbestimmungen aus den Walliser Alpen, Hellglimmer- und Gesamtgesteinsalterswerte. <i>Eclogae geologicae Helvetiae</i> , 62:527–542, 1969.						
[Hun74]	Hunziker, J. Rb-Sr and K-Ar age determination and the alpine tectonic history of the western alps. <i>Mem. Ist. Geol. Mineral. Univ. Padova</i> , 31, 1974.						
[Hur86]	Hurford, A. J. Cooling and uplift patterns in the Lepontine Alps, South Central Switzerland and an age of vertical movement on the Insubric fault line. <i>Contrib Mineral Petrol</i> , 92:413– 427, 1986.						
[Hut21]	Huttenlocher, H. Beiträge zur Petrographie und Geologie des westlichen Aarmassives. Disser- tation Universität Bern 1921						
[IA85]	Irouschek, A. and Armbruster, T. Wagnerite from a metapelitic rock of the Simano nappe (Lepontine Alps, Switzerland), part 1: mineralogy and geochemistry. <i>Schweiz. Mineral. Petrogr.</i> <i>Mitt.</i> 65:137–151–1985						
[IH82]	Irouschek, A. and Huber, M. Pseudotachylite zones in the Leventina gneiss (Lepontine Alps, Ticino, Switzerland). Schweiz. Mineral. Petrogr. Mitt., 62:313–325, 1982.						
[IM85]	Indares, A. and Martignole, J. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. <i>American Mineralogist</i> , 70:272–278, 1985.						
[Iro78]	Irouschek, A. Untersuchungen an Metapeliten der Campo Tencia-Masse unter besonderer Berücksichtigung des Na-Gehaltes von Muskovit. Diplomarbeit, Universität Basel, 1978.						
[Iro80]	Irouschek, A. Zur Verbreitung von Cordierit im zentralen Lepontin. Schweiz. Mineral. Petrogr. Mitt., 60:137–144, 1980.						
[Iro83]	Irouschek, A. Mineralogie und Petrographie von Metapeliten der Simano-Decke unter beson- derer Berücksichtigung cordieritführender Gesteine zwischen Alpe Sponda und Biasca. Disser- tation, Universität Basel, 1983.						
[Jä70]	Jäger, E. Rb-Sr systems in different degrees of metamorphism. <i>Eclogae geologicae Helvetiae</i> , 63(1), 1970.						
[Jä73]	Jäger, E. Die alpine Orogenese im Lichte radiometrischer Altersbestimmungen. Eclogae geologicae Helvetiae, 66(1):11–21, 1973.						
[Jä83]	Jäger, E. Detailed history of tectonic movements in the Alps determined by cooling ages of minerals. 1983.						
[Jea81]	Jeanbourquin, P. <i>Géologie et Pétrographie dans la région du Simplon</i> . Diplomarbeit, Université de Lausanne, 1981.						
[Jen69]	Jenni, JP. Die Minerallagerstätten in der NW-Flanke des Bristenstocks. Lizentiatsarbeit, Universität Bern, 1969.						
[JF59]	Jäger, E. and Faul, H. Age mesurements on some granites and gneisses from the Alps. <i>Bull.</i> geol. Soc. Amer., 70, 1959.						
$[JGN^+61]$	Jäger, E., Geiss, J., Niggli, E., Streckeisen, A., Wenk, E., and Wüthrich, H. Rb-Sr Alter an Gesteinsglimmern der Schweizer Alpen. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 41(2):255–272, 1961.						
[JNW67]	Jäger, E., Niggli, E., and Wenk, E. Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen. Beiträge zur Geologischen Karte der Schweiz, NF134:1–67, 1967.						
[Joo69]	Joos, M. G. Zur Geologie und Petrographie der Monte Giove-Gebirgsgruppe im östlichen Simplon-Gebiet (Novara, Italien). Dissertation, Universität Basel, 1969.						
[Kä28]	Känel, F. Die Arsenkieslagerstätte von Salanfe (Kt. Wallis). Dissertation, Universität Bern, 1928.						
[Kaj73]	Kajel, L. Geologisch-mineralogische Untersuchungen an Karbonvorkommen im westlichen und nördlichen Aarmassiv. Lizentiatsarbeit, Universität Bern, 1973.						
[Kam92]	Kamber, B. Die Gesteine zwischen Nufenenpass (VS/TI) und Griespass (CH/I). Lizentiats- arbeit, Universität Bern, 1992.						
[KBN87]	Klaper, E. and Bucher-Nurminen, K. Alpine metamorphism of pelitic schists in the Nufenen Pass area, Lepontine Alps. <i>Journal of Metamorphic Geology</i> , 5:175–194, 1987.						
[Kel68]	Keller, F. Mineralparagenesen und Geologie der Campo Tencia - Pizzo Forno - Gebirgsgruppe. Dissertation, 1968.						
[Ker47]	Kern, R. Zur Petrographie des Centovalli (Tessin, Schweiz). Dissertation, ETH Zürich, 1947.						
[Keu71]	Keusen, HR. Untersuchungen über die Metamorphose der basischen und ultrabasischen Ge- steine vom Geisspfadpass (passo della rossa). Lizentiatsarbeit, Universität Bern, 1971.						
[Keu72a]	Keusen, H. Mineralogie und Petrographie des metamorphen Ultrabasit-Komplexes vom Geisspfad (Penninische Alpen). Dissertation, Universität Bern, 1972.						

[Keu72b]	Keusen, H. Mineralogie und Petrographie des metamorphen Ultrabasit-Komplexes vom Geisspfad (Penninische Alpen). Schweiz. Mineral. Petrogr. Mitt., 52:385–478, 1972.					
[KG75]	Köppel, V. and Grünenfelder, M. Concordant U-Pb ages of monazite and xenotime from the central alps and the timing of high temperature alpine metamorphism, a preliminary report.					
	Schweiz. Mineral. Petrogr. Mitt., 55:129–132, 1975.					
[KGG81]	Köppel, V., Günthert, A., and Grünenfelder, M. Patterns of U-Pb Zircon and Monazite ages					
	in Polymetamorphic Units of the Swiss Central Alps. Schweiz. Mineral. Petrogr. Mitt., 61:97–119, 1981.					
[Kla80]	Klaper, E. Strukturen, Deformation und Metamorphose in der nördlichen Maggia-Zone. Di- plomarbeit, Universität Zürich, 1980.					
[Kla82]	Klaper, E. M. Deformation und Metamorphose in der nördlilchen Maggia-Zone. Schweiz. Mineral. Petroar. Mitt., 62:47–76, 1982.					
[Kla85]	Klaper, EM. Deformation History and Metamorphic Mineral Growth along the Pennine Frontal Thrust (Wallis, Ticino), Switzerland, Dissertation, ETH Zürich, 1985.					
[Kla86]	Klaper, E. Deformation und Metamorphose im Gebiet des Nufenenpasses, Lepontinische Alpen. Schweiz. Mineral. Petrogr. Mitt., 66:115–128, 1986.					
[Kla90]	Klaper, E. A discussion of contour maps in the Toce subdome of the pennine realm (Switzer-					
[Kle76a]	land, Italy). Schweiz. Mineral. Petrogr. Mitt., 70:349–360, 1990. Klein, H. H. Alumosilikatführende Knauern im Lepontin. Schweiz. Mineral. Petrogr. Mitt.,					
[Kle76b]	50:435-450, 1970. Klein, H. H. Metamorphose von Peliten zwischen Rheinwaldhorn und Pizzo Paglia (Adula- und Simona dada). Schwein Minurel, Between Mitt. 56:457-470, 1076					
[KLR78]	Kissling, E., Labhart, T., and Rybach, L. Radiometrische Untersuchungen am Rotondogranit.					
[V. 299]	Schweiz. Mineral. Petrogr. Mitt., 38:357–388, 1978.					
[K0C82]	alpen). Dissertation, Universität Basel, 1982.					
[Kra70]	Kramers, J. D. Gantergneis und Eistengneiss zwischen Gantertal und Heiligkreuz, Monte- Leone-Decke. Lizentiatsarbeit, Universität Bern, 1970.					
[Kre83]	Kretz, R. Symbols for rock-forming minerals. American Mineralogist, 68:277–279, 1983.					
[Kü74]	Küpfer, T. Zur Geologie und Petrographie der nördlichen Val Punteglias. Lizentiatsarbeit, Universität Bern, 1974.					
[Kub83]	Kubli, T. Geologie und Petrographie der Fornoserie im unteren Val Forno. Diplomarbeit, ETH Zürich, 1983.					
[Kun88]	Kunz, M. Mineralogisch-petrographische Untersuchungen am Westhang des Pizzo di Claro. – Atomare Auslenkungsparameter von Feldspäten mit unterschiedlichem Si/Al-Ordnungsgrad.					
	Lizentiatsarbeit, Universität Bern, 1988.					
[Kup77]	Kupferschmid, C. Geologie auf der Lugnezer Seite der Piz Aul-Gruppe. Dissertation, Universität Bern, 1977.					
[Lab65]	Labhart, T. P. Petrotektonische Untersuchungen am Südrand des Aarmassivs nördlich Naters (Wallis, Schweiz). Dissertation, Universität Bern, 1965.					
[Lar81]	Lardelli, T. Die Tonalelinie im unteren Veltlin. Dissertation, Universität Zürich, 1981.					
[Lau83]	Laubscher, H. Detachment, shear and compression in the central alps. <i>Geol. Soc. Am. Memoir</i> , 158:191–211, 1983.					
[Led43]	Ledermann, H. Petrographische Untersuchungen in der nördlichen Schieferhülle des zentralen Aaregranits im obern Lötschental (westliches Aarmassiv). Dissertation, Universität Bern, 1943.					
[Leu86a]	Leu, W. Lithostratigraphie und Tektonik der nordpenninischen Sedimente in der Region Bedretto - Baceno - Visp. <i>Eclogae geologicae Helvetiae</i> , 79:769–824, 1986.					
[Leu86b]	Leu, W. Die Penninischen Sedimente in der Region Bedretto-Baceno-Visp. Dissertation, Universität Bern, 1986.					
[LG88]	Liniger, M. and Guntli, P. Bau und Geschichte des zentralen Teils der Margna-Decke. Schweiz. Mineral. Petrogr. Mitt., 68:41–54, 1988.					
[Lie92]	Lieberman, J. GridLoc v.1.3. Phase Diagram Plotting Program for Macintosh Computers, 1992.					
[Lin87]	Liniger, M. Geologie und Petrographie der Margna südlich des Silsersees, Oberengadin. Di- plomarbeit, ETH Zürich, 1987.					
[LN66]	Liszkay-Nagy, M. Geologie der Sedimentbedeckung des südwestlichen Gotthard-Massivs im Oberwallis. <i>Ecloque geologicae Helvetiae</i> , 58:901–965, 1966.					
[Lö81]	Löw S. Strukturelle und netrographische Beglachtungen im zentralen Teil der Adula-Decke					

[Lö81] Löw, S. Strukturelle und petrographische Beobachtungen im zentralen Teil der Adula-Decke westlich von San Bernadino (GR/Schweiz). Diplomarbeit, Universität Basel, 1981.

[Lö85]	Löw, S. Struktur der Adula-Stirn: Feldbeobachtungen. Schweiz. Mineral. Petrogr. Mitt., 65:123–125, 1985.
[Lö86]	Löw, S. Ein tektono-metamorphes Entwicklungsmodell der nördlichen Adula-Decke. Schweiz. Mineral Patmar. Mitt. 66:120–134, 1986
[Lö87]	Löw, S. Die tektono-metamorphe Entwicklung der Nördlichen Adula-Decke (Zentralalpen, Schweiz) Poitzäge zur Cooleigehen Korte der Schweiz 161–1087
[LP91]	Lieberman, J. and Petrakakis, K. TWEEQU Thermobarometry: Analysis of Uncertainties and Applications to Granulites from Western Alaska and Austria. <i>Canadian Mineralogist</i> , 29:857– 887, 1991
[Lü65]	Lüthy, H. Geologie der gotthardmassivischen Sedimentbedeckung und der penninischen Bünd- nerschiefer im Blinnental, Rappental und Binntal (Oberwallis). Dissertation, Universität Bern, 1965.
[Mar84]	Marthaler, M. Géologie des unités penniniques entre le val d'Anniviers et le val de Tourtemagne (Valais, Suisse). <i>Eclogae geologicae Helvetiae</i> , 77(2):395–448, 1984.
[Mas86]	Mason, R. Petrology of the Metamorphic Rocks. George Allen & Unwin, London, 1986.
[Mat80]	Matthes, M. Zur Geologie des Simplonpassgebietes. Diplomarbeit, ETH Zürich, 1980.
[Mer79]	Mercolli, I. Le inclusioni fluide nei noduli di quarzo dei marmi dolomitici della regione del Campolungo (Ticino). Dissertation, ETH Zürich, 1979.
[Mer80]	Mercolli, I. Fluor-Verteilung in Tremolit und Talk in den metamorphen Dolomiten des Cam- polungo (Tessin) und ihre phasenpetrologische Bedeutung. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 60:31–44, 1980.
[Mer82]	Mercolli, I. Le inclusioni fluide nei noduli di quarzo dei marmi dolomitici della regione del Campolungo (Ticino). Schweiz. Mineral. Petrogr. Mitt., 62:245–312, 1982.
[Mer85]	Merz, C. Minéralogie et pétrographie de la région de Valle di Campo (Versant Nord entre le Batnall et le Pizzo Dei Croselli). Lizentiatsarbeit, Université de Lausanne, 1985.
[Mil65a]	Milnes, A. Structure and history of the Antigorio nappe (Simplon Group, North Italy). Schweiz. Mineral. Petrogr. Mitt., 45(1):167–177, 1965.
[Mil65b]	Milnes, A. G. Structure and History of the Antigorio Nappe (Simplon Group, North Italy). Dissertation, Universität Basel, 1965.
[Mil74a]	Milnes, A. Post-nappe folding in the northern lepontine alps. <i>Eclogae geologicae Helvetiae</i> , 67:333–348, 1974.
[Mil74b]	Milnes, A. Structure of the Pennine Zone (Central Alps): a new working hypothesis. <i>Mitt. a. d. Geol. Inst. d. ETH u. Uni. Zürich</i> , 203, 1974.
[Mil74c]	Milnes, A. Structure of the Pennine Zone (Central Alps): a new working hypothesis. <i>Bull. geol. Soc. Amer.</i> , 85(2):1727–1732, 1974.
[Mil76a]	Milnes, A. Note on the modal composition of the antigorio gneiss (Lepontine Alps, Northern Italy). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 56:101–103, 1976.
[Mil76b]	Milnes, A. Strukturelle Probleme im Bereich der Schweizer Geotraverse - das Lukmanier-Massiv. Schweiz. Mineral. Petrogr. Mitt., 56:615–618, 1976.
[Mil78]	Milnes, A. Structural zones and continental collision, central alps. <i>Tectonophysics</i> , 47:369–392, 1978.
[Min31]	Minder, W. Beiträge zur Petrographie des mittleren Aarmassivs. Tektonisch-petrographische Studien im Zentralgranit des Haslitales. Dissertation, Universität Bern, 1931.
[Mö69]	Möckel, J. Structural Petrology of the garnet peridotite of Alpe Arami (Ticino), Switzerland. Leidse geologische mededelingen, 42:61–130, 1969.
[MO88]	Mercolli, I. and Oberhänsli, R. Variscan tectonic Evolution in the Central Alps: a working hypothesis. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 68:491–500, 1988.
[Mor81]	Morand, PC. Geologisch-Petrographische Untersuchungen im südlichen Bergell: 1. Val Por- cellizzo (Prov. Sondrio, N-Italien). Diplomarbeit, ETH Zürich, 1981.
[Mor85]	Morariu, D. Deformation und Metamorphose der mesozoischen Metasedimente am West- und Südrand des Aarmassivs (Leukerbad-Ausserberg). Dissertation, Universität Basel, 1985.
[Mou73]	Moussalli, H. Bestimmung der Gitterkonstanten von Hellglimmer in den Tessiner Alpen. Abhängigkeit des Parameters b vom Metamorphosegrad. Diplomarbeit, Universität Basel, 1973.
[MP80]	Milnes, A. and Pfiffner, O. Tectonic evolution of the Central Alps in the cross section St. Gallen-Como. <i>Eclogae geologicae Helvetiae</i> , 73(2):619–633, 1980.
[MS78]	Milnes, A. and Schmutz, H. Structure and history of the Suretta nappe - (Pennine zone, Central Alps) - a field study. <i>Eclogae geologicae Helvetiae</i> , 71(1):19–23, 1978.
[MST87]	Mercolli, I., Skippen, G., and Trommsdorff, V. The tremolite veins of Campolungo and their genesis. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 67:75–84, 1987.

- [Mü58a] Müller, R. Petrographische Untersuchungen in der nördlichen Adula (Ein Beitrag zur Kenntnis der Phengitgneisse, Paragneisse, Amphibolite und Migmatite). Dissertation, Universität Bern, 1958.
- [Mü58b] Müller, R. O. Petrographische Untersuchungen in der nördlichen Adula. Dissertation, Universität Bern, 1958.
- [Mü86] Mützenberg, S. Petrographische und Strukturelle Untersuchungen am Bergell Nordostrand, südlich Maloja. Diplomarbeit, ETH Zürich, 1986.
- [Mul79] Mullis, J. The system methane-water as geologic thermometer and barometer from the external part of the Central Alps. *Bull. Mineral.*, 1979.
- [Mur86] Muralt, R. Mineralogisch-geologische Untersuchungen in der Adula-Decke am Nordhang des San Bernadino-Passes. (Graubünden, Schweiz). Lizentiatsarbeit, Universität Bern, 1986.
- [Nab76] Nabholz, W. Die Bündnerschiefer im Alpen-Querprofil durch das Tessin. Schweiz. Mineral. Petrogr. Mitt., 56:605-613, 1976.
- [Nei48] Neidinger, E. A. Petrographische Untersuchungen im oberen Lauterbrunnental (Berner Oberland). Dissertation, Universität Bern, 1948.
- [Nie31] Niederer, J. Beiträge zur Petrographie des östlichen Aarmassivs. Petrographisch-geologische Untersuchungen im Gebiete zwischen dem Val Clavaniev und dem Val Milar im Bündner Oberland. Dissertation, Universität Bern, 1931.
- [Nig60] Niggli, E. Mineral-Zonen der alpinen Metamorphose in den Schweizer Alpen. Int. geol. Congr. Copenhagen, Rep.21st Sess.Norden, 13:132–138, 1960.
- [Nig65] Niggli, C. R. Petrographie und Petrogenesis der Migmatite und Gneise im südlichen Aarmassiv zwischen Obergesteln und Furkapass. Dissertation, Universität Bern, 1965.
- [Nig70] Niggli, E. Alpine Metamorphose und alpine Gebirgsbildung. Fortschritte der Mineralogie, 47:16–26, 1970.
- [NN65] Niggli, E. and Niggli, C. Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali/Amphibol, chloritoid, Staurolith, Disthen, Sillimanit). Eclogae geologicae Helvetiae, 58:335–368, 1965.
- [Obe80] Oberhänsli, R. P-T Bestimmungen anhand von Mineralanalysen in Eklogiten und Glaukophaniten der Ophiolite von Zermatt. Schweiz. Mineral. Petrogr. Mitt., 60:215–235, 1980.
- [Obe85] Oberhänsli, R. Mineralogy and Geochemistry of Meta-Lamprophyres from the central swiss alps. Habilitationsschrift, Universität Bern, 1985.
- [Obe86] Oberhänsli, R. Geochemistry of meta-lamprophyres from the Central Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 66:315–342, 1986.
- [Obe87] Oberhänsli, R. Mineralogy and Alpine metamorphism of metalamprophyres from the Central Swiss Alps. Schweiz. Mineral. Petrogr. Mitt., 67:321–338, 1987.
- [Osc86] Oschidari, H. Mineralogisch-petrographische und geochemische Untersuchungen am Südrand des Aarmassivs zwischen Oberwald und Ulrichen. Lizentiatsarbeit, Universität Bern, 1986.
- [OSM88] Oberhänsli, R., Schenker, F., and Mercolli, I. Indications of Variscan nappe tectonics in the Aar Massif. *Schweiz. Mineral. Petrogr. Mitt.*, 68:509–520, 1988.
- [Ott81] Ottiger, R. Geologie der Chummehornregion. Diplomarbeit, ETH Zürich, 1981.
- [Par89] Parthier, U. Ingres Datenbank-Management der Zukunft. Chip Special, 1989.
- [PCG89] Pfeifer, H., Colombi, A., and Ganguin, J. Zermatt-Saas and Antrona Zone: A petrographic and geochemical comparison of polyphase metamorphic ophiolites of the West-Central Alps. Schweiz. Mineral. Petrogr. Mitt., 69(2):217–236, 1989.
- [PD85] Petrakakis, K. and Dietrich, H. MINSORT: Formula and endmember calculation and sort of microprobe analyses of common silicates and oxide minerals. *Neues Jahrbuch der Mineralogie.* Mh., 8:379–384, 1985.
- [Per83] Peretti, A. *Geologie und Petrographie der Fornoserie: Piz dei Rossi*. Diplomarbeit, Universität Zürich, 1983.
- [Per85] Peretti, A. Der Monte del Forno-Komplex am Bergell-Ostrand: seine Lithostratigraphie, alpine Tektonik und Metamorphose. Eclogae geologicae Helvetiae, 78(1):23–48, 1985.
- [Pet63] Peters, T. Mineralogie und Petrographie des Totalpserpentins bei Davos. Dissertation, Universität Bern, 1963.
- [Pet68] Peters, T. Distribution of Mg, Fe, Al, Ca and Na in Coexisting Olivine, Orthopyroxene and Clinopyroxene in the Totalp Serpentinite (Davos, Switzerland) and in the Alpine Metamorphosed Malenco Serpentinite (N. Italy). Contrib Mineral Petrol, 18:65–75, 1968.
- [Pfi91] Pfiffner, O. Crustal shortening of the alps along the EGT profile. 1991.
- [PFV⁺90] Pfiffner, O., Frei, W., Valasek, P., Stäuble, M., Levato, L., Du Bois, L., Schmid, S., and Smithson, S. Crustal shortening in the alpine orogen: results from deep seismic relfection profiling

[Phi82]	in the eastern swiss alps, line NFP 20-East. <i>Tectonics</i> , 9(6):1327–1355, 1990. Phillip, R. <i>Geolgie und Petrographie der Bernina (VI: Grevasalvas - Lunghin)</i> . Diplomarbeit, ETH Zürich 1982
[PJ76]	Purdy, J. and Jäger, E. K-Ar-ages on rockforming minerals from the central alps. <i>Mem. Ist.</i>
[PK86]	Geol. Mineral. Univ. Padova, 30:1–30, 1976. Peretti, A. and Köppel, V. Geochemical and lead isotope evidence for a mid-ocean ridge type mineralization within a polymetamorphic ophiolite complex (Monte del Forno, North Italy (Switzgrland) Farth and Planetary Science Letters 80:352–264, 1986
[PS86]	Press, F. and Siever, R. <i>Earth.</i> W.H. Freeman and Company, New York, 4 edition, 1986.
[PS87]	Peters, T. and Stettler, A. Radiometric age, thermobarometry and mode of emplacement of the Totalp peridotite in the Eastern Swiss Alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 67:285–294, 1987.
[PSW74]	Poty, B., Stalder, H., and Weisbrod, A. Fluid Inclusions Studies in Quartz from Fissures of Western and Central Alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 54:717–752, 1974.
[RA79]	Ramsay, J. and Allison, I. Structural analysis of shear zones in an alpinised HercynianGranite (Maggia Lappen, Pennine Zone, Central Alps). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 59:251–279, 1979.
[Raz77]	Raz, U. Metamorphose und Strukturen im Gebiet des Scersen inferiore. Diplomarbeit, ETH Zürich, 1977.
[Reu87]	Reusser, E. Phasenbeziehungen im Tonalit der Bergeller Intrusion (Graubünden, Schweiz/- Provinz Sondrio, Italien). Dissertation, ETH Zürich, 1987.
[Rin92]	Ring, U. The Alpine geodynamic evolution of Penninic nappes in the eastern Central Alps: geothermobarometric and kinematic data. <i>Journal of Metamorphic Geology</i> , 10:33–53, 1992.
[Ros69]	Rosenfeld, J. Stress effects around quartz inclusions in almandine and the piezothermometry of coexisting aluminium silicates. <i>American Journal of Science</i> , 267:317–351, 1969.
[SB71]	Steck, A. and Burri, G. Chemismus und Paragenesen von Granaten aus Granitgneisen der Grünschiefer- und Amphibolitfazies der Zentralalpen. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 51:534–538, 1971.
[Sch84a]	Schaltegger, U. Geologie und Petrographie der Gneiszone von Erstfeld in der Umgebung des Sustenpasses, Aarmassiv (Kt. Uri/Bern). Lizentiatsarbeit, Universität Bern, 1984.
[Sch84b]	Schmutz, L. Mineralbildende Prozesse an einer Erzlagerstätte im Val d'Anniviers (Wallis, Schweiz). Dissertation, Universität Basel, 1984.
[Sch86a]	Schaltegger, U. Voralpine und alpine Mineralbildung in der Gneiszone von Erstfeld (Susten- pass, Aarmassiv); der Mechanismus der K-Ar- und Rb-Sr-Verjüngung alpin umgewandelter Biotite. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 66:395–412, 1986.
[Sch86b]	Schenker, F. Spätpaläozoischer saurer Magmatismus und Beckenbildung im Aarassiv unter kompressiver Tektonik. Dissertation, Universität Bern, 1986.
[Sch88]	Schmidt, M. Petrographie der Ganna Rossa und Strukturen in der Zone von Bellinzona. Diplomarbeit, ETH Zürich, 1988.
[Sch89a]	Schaltegger, U. Geochemische und isotopengeochemische Untersuchungen am zentralen Aare- granit und seinen assoziierten Gesteinen zwischen Aare und Reuss (Aarmassiv, Schweiz). Dis- sertation, Universität Bern, 1989.
[Sch89b]	Schmidt, M. W. Petrography and structural evolution of ophiolitic remnants in the Bellinzona Zone, Southern Steep Belt, Central Alps (CH/I). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 69:393–405, 1989.
[Sha69]	Sharma, R. On Banded Gneisses and Migmatites from Lavertezzo and Rozzera (Valle Verzasca, Canton Ticino). Schweiz. Mineral. Petrogr. Mitt., 49:199–276, 1969.
[SHS68]	Schwander, H., Hunziker, J., and Stern, W. Zur Mineralchemie von Hellglimmern in den Tessineralpen. Schweiz. Mineral. Petrogr. Mitt., 48(2):357–390, 1968.
[Sib71]	Sibbald, T. The structural and metamorphic geology of the Val Piora region, Ticino, Switzer- land. Dissertation, Imperial College, London, 1971.
[Sie84]	Siegenthaler, R. Alter und Geochemie von Glimmern und Feldspäten. Dissertation, Universität Bern, 1984.
[Sim81]	Simpson, C. Ductile shear zones: a mechanism of rock deformation in the Orthogneiss of the Maggia-Nappe, Ticino. Dissertation, ETH Zürich, 1981.
[Sim82]	Simpson, C. The structure of the northern lobe of the Maggia nappe, Ticino, Switzerland. <i>Eclogae geologicae Helvetiae</i> , 75(3):495–516, 1982.
[SJ81]	Steinitz, C. and Jäger, E. Rb-Sr and K-Ar studies on rocks from the Suretta Nappe; Eastern Switzerland. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 61(1):121–131, 1981.

[SO87]	Stille, P. and Oberhänsli, R. Petrology and Alpine metamorphic evolution of the metabasic and ultrabasic rocks in the Berisal crystalline complex (Switzerland). <i>Lithus</i> 20:169–180, 1987.
[SO91]	Staps-Ohnmacht, P. Phasenpetrologie und ¹⁸ O/ ¹⁶ O-Isotopenchemie der Metapelite des Lucomagno-Komplexes (Zentralalpen). Dissertation, Universität des Saarlandes, 1991.
[Soo86]	Soom, M. Geologie und Petrographie von Ausserberg (VS) – Kluftmineralisationen am Südwestrand des Aarmassivs. Lizentiatsarbeit, Universität Bern, 1986.
[Soo90]	Soom, M. Abkühlungs- und Hebungsgeschichte der Externmassive und der penninischen Decken beidseits der Simplon-rhone-Linie seit dem Oligocän: Spaltspurendatierung an Ap-Zir und K/Ar-Datierungen an Bi/Mu (Westliche Zentralalpen). Dissertation, Universität Bern, 1990.
[Spr83]	Spry A Metamorphic Textures Pergamon Press 1983
[St"78]	Stäuble, J. Metamorphose und Strukturen der Cima Lunga Serie (II Val d'Agro). Diplomarbeit, ETH Zürich, 1978.
[Ste64]	Steiger, R. Dating of orogenic phases in the central alps by K-Ar ages of hornblende. <i>Journal of Geophysical Research</i> , 69:5407–5421, 1964.
[Ste66a]	Steck, A. Petrographische und tektonische Untersuchungen am Zentralen Aaregranit und seinen altkristallinen Hüllgesteinen im westlichen Aarmassiv im Gebiet Belalp-Grisighorn. Disserta- tion, Universität Bern, 1966.
[Ste66b]	Stern, W. Zur Mineralchemie von Glimmern aus Tessiner Pegmatiten. Schweiz. Mineral. Petroar. Mitt., 46(1):137–188, 1966.
[Ste69]	Stern, W. Nachträge und Korrekturen zu Mineralchemischen Daten von Glimmern aus den Tessiner Alpen. Schweiz. Mineral. Petrogr. Mitt., 49:341–343, 1969.
[Ste78]	Steck, A. Albit-Oligoklas-Mineralgesellschaften der Peristeritlücke aus alpinmetamorphen Granitgneisen des Gotthardmassivs. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 56:269–292, 1978.
[Ste80]	Steiner, H. Mineralogisch-petrographische Untersuchungen an Gesteinen des Maggia-Lappens (Ostende des Val Sambuco, Ticino). Lizentiatsarbeit, Universität Bern, 1980.
[Ste84a]	Steiner, H. Mineralogisch-petrographische, geochemische und isotopengeologische Untersu- chungen an einem Meta-Lamprophyr und seinem granodioritischen Nebengestein (Matorello- Gneiss) aus der Maggia-Decke. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 64:261–271, 1984.
[Ste84b]	Steiner, H. Radiometrische Altersbestimmungen an Gesteinen der Maggia-Decke (Penninikum der Zentralalpen). Schweiz. Mineral. Petrogr. Mitt., 64:227–259, 1984.
[Ste84c]	Steiner, H. Radiometrische Altersbestimmungen an Gesteinen der Maggia-Decke. Dissertation, Universität Bern, 1984.
[Sti75]	Stille, P. Mineralogisch-petrographische Untersuchungen an den Gesteinen des Berisalkom- plexes (Steinental, Alpe Veglia): geochemische Untersuchungen an den Amphiboliten, radiome- trische Altersbestimmungen an den Berisal-Augengneisen. Lizentiatsarbeit, Universität Bern, 1975.
[Sto86]	Stonebreaker, M. The INGRES Papers: Anatomy of a Relational Database System. Addison-Wesley, 1986.
[Str62]	Strohbach, H. Der mittlere Abschnitt der Tambodecke samt seiner mesozoischen Unterlage und Bedeckung. Geologische, Petrographische und morphologische Untersuchungen und Betrachtun- gen zw. Mesocco (GR) und Campodolcino (I). Dissertation, ETH Zürich, 1962.
[Sua83]	Suana, M. Die Manganerzlagerstätten von Tinizong (Oberhalbstein, Graubünden). Dissertation, Universität Bern, 1983.
[SW67]	Schwander, H. and Wenk, E. Studien mit der Röntgenmikrosonde an basischen Plagioklasen alpiner Metamorphite. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 47:225–234, 1967.
[SW90]	Smith, W. and Wessel, P. Gridding with continuous curvature splines in tension. <i>Geophysics</i> , 55:293–305, 1990.
[TE69]	Trommsdorff, V. and Evans, B. The stable Association Enstatite-Forsterite-Chlorite in Amphibolite Facies Ultramafics of the Lepontine Alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 49(2):325–332, 1969.
[TE72]	Trommsdorff, V. and Evans, B. W. Progressive metamorphism of antigorit schists in the Bergell Tonalite aureole (Italy). <i>American Journal of Science</i> , 272:423–437, 1972.
[TE74]	Trommsdorff, V. and Evans, B. Alpine Metamorphism of Peridotitic Rocks. <i>Schweiz. Mineral.</i> <i>Petrogr. Mitt.</i> , 54:333–352, 1974.
[TE77]	Trommsdorff, V. and Evans, B. Antigorite-Ophicarbonates: Contact Metamorphism in Val- malenco, Italy. <i>Contrib Mineral Petrol</i> , 62:301–312, 1977.
[TE84]	Thompson, A. and England, P. Pressure-temperature-time paths of regional metamorphismII. Their inference and interpretation using mineral assemblages in metamorphic rocks. <i>Journal</i>

	of Petrology, 25:929–955, 1984.					
[TER75]	Trommsdorff, V., Evans, B., and Richter, W. Eklogit/Rodingit-Uebergänge in Ultramafititen der Cima-Lunga-Serie. Schweiz. Mineral. Petrogr. Mitt., 55:572–574, 1975.					
[Teu79]	Teutsch, R. Mineralogisch-petrographische Untersuchungen an Gesteinen der Adula-Decke im Gebiet der Alp d'Arbeola (Mesocco/GR), Lizentiatsarbeit, Universität Bern, 1979.					
[Teu82]	Teutsch, R. Alpine Metamorphose der Misoxer Zone (Bündnerschiefer, Metabasite und gra- nitische Gneise). Dissertation. Universität Bern, 1982.					
[Tha71]	Thakur, V. The structural and metamorphic history of the mesozoic and pre-mesozoic basement rocks of the Molare region. Dissertation. Imperial College, London, 1971.					
[The82]	Thelin, P. Les Gneiss oeilles de la nappe du Grand-St-Bernard: essai d'évaluation des critères susceptibles d'en préciser l'hérédite pré-metamorphique Vol 1: Critères structuraux, texturaux et minéralogiques. Dissertation, Université de Lausanne, 1982.					
[The83]	Thelin, P. Cadre évolutif des évènements magmatico-métamorphique du socle ante-triasique dans le domaine pennique (Valais). Schweiz. Mineral. Petrogr. Mitt., 63:393–420, 1983.					
[Tho76a]	Thompson, A. Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. <i>American Journal of Science</i> , 276:425–454, 1976.					
[Tho76b]	Thompson, P. Isograd patterns and pressure-temperature distribution during regional meta- morphism. <i>Contrib Mineral Petrol</i> , 57:277–295, 1976.					
[Tho 90]	Thoenen, T. Lukmanier-Pass area (Central Alps, Switzerland), Unveröffentl, Daten, 1990.					
[Tr"80]	Trümpy, R. <i>Geology of Switzerland – a guide book.</i> Wepf & Co. Publishers, Basel, New York, 1980.					
[Tro66a]	Trommsdorff, V. Beobachtungen zur Paragenese Forsterit (Klinohumit, Chondrit) - Klinochlor in metamorphen Dolomitgesteinen des Lepontins. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 46(2):421– 430, 1966.					
[Tro66b]	Trommsdorff, V. Progressive Metamorphose kieseliger Karbonatgesteine in den Zentralalpen zwischen Bernina und Simplon. Schweiz. Mineral. Petrogr. Mitt., 46:431–460, 1966.					
[Tro68]	Trommsdorff, V. Mineralreaktionen mit Wollastonit und Vesuvian in einem Kalksilikatfels der alpinen Disthenzone (Claro, Tessin). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 48(3):655–666, 1968.					
[Tro72]	Trommsdorff, V. Change in T-X during Metamorphism of Siliceous Dolomitic Rocks of the Central Alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 52:567–571, 1972.					
[TSU85]	Trommsdorff, V., Skippen, G., and Ulmer, P. Halite and sylvite as solid inclusions in high-grade metamorphic rocks. <i>Contrib Mineral Petrol</i> , 89:24–29, 1985.					
[Val83]	Valenti, G. Geologia e Petrographia della Zona di Bosco Gurin (TI). Diplomarbeit, ETH Zürich, 1983.					
[Van59]	Vanderplas, L. Petrology of the Northern Adula region, Switzerland (with particular reference to glaucophane-bearing rocks). <i>Leidse geologische mededelingen</i> , 24(2):415–602, 1959.					
[Vet90]	Vetter, M. Aufbau betrieblicher Informationssysteme mittels konzeptioneller Datenmodellie- rung. B.G.Teubner Stuttgart, 1990.					
[VO91]	Vance, D. and O'Nions, R. Constraints on prograde and retrograde Alpine thermal histories from precise garnet chronometry. <i>Terra Abstracts</i> , 3:436, 1991.					
[Vol76a]	Voll, G. Recrystallization of quartz, biotite and feldspars from Erstfeld to Leventina nappe, swiss alps and its geological significance. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 56:641–647, 1976.					
[Vol76b]	Voll, G. Structural studies of the Valser Rhine Valley and Lukmanier region and their im- portance for the nappe structure of the Central Swiss alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 56:619-626, 1976.					
[vR71]	von Raumer, J. Das Mont-Blanc-Massiv-Altkristallin im Bereich schwacher alpiner Metamor- phose. Schweiz. Mineral. Petrogr. Mitt., 51:193–225, 1971.					
[VV76]	Vogler, W. and Voll, G. Fabrics and Metamorphism from Tonalite, Granitic Augengneis and Tonale Series at the S-Margin of the Swiss Alps E of Bellinzona. <i>Schweiz. Mineral. Petrogr.</i> <i>Mitt.</i> , 56:635–640, 1976.					
[VV81]	Vogler, W. and Voll, G. Deformation and Metamorphism at the South-Margin of the Alps, East of Bellinzona, Switzerland. <i>Geologische Rundschau</i> , 70:1232–1262, 1981.					
[Wab86]	Waber, N. Mineralogie und Metamorphose in der nördlichen Lukmanier-Decke, Val Piora, Tessin. Lizentiatsarbeit, Universität Bern, 1986.					
[Wal83]	Walther, J. Description and interpretation of metamorphic phase relations at high pressu- re and temperature. 2. Metasomatic reaction between quartz and dolomite at Campolungo, Switzerland. <i>American Journal of Science</i> . 283(A):459–485. 1983.					
[Web66]	Weber, W. Zur Geologie zwischen Chiavenna und Mesocco. Dissertation, ETH und Universität Zürich, 1966.					

[Wen56]	Wenk, E. Die lepontinische Gneissregion und die jungen Granite der Valle della Mera. <i>Eclogae</i> aeologicae Helvetiae, 49:251–265, 1956.
[Wen62]	Wenk, E. Plagioklas als Indexmineral in den Zentralalpen. Schweiz. Mineral. Petrogr. Mitt., 42:139–151, 1962.
[Wen63]	Wenk, E. Klinohumit und Chondrodit in Marmoren der Tessiner Alpen und der Disgrazia- Gruppe. Schweiz. Mineral. Petrogr. Mitt., 43:287–293, 1963.
[Wen65]	Wenk, E. Gefügestudie an Quarzknauern und -lagen der Tessiner Kulmination. Schweiz. Mineral. Petrogr. Mitt., 45(2):467–515, 1965.
[Wen68] [Wen70]	 Wenk, E. Cordierit in Val Verzasca. Schweiz. Mineral. Petrogr. Mitt., 48:455–457, 1968. Wenk, E. Zur Rgionalmetamorphose und Ultrametamorphose im Lepontin. Fortschritte der Mineralogie, 47:431–460, 1970.
[Wen82]	Wenk, E. Tonalite und Granodiorite des Cocco-Zuges. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 62:77–84, 1982.
[Wen86]	Wenk, H. R. Introduction to the Geology of the Bergell Alps with Guide for Excursions. <i>Jber.</i> Natf. Ges. Graubünden, 103:29–90, 1986.
[Wer80]	Werner, D. Probleme der Geothermik im Bereich der Schweizer Zentralalpen. <i>Eclogae geologicae Helvetiae</i> , 73:513–525, 1980.
[Wer86]	Werner, D. Paleotemperatures in the central alps an attempt at interpretation. <i>Lecture</i> notes in Earth Sciences, 5, 1986.
[Wie66]	Wieland, H. Zur Geologie und Petrographie der Valle Isorno (Novara, Italien). Dissertation, Universität Basel, 1966.
[WK69]	Wenk, E. and Keller, F. Isograde in Amphibolitserien der Zentralalpen. Schweiz. Mineral. Petrogr. Mitt., 49:157–198, 1969.
[WKHR76]	Werner, D., Köppel, V., Hänny, R., and Rybach, L. Cooling Models for the Lepontine Area (Central Swiss Alps). <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 56:661–667, 1976.
[WO89]	Werner, D. and Okaya, N. Thermische und dynamische Modelle zur Hebungsgeschichte der Alpen. [abstract]. NFP 20, Bulletin, 8, 1989.
[WRJ77]	Wagner, G., Reimer, G., and Jäger, E. Cooling ages by apatite fission track, mica Rb-Sr and K-Ar dating: the uplift and cooling history of the central alps. <i>Mem. Ist. Geol. Mineral. Univ. Padova</i> , 30, 1977.
[WS91]	Wessel, P. and Smith, W. Free software helps map and display data. <i>EOS Trans. AGU</i> , 72:445–446, 1991.
[WSHS63]	Wenk, E., Schwander, H., Hunziker, J., and Stern, W. Zur Mineralchemie von Biotit in den Tessiner Alpen. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 43:435–463, 1963.
[WWW74]	Wenk, H., Wenk, E., and Wallace, J. Metamorphic Mineral Assemblages in Pelitic Rocks of the Bergell Alps. <i>Schweiz. Mineral. Petrogr. Mitt.</i> , 54:507–554, 1974.
[Wys29]	Wyss, R. Petrographisch-geologische Untersuchungen westlich der Grimsel im Finsteraarhorn- Lauteraarhorrngebiet. Ein Beitrag zur Petrographie und Geologie des westlichen Aarmassivs. Dissertation, Universität Bern, 1929.
[Zeh87]	Zehnder, C. <i>Informationssysteme und Datenbanken</i> . VdF an den Schweizerischen Hochschulen und Techniken, 4 edition, 1987.
$[\mathrm{Zgr}75]$	Zgraggen, P. Petrographische Untersuchngen im Altkristallin der Lauchernalp (NW Aarmas- siv, Lötschental), insbesondere an Serpentiniten und verwandten Gesteinen. Lizentiatsarbeit, Universität Bern, 1975.
[Zin79]	Zingg, A. J. Metamorphose und Strukturen der Cima Lunga Serie. Diplomarbeit, ETH Zürich, 1979.
[ZW85]	Zeitler, P. and Wijbrans, J. A reassessment appraised: comment on "hornblende K-Ar ages and the climax of tertiary metamorphism in the lepontine alps (south central switzerland): an old problem reassessed" by A. Deutsch and R.H. Steiger. <i>Earth and Planetary Science Letters</i> , 76:390–392, 1985.

Literatur

Teil IV Anhang

Anhang A

Tabellen

A.1 Bisherige Temperaturabschätzungen

Publ.	Lokalität	T °C	P [kbar]	Methodik
		Gr	uf, Bergell	
[BND83]	Gruf-Komplex, östl.	600 - 650	3 - 4	T: Grt-Bt, Grt-Crd, 2 Feldspäte;
	Penninische Alpen			P: An-Grs, $Crd = Alm + Sil + Qtz$, Opx-
				Grt
[DBN84]	Gruf Komplex, SE		> 7	verschiedene Etappen auf P-T-Pfad;
	Chiavenna			T: Grt-Bt, Sa-hAb-Solvus; P: Grt-Opx,
				Gleichgewichtsthermodynamik; in Granulit
		830 ± 70	10 ± 2	
		750 ± 100	5 ± 1	
[Reu87]	Bergeller Tonalit		7.5 ± 1	Al-in-Hbl-Barometer im Tonalit

Tab. A.1: Mesoalpine Metamorphose: Gruf, Bergell

Publ.	Lokalität	T°C	P [kbar]	Methodik		
	Lukmaniergebiet					
[ACR75]	Lukmanierpassregion	515 ± 25	4.3	Piezobirefringent Halos von Quarzein-		
				schlüssen in Granat		
[Fis86,	Bohrung, Sta. Maria,	460	5	Paragenese $Mrg + Qtz + Cal + Czo +$		
Fis88]	Lukmanierpass			Pl, Kalkschiefer		
		$528 - 602 \pm 50$	5	Grt-Bt, Kalkschiefer		
		$547 - 566 \pm 30$	5	Cal-Dol, Kalkschiefer		
[Fox74,	Lukmanierpass,	500 - 550	5(-5.5)	verschiedene kalibrierte Mineralreaktio-		
Fox75,	Piora-Mulde			nen und andere petrographische Daten,		
Fre75,				Piezobirefringent Halos von Quarzein-		
Fre78]				schlüssen in Granat		
[Fre69]	Lukmaniergebiet	500 - 550		verschiedene kalibrierte Mineralreaktio-		
				nen und andere petrographische Daten		
[Obe85,	südl. Aarmassiv,		4 - 5	P: Phengitkomponente im Hellglimmer;		
Obe87]	nördl.			T aus Frey et al. (1980); in Lamprophy-		
	Gotthardmassiv,			ren		
	Penninische Decken					
	nördl. Aarmassiv,		2 - 3			
	Ränder der Phengite					
	aus Penninikum					
[SO91]	Lucomagno-	500 - 560	6 - 8	T: Grt-Bt; P: An-Grs		
	Komplex					
		500		T: Sauerstoffisotopen (Qtz-Bt/Qtz-Ms/		
				Bt-Grt/Bt-Ms)		
		680 - 730		T_{max} : Sauerstoffisotopen (Qtz-Ilm/		
				Qtz-Grt)		
[Wab86]	nordwestl.	580	4.5 - 6	T: Grt-Bt P: verschiedene kalibrierte		
	Lukmanier-Decke			Mineralreaktionen		
L		1		1		

Olivone–nördl. V. Mesolcina (nördwestliche und mittlere Adula)				
[Bau82]	Alp de Confin	530	5	Meta-Ultrabasite und Granat-Diopsid-
				Kalzitmarmore
[BL83a]	Alp de Confin,	530	5	Isobar invariante Paragenese $Cal + Czo$
	mittlere			+ Qtz + Pl + Di + Tr in Metamergeln
	Adula-Decke			
[Deu79]	Cima Sgiu, NW	530	4.5 - 5	T: Fehlen von Fo $+$ Tr (Reaktion: 5 Ant
	Adula-Decke			$+ 2 \text{Di} = \text{Tr} + 6 \text{Fo} + 9 \text{H}_2\text{O}$) und Ko-
				existenz von St und Cld; $P = Minimal$
				druck aus Auftreten von Disthen und
				Anwesenheit von Margarit + Quarz in-
				nerhalb der Staurolithzone; Serpentini-
				te und Rodingite
[Kle76b]	Olivone, oberstes	500 - 550	> 5	Verschwinden von Chloritoid; Auftreten
	Hinterrheintal-			von Staurolith und Margarit innerhalb
	Olivone			des Staurolithfeldes
[Lö81]	Alp d'Arbeola,	540	5.1	verschiedene Mineralreaktionen
	westl. San Bernadino			

Tab. A.2: Mesoalpine Metamorphose: Lukmaniergebiet und Olivone–nördl. V. Mesolcina (nördwestliche und mittlere Adula)

Publ.	Lokalität	T °C	P [kbar]	Methodik
			·	
		Nufenen-	und Bedrett	oregion
[Gru70]	Val Torta, westl.	600		Cal-Dol-Thermometer
	Pzo. di Naret			
[GSS76]	Maggia-Lappen,	550 - 600	4 - 5	Mitt. Dr. M. Frey
	südl.			
	Gotthardmassiv			
[Kam92]	südlichstes	470 ± 10	5.2 ± 0.2	Gleichgewichtsdiagramme, verschie-
	Gotthardmassiv,			dene Thermo- und Barometer; in Granat-
	Nufenenzone			schiefern, Hornblendegarbenschiefern und
				Marmoren
	Cornoschuppe,	530 ± 10	6 ± 0.15	
	nördlichste			
	Bedrettozone			
[KBN87]	Nufenenpassgebiet	500	5 - 6	T: Grt-Bt, Bt-Ms-Chl-Qtz; P: An-Grs; in
				Metapeliten
	Morasco, südl.	600	7 - 8	
	Nufenenpass			
[Kla80]	nördliche	550	4	T: Grt-Bt, P: An-Grs
	Maggia-Zone			
[Kla82]	Cristallina, Naret,	560 ± 40	6 - 7	T: Grt-Bt, Cal-Dol; P: An-Grs; in Marmo-
	Bedretto			ren, Kalkglimmerschiefern
[Kla85,	Nufenenzone,	450	5	T: Grt-Bt, Cal-Dol; P: $Hbl + Ky$, An-Grs,
Kla86]	Nufenenpassregion			Bt + Ms + Chl
	nördl. Bedrettozone	480 - 520	6	
	südl. Bedrettozone	550 - 600	6.5 - 8	

	Campolungo, Alpe Sponda, Leventina					
[ET74]	Guglia, Val d'Efra	600	< 7	Phasenübergang Tlc + En \rightarrow Ath		
[FBFM80]	Campo Tencia-Pizzo	600 - 650	6 - 7	Paragenese Ms + Pg + Sil (Irou-		
	Forno			schek, 1978), Sauerstoffisotopentermome-		
				trie (Hoernes & Friedrichsen, 1980) und		
				Stresseffekte um Quarzeinschlüsse in Gra-		
				nat (Rosenfeld, 1969; Adams et al., 1975)		
[His77,	Leventina Gneiss	550 - 650		chemisches und kristallstrukturelles Feld-		
His78]				spatthermometer, homogenisierter Alkali-		
				feldspat und röntgenographisch ermittelter		
				Chemismus		
[Iro83]	Alpe Sponda, Biasca	600 - 650	6 - 10	T: Grt-Bt; P: An-Grs		
[Mer79,	Campolungo	500	1.5	T: Cal-Dol; P: nach Abkühlmodell von		
Mer82]				Werner et al. (1976)		
[Ros69]	Campolungo	600	8	Stresseffekte um Quarzeinschlüsse in		
				Granat		
[TSU85]	Campolungo	500		Halit- und Sylviteinschlüsse		
[Wal83]	Campolungo	500	3.25	T: Cal-Dol; P: Zusammensetzung und Dich-		
				te von Flüssigkeitseinschlüssen; metasoma-		
				tische Reaktionszonen im Dolomit		

Tab. A.3: Mesoalpine Metamorphose: Nufenen- und Bedrettoregion, Campolungo, Alpe Sponda, Leventina

Publ.	Lokalität	T °C	P [kbar]	Methodik
	V. Ca	alanca, südl. '	V. Mesolcin	a, V. Bodengo
[ABLM85]	Soazza, V. Mesolcina	550 - 600	6 - 8	Paragenese Amp + Pl + Ep
[Bla72]	Valle Bodengo,	670 ± 70		Sauerstoffisotopen-Temperatur, Qtz-Ms in
	Garzelli dome			Zweiglimmergneiss
	Valle Bodengo,	400 ± 50		Sauerstoffisotopen-Temperatur, Qtz-Kfs im
	Garzelli dome			Biotit-Andesinschiefer
	Valle Bodengo,	650 ± 100		Sauerstoffisotopen-Temperatur, Qtz-Kfs im
	Soè-dome			Zweiglimmergneiss
	Valle Bodengo	400 ± 50		Sauerstoffisotopen-Temperatur, Qtz-Kfs im
				Biotitgneiss
	Valle Bodengo	600 ± 100		Sauerstoffisotopen-Temperatur, Qtz-Kfs im
				Zweiglimmergranit
	Valle Bodengo	690 ± 80		Sauerstoffisotopen-Temperatur, Qtz-Ms im
				Zweiglimmergranit
[Koc82]	Rossa, Val Calanca	599 ± 35		T: Grt-Bt; P: An-Grs
	P. di Strega	595 ± 26		
	Torrone Alto	664 ± 33	9.5	
	Lostallo (V.	643 ± 35	8.4	
	Mesolcina)			
	V. Bodengo	597 ± 22		-
	V. Grono	645 ± 28	7.2	-
	V. di Darengo	631 ± 44	6.5	-
[TE69]	Promegn, Val Cama,	600 - 650	4	Magnetit-Chlorit-Enstatit-Forsterit-
	GR. östliche			Schiefer
	Lepontische Alpen			~~~~~~
[Teu82]	nördl. Mesocco	500 - 550	6 ± 1	verschiedene Mineralreaktionen in peliti-
[]			• _	schen Bündnerschiefern
	Passo della Forcola	600 - 660	6.8 ± 1	T: Grt-Bt. Cal-Dol: P: An-Grs; in peliti-
	1 0000 00000 00000	000 000	0.0	schen Bündnerschiefern
[Tho76b]	Val Mesolcina	525 - 650	4 - 6	St-, Sil- und And-Isograde
[WWW74]	Val Bodengo Zone	650	6	verschiedene Mineralreaktionen
[]	von Bellinzona	000	Ŭ	
	Von Dominzonia		<u> </u>	
		Regic	n Bellinzor	18
[Bü80.	Corno di Gesero.	690	1	Grt-Bt: in Gneissen
Bü81]	Zone von Bellinzona			
[Ern77]	Alpe Arami	600 - 650	6 - 7	Phasengleichgewichte in Metapeliten und
[inpo incum	000 000	Ŭ .	mafischen Gesteinen um Alpe Arami, sym-
				plektische und amphibolitische Paragene-
				sen im Eklogit
[Hei75]	Zone von Bellinzona	670 - 700	35-5	beginnende Anatevis $Kfs \pm Sil$ in Metane-
[IICHO]	ca 20 km östlich von	010 100	0.0 0	liten und granitoiden Gneissen
	Bellinzona			nich und grannonden enerssen

Tab.	A.4:	Mesoalpine	Metamorphose:	V. Calanca,	südl.	V. Mesolcina,	V. Bodengo,	Region
Belli	nzona	l						

6.5 - 8.5

T: Chl-Breakdown in Peridotit-Rodingit-Blackwall und Grt-Bt-Thermometer in

Peridotit-Amphibolit-Blackwall, P: Auf-

tauchen von $\overline{\text{Sil}} \pm \text{Ky}$

690 - 730

[Sch88, Sch89b] Ganna Rossa, Zone

von Bellinzona

Publ.	Lokalität	T °C	P [kbar]	Methodik
[DD 00	1 6, 11.1	Doldenho	orn, Aarma	
[BB80,	verlauft parallel zum	450		Mc-Sa-Transformationsisograd
BB82a,	Aarmassiv, nordlich			
BB82b]	von Goschenen	250 1 20	<	
[Mor85]	West- und Südrand	350 ± 30	≤ 3.5	T: Cal-Dol; P: Lws-Lmt-Ubergang, tektoni-
	des Aarmassivs			sche Uberdeckung
	(Leukerbad-			
[14, 170]	Ausserberg)		1 0	
[Mul79]	Doldenhornregion	$260 (T_{min})$	1 - 2	Fluid inclusions in Fissure Quartz
[PSW74]	zentrales und	430	2.5-2.8	Fluid inclusions in alpinen Spaltenquarzen;
	südliches Aarmassiv			Minimaldrucke
		Brig Simplon	Vorampio	Binntal
[BNFF82]	Simplonpass	Aso	, verampio	, Dimitar Mrg Otz Cal out Isograd in Bündnorschie
[DIVE [03]	Simplonpass	400	4	form
		520	7	
	5 km SE	520	1	Mrg Otz out Isograd in Bündnorschioforn
	Simplonpass	520	4	Mig-Qtz-out-isograd in Dundheischleien
	Simplonpass	500	7	
	Bosco	620	7	Mrg out Isograd in guarg, und kalgitfroion
	DOSCO	020	'	Gesteinen
[Fra79b]	Brig	400	3 - 4	T· Ms-Po
[IIIIII00]	Steinental	450 - 480	4 - 5	T: Tr-Cal-Isograde Ms-Pg: Druckabschät
	Stementar	400 - 400	U	zung nach der Stabilität des Phengites in
				den granitischen Gneissen
	Kaltwasserpass	500 - 530	5 - 6	Erreichen der St-Isograde: Paragenese: Pg
	raremasserpass	000 000	0 0	+ Kv + Ab + Otz: Stabilität von Mrg +
				Otz
	Cairasca-Verampio	550 - 580	6	Kfs-Isograde: Instabil werden von Mrg +
				Otz
[Fra83]	Simplonpass	520 - 550	6.5	Mrg-Qtz-Cal-out-Isograd in Bündnerschie-
[]	······································			fern: 4-Phasenparagenese $Pg + Kv + Ab +$
				Qtz; Grt-Bt
	Brig	400 - 420	2 - 3	T: Ms-Pg, Cal-Do; P: aus Poty et al. (1974)
	Crevola	580 - 620	6 - 8	verschiedene Thermo- und Barometer
[FS79]	Brig	400	2 - 4	verschiedene Thermo- und Barometer (Mi-
				neralreaktionen)
	Verampio	580 - 600	5 - 7	
[Hü88]	Binntal,	500 - 520		Grt-Bt
	Lerchtelinizone			
[Keu72b,	Geisspfad-	500 - 550	5	Grenze Grünschiefer-Amphibolitfazies, Di-
Keu72a]	Ultramafitit			sthenvorkommen

Tab. A.5: Mesoalpine Metamorphose: Doldenhorn, Aarmassiv, Brig, Simplon, Verampio, Binntal

Publ.	Lokalität	T °C	P [kbar]	Methodik
		-		
		gesamtes Lepor	ntin	
[Col88]	Antronapiana	550		Ti-Gehalt in Amp, Grt-Bt
	Locarno-Cardada	700		
	Bannio/Valle	500		
	Anzasca			
	Arcegno-Locarno	600		
[Ham85]	südl. Aarmassiv	320 - 415		T: Grt-Bt, Grt-Phg, Mag-Ilm, 2- Feldspat; P: Si im Hgl, Paragenese
				Pl + Ms + Bt + Grt
	Berisal-Serie,	420 - 550	7 - 8	
	Simplon			
	V. Vigezzo -	600 - 660	6.5 - 7.5	
	V. Onsernone -			
	Locarno			
	SE Adula-Decke	620 - 670	4	
[HF80]	Göschenen,	460 - 530		Sauerstoffisotopen-Temperatur
	Andermatt			(Qtz-Bt-Paar, Qtz-Mag-Paar)
	Tremolaserie, südl.	$532 - 562 (550 \pm 10)$		Sauerstoffisotopen-Temperaturen
	Gotthardmassiv			
	Campo Blenio	450 - 490		
	Campolungogebiet	500 - 680 (630)		
	Alpe Sponda	660 - 670		
	Molare, Val	570 - 600		
	Leventina			
	Val di Peccia	530 - 620		
	Val Antigorio	410 - 500		
	Visletto, Val Maggia	454 - 500		
	nördl. Rossa, Val	590 - 620		
	Calanca			
	Val di Mera,	700		
	Somaggia			
[Rin92]	Averser	400	2 - 3	T: Auftauchen von Bt in Metagra-
	Bündnerschiefer/Su-			niten; P: Si-Gehalt von Phg
	retta-Decke, nördl.			
	Tambo-Decke			
	Valser	450	5 - 6	Amp-, Chl- und Pl-Zusammenset-
	Bündnerschiefer		-	zung
	nordöstl.	550 - 700	5 - 8	T: Grt-Bt; P: Pl-Bt-Grt-Mst
	Simano-Decke			
[Tro66b]	Simplon	> 450		bekannte Gleichgewichtsdaten
	Zentrales Lepontin	550 - 600		
	Bergeller Alpen	700		
1		570 - 620	3 - 5	Di-Cal-Isograd

Tab. A.6: Mesoalpine Metamorphose: gesamtes Lepontin

eoalpine Metamorphose						
Publ.	Lokalität	T °C	P [kbar]	Methodik		
[Wab86]	nordwestl.	450 - 540	9 - 11	T,P: Reaktion Mrg $+$ Qtz $=$ Ky1 $+$ Zo $+$		
	Lukmanier-Decke			H_2O und $Mrg + Qtz = Ky + Zo$, Si-Gehalt		
				im Hgl, kein St		
[Pet68]	Totalpserpentinit,	900 - 1400	10 - 20	Mg-Fe-Verteilung und Ca/Ca+Mg Verhält-		
	Davos			nisse von Ol, Cpx und Opx		
[PS87]	Totalp Peridotit	830 - 975	10 ± 3	T: Pyroxensolvus, Al-Gehalt von Opx in		
				Lherzolithen; P: Al-Gehalt von Opx koexi-		
				stierend mit Grt		
[CD73]	Allalingabbro	500 - 700	10 - 15	Kristallisationsbedingungen; frühalpine ek-		
				logitische Paragenesen: Ky + Chl + Tlc		
				und $Zo + Ky + Qtz$		
[Obe80]	Zermatt-Saas	400 - 700	10 - 16	T: Grt-Cpx, P: Jd-Komponente im Omp in		
				Eklogiten und Glaukophaniten der Ophio-		
				lite		
[ET78]	Cima di Gagnone	800 ± 50	> 20	T: Pyroxensolvus; Fe-Mg-Austauschgleich-		
				gewichte zwischen Grt, Cpx, Opx und Ol in		
				Granatlherzolith		
[ETR79]	Cima di Gagnone	800	≈ 25	T: Grt-Cpx in Eklogiten, Metarodingiten		
[Ern77]	Alpe Arami	965 - 1000	30 - 50	Grt-Cpx, 2-Pyroxene, Mineralphasengleich-		
				gewichte; in Eklogit		
[Ern78]	Alpe Arami	966 ± 78	40 ± 10	T: verschiedene 2-Pyroxen-Thermo-		
				meter; P: Lherzolitisches petrogenetisches		
				Grid, $Al_2O_3^{cpx}$ und $Al_2O_3^{opx}$ Isoplethen; in		
				Lherzolith		
[Lö86,	nördl. Adula-Decke	380 - 450	6 - 8	Sorreda, prograd		
Lö87]						
-		470 - 540	12 - 15	Zapport 1, zunehmende Temperatur (Gra-		
		1		Pheng, Grt-Amp, Amp-Pl, Zo-An-Grs,		
		1		Na[M4] in Amp)		
		500	12 - 8	Zapport 2, isothermal (Grt-Phg, Grt-Amp,		
				Amp-Pl, Zo-An-Grs, Na[M4] in Amp)		
		500	7	Leis (Grt-Phg, Grt-Amp, Amp-Pl, Zo-An-		
		1		Grs, Na[M4] in Amp)		

Tab. A.7: Eoalpine Metamorphose

eoalpine Metamorphose					
Publ.	Lokalität	T °C	P [kbar]	Methodik	
[Hei82]	Vals	450 - 550	9 - 13	T: Grt-Cpx; P: Jd-Gehalt des Cpx ko-	
				existierend mit Qtz, Al-Gehalt im Opx;	
				in Eklogiten	
	Trescolmen	> 550	> 15		
	Gagnone	> 650	> 15		
	Arami	> 800	> 20		
[Hei83]	Vals	450 - 550	11 - 13		
	Trescolmen, Confin	500 - 650	14 - 22		
	Gagnone	650 - 750	17 - 27		
	Arami, Duria	800 - 900	20 - 35		
[Hei86a]	Vals	450 - 550	10 - 13		
	Confin	450 - 550	12 - 22		
	Trescolmen	550 - 650	15 - 22		
	Gagnone	600 - 700	15 - 25		
	Arami, Duria	750 - 900	18 - 35		
[BLM85]	Groduno, westl.	720	16	T: Ordnungsgrad Cpx, Grt-Cpx; P:	
	Bellinzona			Omp-Gehalt im Cpx	
[ABLM85]	Soazza, Val	$\simeq 675$	10 - 13	verschiedene Etappen auf P-T-Pfad; T:	
	Mesolcina			Grt-Cpx; P: Jd-Gehalt im Cpx; in Eklo-	
				giten	
		$\simeq 770 - \sim 700$	≥ 15 - 10		
[Rin92]	Averser	350 - 400	9 - > 12	T: Grt-Phg; P: Celadonit-Substitution	
	Bündnerschiefer			in Phg, Al ₂ O ₃ -Gehalt von blauem Amp	
	Suretta-Decke	380 - 420	8 - >10		
	nördl. Tambo-Decke	400 - 480	8 - 10	T: Grt-Phg, Grt-Hbl; P: Phg-Zusam-	
				mensetzung in der Paragenese Bt + Kfs	
				+ Qtz + Phg	
	Valser	460 - 560	> 12	T: Grt-Hbl, Grt-Phg; P: Si-Gehalt im	
	Bündnerschiefer			Phg	

Tab. 11.0. Doarphic Michamorphos

A.2 Verwendete Handstücke

Ref#	Probe	Gesteinsname	Koordinaten
Fis86	MF1746	Laminierter Schiefer	704.350/160.700
Fis86	MF1755	Laminierter Schiefer	704.350/160.700
IZ83	AI349	Cordieritgestein mit Paragonit	702.900/142.700
IZ83	AI378	Staurolith-Disthen-Glimmerschiefer	702.200/143.300
IZ83	AI405	Granatfels	703.300/141.500
IZ83	AI518	Staurolith-Disthen-Glimmerschiefer mit Sillim.	708.800/137.200
KBN87	183	Biotit-reicher Granatschiefer	672.000/146.000
Kla82	Fus46	Hellglimmerschiefer	689.490/149.205
Kla82	Fus70	Kalkglimmerschiefer	689.490/149.200
Kla82	Fus80b	Plagioklasschiefer	690.700/149.200
Teu82	RT140	pelitischer Bündnerschiefer	742.800/132.125
Teu82	RT150	kalkiger Bündnerschiefer	743.120/131.860
Teu82	RT159	pelitischer Bündnerschiefer	743.950/131.560
Wab86	NW142	Biotit-Granat-Gneis	698.330/154.730
Wab86	NW158	Biotit-Gneis	698.330/154.730
Wab86	NW33	Staurolith-Disthen-Granat-Glimmerschiefer	698.330/154.730
Wab86	NW76	Granat-Glimmer-Gneis	698.335/154.735
Wab86	NW77	Staurolith-Disthen-Granat-Glimmerschiefer	698.335/154.735
Wab86	NW79	Staurolith-Disthen-Granat-Glimmerschiefer	698.335/154.735
Wab86	NW80	Staurolith-Disthen-Granat-Glimmerschiefer	698.330/154.730
Kla85	Nuf179	Granat-Glimmerschiefer	670.500/146.300
Kla85	Nuf189	Granat-Glimmerschiefer	671.800/146.200
Kla85	Nuf237	Granat-Glimmerschiefer	671.100/142.700
Kla85	Nuf242	Granat-Glimmerschiefer	671.900/143.000
Kla85	Nuf243	Granat-Glimmerschiefer	672.600/143.300
Kla85	Nuf244	Granat-Glimmerschiefer	671.900/141.000
Kla85	Nuf27	Kalkglimmerschiefer	671.400/145.600
Tho90	TT337	Granat-Glimmerschiefer	707.050/155.750
Tho90	TT379	Granat-Glimmerschiefer	709.050/153.500
Tho90	TT416	Granat-Glimmerschiefer	706.850/154.150
Tho90	TT479	Granat-Glimmerschiefer	708.250/153.950
Tho90	TT480	Granat-Glimmerschiefer	708.250/153.950
Tho90	TT513	Granat-Glimmerschiefer	707.450/154.050
Koc82	B367	Glimmerschiefer	734.900/121.600
Koc82	EK45	granatführender Glimmerschiefer	744.500/116.800
Koc82	EK50	Granat-Disthen-Glimmerschiefer	746.400/126.600
Koc82	Kl185	granatführender Glimmerschiefer	725.500/140.300
Koc82	Kl264	Granat-Glimmerschiefer	729.700/151.800
Koc82	Kl285	Granat-Glimmerschiefer	731.800/144.400
Koc82	Kl437	Glimmerschiefer	724.800/133.300
Koc82	Kl98	Granat-Glimmerschiefer	732.700/135.900
Koc82	Th46	Glimmerschiefer	736.800/130.300

Tab. A.9: Handstücke aus $\ensuremath{\mathbf{P}}\xspace{\mathsf{RADIS}}$ mit lepontischen Paragenesen

Ref#	Probe	Gesteinsname	Koordinaten
Sch93	DS10a	Muscovit-Granat-Disthen-Biotit-Gneiss	723.700/121.300
Sch93	DS4	Granat-Sillimanit-Biotit-Muscovit-Gneiss	729.700/122.230
Sch93	DS5	Granat-Disthen-Muscovit-Biotit-Gneiss	729.850/122.250
Sch93	DS6	Granat-Muscovit-Disthen-Biotit-Gneiss	729.350/133.350
Sch93	DS7	Granat-Disthen-Staurolith-Glimmerschiefer	702.775/142.200
Sch93	DS8	Disthen-Staurolith-Granat-Glimmerschiefer	703.525/142.038
Sta91	10	Metapelit	708.500/150.800
Sta91	12	Metapelit	708.100/151.900
Sta91	121a	Metapelit	695.500/156.100
Sta91	133	Metapelit	694.700/154.300
Sta91	14	Metapelit	707.700/152.500
Sta91	25	Metapelit	707.400/153.700
Sta91	38	Metapelit	695.000/154.200
Sta91	59	Metapelit	709.100/150.000
Sta91	77	Metapelit	694.900/152.800

Tab. A.10: Handstücke aus $\ensuremath{\mathbf{P}}\xspace{\mathsf{ARADIS}}$ mit lepontischen Paragenesen

Ref#	Probe	Gesteinsname	Koordinaten
Kam92	BGR 2	Hornblendegarbenschiefer, Nufenenzone	672.330/146.100
Kam92	BGR 6	Granat-Plagioklas-Quarz-Fels, Cornoschuppe	672.310/145.730
Kam92	BGR 17	Granat-Glimmergneis, Gotthardmassiv	672.910/147.310
Kam92	BGR 19	Granat-Glimmergneis, Gotthardmassiv	673.240/148.065
Kam92	BGR 30	Marg-Gr-Mu-Plag-Schiefer, Nufenenzone	672.250/146.135
Kam92	BGR 36	Hornblendegarbenschiefer, Nufenenzone	672.145/146.040
Kam92	BGR 39	Hornblendegarbenschiefer, Bedrettozone	671.330/145.005
Kam92	BGR 55	Para-Granat-Dolomitmarmor, Cornoschuppe	671.970/145.450
Kam92	BGR 61	Bündnerschiefer s.s., Bedrettozone	671.000/144.910
Kam92	BGR 73	Granatschiefer, Nufenenzone	672.190/146.595
Fra79	EF 165	Bündnerschiefer	652.100/128.900
Fra79	EF 273	Bündnerschiefer	648.800/122.710
Fra79	EF 660	Bündnerschiefer	660.981/119.402
Fra79	EF 736	Bündnerschiefer	652.260/117.550
Fra79	EF 853	Bündnerschiefer	649.912/115.260
Fra79	EF 869	Bündnerschiefer	668.905/119.702
Fra79	EF 870	Bündnerschiefer	668.904/119.702
Fra79	EF 876	Bündnerschiefer	668.905/119.700
Fra79	EF 922	Bündnerschiefer	666.931/113.101
Fra79	EF 806	Bündnerschiefer	655.641/125.310

Tab. A.11: Handstücke aus der Literatur mit lepontischen Paragenesen

A.3 Zusammenfassung und Gegenüberstellung der Resultate

Probe	T(Lit)	P(Lit)	Т	Р	X_{H_2O}	Kommentar
MF1746	510 ± 40		576	6000		Grt-Bt, P angenommen
MF1755	513 ± 35		566	6000		Grt-Bt, P angenommen
AI518	622 - 655	6500 - 9000	650	7893		Grt-Bt, An-Grs
AI378	595 ± 27	6800 - 9900	597	6500		Grt-Bt, P angenommen
AI349			560	6922	0.73	3 lin. unabh. R.
AI405	470 - 640		593	7089	0.80	3 (2) lin. unabh. R.
183	450 - 550	5000 - 6000	515	7535	0.70	3(2) lin. unabh. R.
Fus46	560	6800	495	6946		Grt-Bt, An-Grs
Fus70	560	5400	625	6992		3 lin. unabh. R.
Fus80b	560	6800	569	6752		Grt-Bt, An-Grs
RT140	622		637	5585	0.93	3 (2) lin. unabh. R.
RT159	627	6800 ± 1000	610	6621	0.83	3 lin. unabh. R.
RT150	513		477	7000		Grt-Bt, P angenommen
NW142	481		574	6000		Grt-Bt, P angenommen
NW158			618	6000		Grt-Bt, P angenommen
NW33	577		591	6000		Grt-Bt, P angenommen
NW76			571	5835		3 lin. unabh. R.
NW77			578	8862		3 lin. unabh. R.
NW79	558		571	7039	0.59	3 (2) lin. unabh. R.
NW80			564	4793		Grt-Bt u. An-Grs
Nuf179	414 ± 27		498	5566		2 lin. unabh. R.
Nuf189	468		537	6405	0.80	3 (2) lin. unabh. R.
Nuf237	451 ± 30	8095 ± 591	468	6470		3 lin. unabh. R.
Nuf242	493 ± 30	5104 ± 645	536	5971		3 lin. unabh. R.
Nuf243	536 ± 43	7031 ± 445	589	7469		Grt-Bt, An-Grs
Nuf244	599 ± 35	5993 ± 34	633	7496		Grt-Bt, An-Grs
Nuf27	410 ± 25		517	6000		Grt-Bt, P angenommen
TT416			554	6348	0.67	3 lin. unabh. R.
TT379			577	8735	0.70	3 lin. unabh. R.
TT337			543	5971	0.68	4 (3) lin. unabh. R.
TT480			554	6859	0.71	3 lin. unabh. R.
TT479			555	7095	0.71	3 lin. unabh. R.
TT513			590	6431	0.78	3 lin. unabh. R.
EK45	631 ± 44	6500	620	4559		3 lin. unabh. R.
$\mathbf{EK50}$	597 ± 22		789	7000		Grt-Bt, P angenommen
Kl437	664 ± 33	9500	663	8634		3 lin. unabh. R.
Kl264			626	6000		Grt-Cld, P angenommen
Kl285			639	6464		2 lin. unabh. R.
Th46	643 ± 35	8400	598	7897	0.79	3 lin. unabh. R.
B367	645 ± 28	7200	706	7020		3 lin. unabh. R.
Kl185	595 ± 26	7300	601	6362	0.65	5 (4) lin. unabh. R.
K198	599 ± 35		492	7871	0.60	4 (3) lin. unabh. R.

Tab. A.12: Gegenüberstellung der Drucke [bar] und Temperaturen [°C] aus der Literatur (Lit) und den mit PTAX berechneten inklusive X_{H_2O}

Probe	T(Lit)	P(Lit)	Т	Р	X_{H_2O}	Kommentar
DS4			724	5500		Grt-Bt, P angenommen
$\mathbf{DS5}$			696	5328	0.90	3 lin. unabh. R.
DS7			603	6363	0.75	3 lin. unabh. R.
DS8			608	5580	0.75	3 lin. unabh. R.
DS6			618	7404	0.66	3 lin. unabh. R.
DS10a			671	5594		3 lin. unabh. R.
38	450 - 540	10100 - 13800	561	9382	0.68	5 lin. unabh. R.
133	540		545	6000		Grt-Bt, P angenommen
25	561	7900	575	7829	0.68	3 lin. unabh. R.
77	535 - 577	6700 - 7500	570	7727	0.68	3 lin. unabh. R.
12	457		527	7793	0.54	3 lin. unabh. R.
10	478		504	7921		2 lin. unabh. R.
121a			526	4560	0.47	3 (2) lin. unabh. R.
59	504 - 532	7500 - 7800	544	7910		Grt-Bt u. An-Grs
14	570		615	5593		2 lin. unabh. R.

Tab. A.13: Gegenüberstellung der Drucke [bar] und Temperaturen [°C] aus der Literatur (Lit) und den mit PTAX berechneten inklusive X_{H_2O}

Probe	Koordinaten	Т	Р	Kommentar
BGR 2	672.330/146.100	530	5300	2 lin. unabh. R.
BGR 6	672.310/145.730	515	6000	2 lin. unabh. R.
BGR 17	672.910/147.310	460	5500	3 lin. unabh. R.
BGR 19	673.240/148.065	475	5000	3 lin. unabh. R.
BGR 30	672.250/146.135	470	5000	Ms-Pg, P angenommen
BGR 36	672.145/146.040	520	6000	P angenommen
BGR 39	671.330/145.005	520	6000	2 lin. unabh. R.
BGR 55	671.970/145.450	520		Grt-Chl
BGR 61	671.000/144.910	520	6000	
BGR 73	672.190/146.595	510	5700	2 lin. unabh. R.
$\mathbf{EF165}$	652.100/128.900	511		Grt-Bt
$\mathbf{EF273}$	648.800/122.710	555	6430	Grt-Bt, An-Grs
EF660	660.981/119.402	605		Grt-Bt
$\mathbf{EF736}$	652.260/117.550	578	6320	Grt-Bt, An-Grs
$\mathbf{EF853}$	649.912/115.260	566	6540	Grt-Bt, An-Grs
EF869	668.905/119.702	513	6530	Grt-Bt, An-Grs
$\mathbf{EF870}$	668.904/119.702	602	5940	Grt-Bt, An-Grs
$\mathbf{EF876}$	668.905/119.700	604		Grt-Bt
EF922a	666.931/113.101	556	7500	Grt-Bt, An-Grs
$\mathbf{EF922b}$	666.931/113.101	604	7500	Grt-Bt, An-Grs
EF806	655.641/125.310		6070	An-Grs

Tab. A.14: Zusätzlich verwendete Drucke [bar] und Temperaturen [°C] von Proben aus der Literatur

A.4 Beschreibung der neuen Proben

DS4	Koord: 729.700/122.230/0 m.ü.M.						
	unmittelbar an der Strasse nach Roverdo; von Lumino aus ca. 200 m						
	nach älterer Steinbrücke;						
Granat-Silliman	Granat-Sillimanit-Biotit-Muskovit-Gneiss						
Klasse:	Metapelit						
Tekton. Einheit:	*						
Beschreibung:	feinkörniges, gleichkörniges Gestein, das makroskopisch eine undeut-						
	liche Lagenbildung, aber deutliche Schieferung aufweist.						
Gefüge:	Deutliche Schieferung; isolierte Quarz-Faltenscharniere in der Schie-						
0.0	ferung; Crenulationsfalten sind mikroskopisch erkennbar.						
Paragenesenzugehö	öriakeit unbekannt:						
Turmalin: $(<1\%)$	akzessorisch: in der Schieferung eingeregelte, idiomorphe, grüne						
	Stengel;						
Apatit: $(<1\%)$	akzessorisch;						
Zirkon: $(<1\%)$	eingeschlossen;						
Paragenese:							
Fazies/Alter:	amphibolit/lepontisch						
Textur:	Matrixmineralien; Mineralien der Hauptschieferung; posttektonisch,						
	da die Mineralien wohl eine Crenulation abzeichnen, selber aber nicht						
	deformiert sind.						
Granat: (3%)	xenomorph; kleiner Modalanteil; auf den Spaltflächen etwas chloriti-						
	siert;						
Biotit: (10%)	liegt mit Muskovit zusammen in der Schieferung und bildet undeut-						
	liche Lagen; z.T. etwas chloritisiert; E: Zirkon						
Muskovit: (30%)	macht den grössten Anteil am Glimmer aus; liegt mit Biotit zusam-						
	men in der Schieferung und bildet undeutliche Lagen; undeformiert;						
Plagioklas: (10%)	serizitisiert; polysynthetische Zwillinge;						
Sillimanit: (3%)	fibrolithische Varietät; kommt zusammen mit Biotit und Granat vor;						
a (relativ geringer Modalanteil;						
Quarz: (40%)	in den helleren Partien der Lagen angeordnet; Quarz formt isolierte,						
	reliktische Faltenscharniere, die in der Hauptschieferung liegen und						
	von der Crenulationsschieferung verbogen werden;						
Disthen: (2%)	kleiner Modalanteil; kommt zusammen mit Biotit und Granat vor;						
	poikilitisch; stark zersetzt;						

Tab. A.15: DS4, Granat-Sillimanit-Biotit-Muskovit-Gneiss

DS5	Koord: 729.850/122.250/0 m.ü.M.					
	oberhalb der Strasse, im Weinberg;					
Granat-Disthen-Muskovit-Biotit-Gneiss						
Klasse:	Metapelit					
Tekton. Einheit:						
Beschreibung:	feinkörniges, gleichkörniges Gestein, das eine deutliche Schieferung aufweist.					
Gefüge:	deutlich geschiefert; alternierende dunkle (Biotit, Granat, Disthen, Muskovit) und helle (Quarz, Feldspat, Muskovit) Lagen;					
Paragenesenzugehö	irigkeit unbekannt:					
Opake: (<1%)	akzessorisch;					
Apatit: $(<1\%)$	akzessorisch;					
Turmalin: $(<1\%)$	akzessorisch; in der Schieferung eingeregelte, idiomorphe, grüne Stengel:					
Zirkon: $(<1\%)$	eingeschlossen: erzeugt pleochroitische Höfe im Biotit:					
Quarz:	eingeschlossen;					
Paragenese:						
Fazies/Alter:	amphibolit/lepontisch					
Textur:	Matrixmineralien; Mineralien der Hauptschieferung;					
Plagioklas: (25%)	polysynthetische Zwillinge sind selten;					
Granat: (5%)	z.T. hypidiomorph, zeigt jedoch Reaktionsbuchten; tritt zusammen					
	mit Disthen, Sillimanit, Biotit und Plagioklas auf; z.T. vollständig					
	zersetzt;					
Biotit: (12%)	ab; E: Zirkon					
Muskovit: (10%)	frisch; zusammen mit Biotit in der Schieferung eingeregelt;					
Disthen: (5%)	kleine, völlig zersetzte Körner mit vielen Einschlüssen; E: Quarz					
Sillimanit: $(<1\%)$	sehr geringer Modalanteil; tritt zusammen mit Biotit auf;					
Quarz: (40%)	in hellen Lagen angereichert;					
Paragenese:						
Fazies/Alter:	grünschiefer/?					
Textur:	Mineralien ersetzen die Matrixmineralien z.T. in Form von Pseudo-					
	morphosen;					
Chlorit: $(<1\%)$	sehr selten: aus Biotit entstanden:					

Tab. A.16: DS5, Granat-Disthen-Muskovit-Biotit-Gneiss

DS6	Koord: 729.350/133.350/0 m.ü.M.				
	unmittelbar an der Strasse im Val Calanca, nördlich von Cauco;				
Granat-Muskovit-Disthen-Biotit-Gneiss					
Klasse:	Metapelit				
Tekton. Einheit:	Simano-Decke				
Beschreibung:	dunkles stark geschiefertes Gestein mit hellen und dunklen Lagen;				
	Disthen und Granat sind makroskopisch sichtbar.				
Gefüge:	Deutliches s und eine Lineation, in die Biotit, Muskovit, Disthen und				
	Staurolith eingeregelt sind;				
Paragenesenzugehö	rigkeit unbekannt:				
Pyrit: (<1%)	akzessorisch; xenomorph;				
Apatit: $(<1\%)$	akzessorisch; eingeschlossen;				
Granat:	eingeschlossen; chloritisiert;				
Biotit:	eingeschlossen;				
Quarz:	eingeschlossen;				
Opake: $(<1\%)$	eingeschlossen;				
Plagioklas: (15%)	eingeschlossen;				
Zirkon: $(<1\%)$	eingeschlossen; erzeugt pleochroitische Höfe im Biotit;				
Staurolith: $(<1\%)$	nur ein Korn; xenomorph und chloritisiert;				
Paragenese:					
Fazies/Alter:	amphibolit/lepontisch				
Textur:	Matrixmineralien; Mineralien der Hauptschieferung;				
Granat: (3%)	relativ klein, schmutzig und oft hypidiomorph; kommt lagenweise				
	vor, auch in Quarz-Lagen;				
Biotit: (25%)	bildet mit Muskovit zusammen die Schieferung ab; verbogen und				
	stellenweise gekinkt; ganz wenig randlich chloritisiert; E: Zirkon				
Muskovit: (10%)	relativ feinkörnig; zusammen mit Biotit in der Schieferung eingere-				
	gelt;				
Disthen: (10%)	grosse Stengel; relativ stark poikiloblastisch zersetzt; gekinkt oder				
	zerbrochen; E: Granat, Biotit, Quarz, Apatit, Opake, Plagioklas				
Plagioklas: (15%)	polysynthetische Zwillinge;				
Quarz: (35%)	undulöse Auslöschung; gleichkörnig; kommt vorwiegend in den hellen				
	Lagen vor, wo er etwas grobkorniger ist;				
Paragenese:					
Fazies/Alter:	grünschiefer/?				
Textur:	Mineralien ersetzen die Matrixmineralien pseudomorph oder über-				
	wachsen sie.				
Chlorit: $(<1\%)$	aus Biotit entstanden, diesen pseudomorph ersetzend oder quer				
	überwachsend;				
Chlorit:	aus Staurolith entstanden, diesen pseudomorph ersetzend oder quer				
	überwachsend;				

Tab. A.17: DS6, Granat-Muskovit-Disthen-Biotit-Gneiss

DS7	Koord: 702.775/142.200/2230 m.ü.M.					
	links neben Bachrinne;					
Granat-Disthen-Staurolith-Glimmerschiefer						
Klasse:	Metapelit					
Tekton. Einheit:	Simano-Decke					
Beschreibung:	Lagenbildung durch Trennung von hellen Gemengteilen (Plagioklas,					
	Quarz) und dunklen Gemengteilen (Granat, Staurolith, Biotit, Mus-					
	kovit, Disthen). Fast alle Mineralien sind makroskopisch erkennbar.					
Gefüge:	lagig; deutlich geschiefert durch Einregelung von Glimmern.					
Paragenesenzugehö	örigkeit unbekannt:					
Granat:	eingeschlossen; Zum Teil sind die Granate sehr frisch;					
Chlorit:	eingeschlossen;					
Biotit:	eingeschlossen;					
Opake: $(<1\%)$	eingeschlossen;					
Zirkon: $(<1\%)$						
Apatit: $(<1\%)$						
Paragenese:						
Fazies/Alter:	amphibolit/lepontisch					
Textur:	Matrixmineralien; Mineralien der Hauptschieferung;					
Biotit: (15%)	bildet zusammen mit Muskovit die Hauptschieferung ab; entlang von					
	Chlorit-Muskovit-Bahnen gekinkt und etwas chloritisiert;					
Granat: (3%)	xenomorphe, kleine und z.T. zersetzte Körner;					
Muskovit: (15%)	liegt mit Biotit zusammen in der Hauptschieferung und ist eng mit					
	diesem verwachsen;					
Plagioklas: (20%)	polisynthetische Zwillinge sind selten; serizitisiert;					
Staurolith: (8%)	idiomorphe, relativ grosse Körner; z.T. etwas chloritisiert; E: Granat,					
	Chlorit					
Disthen: (4%)	xenomorphe, relativ kleine Körner; geringer Modalanteil; E: Granat,					
	Biotit, Opake					
Ilmenit: $(<1\%)$	kommt akzessorisch in der Matrix vor;					
Quarz: (30%)	Mosaikkörner; kommt überwiegend in den hellen Lagen des Gesteins					
	vor und zeigt die übliche Undulöse Auslöschung;					
Paragenese:						
Fazies/Alter:	grünschiefer/?					
Textur:	Mineralien ersetzen die Matrixmineralien z.T. in Form von Pseudo-					
	morphosen oder überwachsen die Matrixmineralien quer, eine neue					
	Schieferung bildend;					
Chlorit: (3%)	aus Biotit oder Staurolith entstanden; quer zu Biotit und Muskovit					
	gewachsen; z.T. garbenförmiges Erscheinungbild;					
Muskovit:	überwächst z.T. den Biotit quer und bildet dadurch eine zweite Schie-					
	ferung ab!					

Tab. A.18: DS7, Granat-Disthen-Staurolith-Glimmerschiefer

DS8	Koord: 703.525/142.038/0 m.ü.M.					
	Moncucco, Alpe Sponda					
Disthen-Staurolith-Granat-Glimmerschiefer						
Klasse:	Metapelit					
Tekton. Einheit:	Simano-Decke					
Beschreibung:	Lagenbildung durch Trennung von hellen Gemengteilen (Plagioklas,					
	Quarz) und dunklen Gemengteilen (Granat, Staurolith, Biotit, Mus-					
	kovit, Disthen). Fast alle Mineralien sind makroskopisch erkennbar.					
Gefüge:	lagig; deutlich geschiefert durch die Einregelung von Biotit und					
	Muskovit;					
Paragenesenzugeho	örigkeit unbekannt:					
Zirkon: (<1%)	eingeschlossen; erzeugt pleochroitische Höfe im Biotit					
Apatit: $(<1\%)$	akzessorisch;					
Granat:	eingeschlossen;					
Paragenese:	·					
Fazies/Alter:	amphibolit/lepontisch					
Textur:	Matrixmineralien; Mineralien der Hauptschieferung;					
Plagioklas: (20%)	serizitisiert; keine polysynthetischen Zwillinge;					
Staurolith: (5%)	hypidiomorph; zeigt im Kopfbild die typische Spaltbarkeit; parallel					
	zur Lineation und in die Schieferung eingeregelt; in Biotitlagen; ent-					
	lang der zweiten Schieferung z.T. etwas serizitisiert; E: Granat					
Muskovit: (14%)	zeichnet zusammen mit Biotit die Hauptschieferung ab und ist in der					
	Regel mit Biotit verwachsen;					
Granat: (5%)	z.T. entlang der zweiten Schieferung vollständig chloritisiert; manch-					
	mal noch reliktisch vorhanden;					
Biotit: (14%)	bildet die Hauptschieferung ab; parallel zur zweiten Schieferung, die					
	durch Muskovite gezeichnet wird, chloritisiert; E: Zirkon					
Disthen: (2%)	poikiloblastisch;					
Ilmenit: $(<1\%)$	kleine Körnchen; akzessorisch in der Matrix;					
Quarz: (35%)	Mosaikkörner; in den hellen Lagen angereichert;					
Paragenese:						
Fazies/Alter:	grünschiefer/?					
Textur:	Mineralien ersetzen die Matrixmineralien z.T. in Form von Pseudo-					
	morphosen oder überwachsen die Matrixmineralien quer, eine neue					
	Schieferung bildend;					
Chlorit: (5%)	bildet Garben quer zu Muskovit und Biotitlagen; ersetzt Biotit, Gra-					
	nat oder Staurolith;					
Muskovit:	pseudomorph nach Staurolith gewachsen, diesen ersetzend; sehr					
	feinkörnig;					
Muskovit:	überwächst z.T. den Biotit quer und bildet dadurch eine zweite Schie-					
	ferung ab!					
	ferung ab!					

Tab. A.19: DS8, Disthen-Staurolith-Granat-Glimmerschiefer

DS10a	Koord: 723.700/121.300/0 m.ü.M.					
	Castione; Steinbruch Ambrosini;					
Muskovit-Granat-Disthen-Biotit-Gneiss						
Klasse:	Metapelit					
Tekton. Einheit:	Simano-Decke					
Beschreibung:	dunkles, deutlich geschieferter Metapelit; Granat ist relativ selten;					
Gefüge:	deutliche Lagenbildung durch Separation von hellen und dunklen Ge-					
	mengteilen; im mm-Bereich geschiefert;					
Paragenesenzugeho	öriqkeit unbekannt:					
Zirkon: (<1%)	eingeschlossen: winzige Einschlüsse im Biotit: erzeugt pleochroitische					
(<_,)	Höfe im Biotit;					
Turmalin: $(<1\%)$	idiomorphe, grüne Kristalle mit opaken Einschlüssen im Zentrum;					
Sillimanit:	eingeschlossen;					
Quarz:	eingeschlossen;					
Biotit:	eingeschlossen;					
Rutil: (<1%)	eingeschlossen; Einschluss im Biotiteinschluss eines Granates					
Apatit: $(<1\%)$	akzessorisch;					
Pyrit: (<1%)	eingeschlossen;					
Opake: (1%)	eingeschlossen;					
Paragenese:						
Fazies/Alter:	amphibolit/lepontisch					
Textur:	Matrixmineralien; Mineralien der Hauptschieferung;					
Granat: (10%)	stark xenomorph, z.T. sehr stark zersetzt und nur noch reliktisch vor-					
	handen; viele Einschlüsse; E: Biotit, Sillimanit, Quarz, Rutil, Pyrit					
Biotit: (15%)	relativ frisch und nur stellenweise etwas chloritisiert; verbogen; ein-					
	geregelt in Schieferung; E: Zirkon					
Quarz: (30%)	bildet eigene Lagen; oft zusammen mit Muskovit;					
Muskovit: (5%)	kommt vorwiegend in Quarzlagen vor, jedoch auch zusammen mit					
	Biotit; am grössten in Quarz-Lagen; verbogen;					
Disthen: (15%)	grosse, mit vielen Einschlüssen durchsetzte Poikiloblasten; hypidio-					
	morph; stengelig; in die Schieferung eingeregelt; E: Biotit, Quarz,					
	Opake					
Plagioklas: (20%)	serizitisiert; polysynthetische Zwillinge sind häufig; E: Biotit					
Sillimanit: (2%)	vermutlich jünger als der Disthen; vorwiegend fibrolithisch; tritt al-					
	lerdings nur untergeordnet auf;					
Paragenese:						
Fazies/Alter:	grünschiefer/?					
Textur:	Mineralien ersetzen die Mineralien der Hauptschieferung oder wach-					
	sen in deren Druckschatten;					
Chlorit: (1%)	aus Biotit entstanden;					
Opake:	ersetzt zusammen mit Muskovit den Biotit;					
Muskovit:	ersetzt zusammen mit Opaken den Biotit oder kommt in den Druck-					
	schatten der Granate und Disthene vor;					

Tab. A.20: DS10a, Muskovit-Granat-Disthen-Biotit-Gneiss

A.5 Abkürzungen

Act	Aktinolith	\mathbf{Fs}	Ferrosilit	Opx	Orthopyroxen
Ab	Albit	Fts	Ferrotschermakit	\mathbf{Pg}	Paragonit
hAb	Hochalbit	\mathbf{Fl}	Fluorit	Prg	Pargasit
Aln	Allanit	Fo	Forsterit	Per	Periklas
Amp	Amphibol	Gn	Galenit	Phg	Phengit
And	Andalusit	Grt	Granat	Phl	Phlogopit
Adr	Andradit	Gh	Gehlenit	Pgt	Pigeonit
Ann	Annit	Gln	Glaukophan	Pl	Plagioklas
An	Anorthit	Gt	Göthit	\mathbf{Prh}	Prehnit
Atg	Antigorit	Gr	Graphit	Pen	Protoenstatit
Ath	Anthophyllit	Grs	Grossular	Pmp	Pumpellyit
Ap	Apatit	Hl	Halit	Py	Pyrit
Arg	Aragonit	Hs	Hastingsit	\Pr	Pyrop
Aug	Augit	Hd	Hedenbergit	Po	Pyrophyllit
Brl	Beryll	Hem	Hämatit	\Pr	Pyrrhotin
Bt	Biotit	Hgl	Hellglimmer	Qtz	Quarz
Brc	Brucit	Hc	Herzynit	Rbk	Riebeckit
Cam	Klinoamphibol	Hul	Heulandit	Rds	Rhodochrosit
Cpx	Klinopyroxen	Hbl	Hornblende	Rdn	Rhodonit
Cal	Kalzit	Hu	Humit	Rt	Rutil
Chl	Chlorit	Ill	Illit	\mathbf{Sa}	Sanidin
Cld	Chloritoid	Ilm	Ilmenit	Spr	Sapphirin
Chr	Chromit	Jd	Jadeit	Scp	Skapolith
Ctl	Chrysotil	Kls	Kalsilit	Srp	Serpentin
Cen	Klinoenstatit	Kln	Kaolinit	Sil	Sillimanit
Cfs	Klinoferrosilit	Kfs	Kalifeldspat	Sps	Spessartin
Czo	Klinozoisit	Ky	Disthen	Spn	Sphen
Chu	Klinohumit	Lmt	Laumontit	Spl	Spinell
Crd	Cordierit	Lws	Lawsonit	St	Staurolith
Crn	Korund	Lpd	Lepidolit	Stp	Stilpnomelan
$\mathbf{C}\mathbf{v}$	Covellin	Lm	Limonit	Tlc	Talk
Crs	Cristoballit	Mgs	Magnesit	Ttn	Titanit
Cum	Cummingtonit	Mag	Magnetit	Toz	Topaz
Dsp	Diaspor	Mnz	Monazit	Tur	Turmalin
Di	Diopsid	Mrg	Margarit	Tr	Tremolit
Dol	Dolomit	Mc	Mikroklin	Trd	Tridymit
Ed	Edenit	Ms	Muscovit	Ts	Tschermakit
En	Enstatit	Ol	Olivin	Usp	Ulvöspinell
Ep	Epidot	Omp	Omphazit	Ves	Vesuvian
Fa	Fayalit	Oam	Orthoamphibol	W	Wasser
Fac	Ferroaktinolit	Opk	Opake	Wo	Wollastonit
Fed	Ferroedenit	Or	Orthoklas	Zrn	Zirkon

Tab. A.21: Mineralsymbole, modifiziert nach KRETZ (1983)

A.6 Sondenstandards

El	Standard	Xtal	Mineral
Κ	orth88	PET	Orthoklas
Na	albi3	TAP	Plagioklas
Al	anor81	TAP	Plagioklas
Si	qtz5	TAP	Quarz
Mg	fors15	TAP	Olivin
Fe	ilme25	LIF	Ilmenit
Mn	teph44	LIF	Tephroit
Cr	spin33	LIF	Spinell
Zn	zn	LIF	Zink
Ca	anor81	PET	Plagioklas
Ti	Ilme25	PET	Ilmenit
F	phlo35	PC1	Phlogopit

Tab. A.22: Verwendete EMS-Standards

Anhang B INGRES kurz vorgestellt

Der Name INGRES stand ursprünglich für Interactive Graphics and Retrieval System. IN-GRES ist ein relationales Datenbankmanagementsystem (kurz relationales DBMS), das in den Jahren 1973–1983 an der University of California Berkeley entwickelt wurde (STONE, 1986). Von 1981 an wurde INGRES als kommerzielles Produkt von Relational Technology Inc. vertrieben. Im Jahre 1990 hat die Relational Technology Inc. umfirmiert in INGRES Corp. und somit den Namen ihres Hauptproduktes angenommen. Im gleichen Jahr noch wurde die INGRES Corp. von ASK aufgekauft und somit Tochtergesellschaft von ASK. Das DBMS INGRES läuft auf den verschiedensten Rechnern und unter den verschiedensten Betriebssystemen. Im Moment ist bereits Release 6.4 auf dem Markt.

B.1 INGRES, ein relationales DBMS

INGRES ist ein relationales DBMS; mit anderen Worten, es ist ein System, das relationale Datenbanken verwaltet und beliebig vielen Benutzern (Endbenutzern wie Anwendungsprogrammierern) den Zugang zu den Datenbanken ermöglicht, und zwar mit Hilfe einer relationalen Sprache. DATE (1987) umschreibt die Minimalanforderungen für ein relationales System folgendermassen:

In einem relationalen System

- werden die Daten vom Benutzer als Tabellen (und nur als Tabellen) wahrgenommen.
- können die Operatoren, die dem Benutzer zur Verfügung stehen, nur neue Tabellen aus den bereits bestehenden generieren. (Beispielsweise kann eine Menge von Zeilen oder Spalten, die von einem Operator aus einer bestehenden Tabelle extrahiert wird, wieder als Tabelle angesehen werden.)

Im CHIP SPECIAL werden noch weitere Regeln aufgeführt, denen ein Datenbanksystem genügen sollte, damit man es mit Recht «relational» nennen darf. Darauf soll an dieser Stelle jedoch nicht eingegangen werden.

B.1.1 Relationale Datenbanken

Eine relationale Datenbank besteht nur aus einer Sammlung von Tabellen (formaler auch Relationen genannt).

Eine Tabelle (Relation) besteht aus einem Kopf und einem Körper. Der Kopf besteht aus einer festen Menge von Spaltenüberschriften (Attributen), die die Wertebereiche (Domänen)

der Daten in den jeweiligen Spalten bezeichnen. Der Körper besteht aus einer zeitlich veränderlichen Liste von Werten (Tupeln).

Eine genaue, formale Beschreibung des relationalen Modells folgt in Kapitel C auf Seite 181.

B.1.2 Relationale Sprachen

INGRES ermöglicht dem Benutzer den Zugang zu den Datenbanken mit Hilfe der beiden relationalen Sprachen QUEL (Query Language) und SQL (Structured Query Language). Relationale Operationen – Operationen, welche Daten sowohl definieren als auch manipulieren – können in beiden Sprachen formuliert werden. QUEL ist eine INGRES-spezifische Sprache, SQL hat sich jedoch als internationaler Standard durchsetzen können. Relationale Sprachen decken vier Aufgabenbereiche ab:

Queries: Fragen an die Datenbank.

- DDL: Data Definition Language, dient zum Erstellen von Tabellen.
- **DML:** Data Manipulation Language, dient zur Manipulation der Daten (hinzufügen, verändern, löschen).
- **DCL:** Data Control Language, dient zur Vergabe von Privilegien an die verschiedenen Benutzer einer Datenbank (Datenschutz und Datensicherheit).

Relationale Sprachen sind mengenorientierte Sprachen, d.h. mit einem Befehl wird nicht nur ein einziger Datensatz betroffen, sondern eine Menge von Datensätzen.

Mengenorientierte Sprachen werden oft auch als nichtprozedurale oder deskriptive Sprachen bezeichnet, weil der Benutzer sagt, *was* er will und nicht *wie*. Das *Wie*, die Art und Weise des Zugriffsweges, wird automatisch vom DBMS besorgt. Diese Sprachen bewegen sich folglich auf einem höheren Abstraktionsniveau als die herkömmlichen Programmiersprachen wie z.B Pascal, Fortran usw. Dadurch kommen sie jedoch der natürlichen Sprache bedeutend näher, sind somit sehr benutzerfreundlich und auch von Nichtinformatikern leicht zu erlernen.

QUEL- wie SQL-Befehle können sowohl interaktiv mit Hilfe des TERMINAL MONITORS (vgl. Kapitel B.2.2 auf Seite 179) eingegeben als auch in Anwendungsprogrammen eingebettet werden, die in einer herkömmlichen Programmiersprache abgefasst sind. In diesen Fällen spricht man von EQUEL (Embedded QUEL) bzw. Embedded SQL. Die Anwendungsprogramme können somit über die eingebetteten Befehle direkt auf Daten in der Datenbank zugreifen.

B.2 System-Struktur

Das Datenbanksystem INGRES besteht im wesentlichen aus zwei Komponenten:

dem Backend: dem Datenbankmanager oder Server,

den Frontends: der Mensch-Maschine-Schnittstelle.

Beide werden im folgenden kurz vorgestellt.

B.2.1 Das Backend

Beim Backend handelt es sich um das eigentliche relationale DBMS. Es stellt sämtliche grundlegenden Funktionen eines Datenbanksystems zur Verfügung. So muss es alle Kommandos der relationalen Sprachen unterstützen und ist für die richtige Verarbeitung und den eigentlichen Datenzugriff verantwortlich. Queries – sie können interaktiv über den TER-MINAL MONITOR eingegeben worden sein oder von einem Anwendungsprogramm (beides Frontends, vgl. Kapitel B.2.2 auf Seite 179) stammen – werden dem Backend zur weiteren Verarbeitung übergeben. Die Query-Verarbeitung im Backend stellt im Detail einen äusserst komplexen Prozess dar, der sich grob jedoch in vier Schritte unterteilen lässt:

- **Parser:** Zuerst wird die Query auf ihre Syntax untersucht. Falls keine Fehler vorliegen, erzeugt der Parser den «Query-Tree», eine INGRES-interne Darstellung der ursprünglichen Query.
- Query Modifikation: Anschliessend wird der Query modifiziert, indem er um alle vorhandenen Datenschutz- und Integritätsbedingungen erweitert wird, die für die einbezogenen Tabellen vorliegen.
- **Optimierung:** Im nächsten Schritt sucht das Backend aufgrund der auszugebenden Tabellenspalten die optimale Zugriffsstrategie für den Query. Ebenso wird versucht, sowohl die Plattenzugriffe als auch die CPU-Zeit möglichst in Grenzen zu halten. INGRES generiert dann einen Query-Ausführungs-Plan aufgrund der gewählten Zugriffsstrategie.

Ausführung: Erst jetzt wird der Plan ausgeführt und die Daten aus der Datenbank geholt.

Anschliessend werden die Daten an die fragende Stelle (Frontend) zurückgereicht.

Die Informationen, die zur Optimierung der Queries notwendig sind, speichert INGRES in einem speziellen Set von Tabellen, dem INGRES Data Dictionary.

Wie bereits oben erwähnt, enthalten die QUEL- oder SQL-Befehle keinerlei Andeutungen, wie ein Query ausgeführt werden soll; sie sagen nur, was der Benutzer will, und überlassen die Erarbeitung des Zugriffsweges dem DBMS. Dadurch erhält das System einen hohen Grad an physischer Datenunabhängigkeit: die Benutzer und Anwendungsprogramme sind unabhängig von der physischen Datenstruktur! Folglich kann die physische Datenstruktur verändert werden, ohne dass die Anwendungsprogramme beeinflusst werden.

B.2.2 Die Frontends

INGRES beschränkt sich nicht nur auf die Bereitstellung eines mächtigen Datenverwaltungssystems, sondern stellt zusätzlich ein *Anwendungsentwicklungs-System* zur Verfügung: die Frontends. Die Frontends bestehen aus einer Reihe von vollständig aufeinander abgestimmten Softwarewerkzeugen (Subsysteme), die sowohl dem Endbenutzer als auch dem Anwendungsprogrammierer zur Verfügung stehen. Dabei verwenden Endbenutzer wie Programmierer die gleiche, integrierte Benutzeroberfläche. Die meisten dieser Subsysteme werden über Bildschirmmasken (Bildschirmformulare) bedient:

- **INGRES/TABLES:** definieren, überprüfen von Tabellen, manipulieren von Daten und schreiben von Reporten.
- **INGRES/FORMS:** definieren und editieren von Bildschirmformularen.

INGRES/REPORTS: definieren und schreiben von Reporten.
INGRES/APPLICATIONS: Entwicklung von Anwendungen.

INGRES/QUERY: abfragen, verändern, eingeben von Daten.

TERMINAL MONITOR: interaktive Eingabe von QUEL- oder SQL-Befehlen.

Diese Subsysteme können individuell vom Betriebssystem aus oder insgesamt über eine integrierte Anwendung namens INGRES/MENU aufgerufen werden. Anwendungen, die z.B. mit Hilfe von INGRES/APPLICATIONS erstellt wurden, können ihrerseits wieder als Frontends bezeichnet werden.

B.2.3 Verteilte Datenbanken

Normalerweise unterhält ein Unternehmen mehrere Computer, so dass die Daten des Unternehmens auf mehrere Maschinen verteilt abgespeichert sein können. Oft ist es zudem notwendig, dass Benutzer der einen Maschine auf eine Datenbank einer anderen Maschine zugreifen müssen.

INGRES unterstützt das Konzept der verteilten Datenbanken mit INGRES/NET und IN-GRES/STAR; der Zugriff auf die Daten bleibt trotz der Verteilung transparent (Der Benutzer benötigt keinerlei Kenntnisse über den Ort der Speicherung!), und die relationale Sicht auf alle Daten des Rechnernetzes bleibt gewährleistet.

Eine neue Gateway-Technologie erlaubt sogar den Einbezug von fremden Datenbanken und Fremddateisystemen in eine verteilte INGRES-Datenbank.

Anhang C

Das relationale Modell

Das relationale Modell beschreibt *die Art und Weise, wie Daten zu sehen sind*. Es handelt sich um eine Vorschrift, wie Daten zu repräsentieren sind und wie ihre Repräsentation zu manipulieren ist. Das relationale Modell betrifft drei Aspekte der Daten: die Datenstruktur, die Datenintegrität und die Datenmanipulation.

Vor der genauen Erläuterung dieser drei Aspekte folgen jedoch zunächst noch einige Definitionen, die für das weitere Verständnis unerlässlich sind.

C.1 Definition der Konstruktionselemente

In diesem Kapitel werden die Konstruktionselemente eingeführt, mit deren Hilfe sich die Realität in einer hardware- und softwareunabhängigen Weise beschreiben lässt. Sie bilden die grundlegenden Bausteine eines Datenmodells.

Der besseren Verständlichkeit halber werden zuerst die Konstruktionselemente erläutert, die zur Darstellung von Einzelfällen dienen. Diese Konstruktionselemente betreffen exemplarspezifische Feststellungen z.B. folgender Art: «Das Mineral mit dem Namen X kommt im Handstück Y vor».

Die folgenden Definitionen stammen alle aus VETTER (1990), DATE (1987) oder ZEHNDER (1987). Illustriert werden sie mit Beispielen aus der Geologie.

- Entität: Eine Entität ist ein individuelles und identifizierbares Exemplar von Dingen, Personen oder Begriffen der realen oder der Vorstellungswelt. Beispiele: eine Publikation, ein Handstück, ein Mineral, ...
- **Eigenschaft:** Eine Eigenschaft wird Entitäten zugeordnet und ermöglicht damit deren Charakterisierung, Klassierung und Identifizierung. Eine Eigenschaft hat einen Namen und einen, eventuell mehrere Eigenschafts*werte*. *Beispiele für die Entität «Mineral»: NAME, HÄRTE, FARBE, BRUCH, ...*
- **Faktum:** Ein Faktum ist eine Behauptung, derzufolge eine Entität für eine Eigenschaft einen bestimmten Eigenschaftswert aufweist. Beispiele für die Entität «Mineral»: NAME/Granat, HÄRTE/7, FARBE/rot, ...
- **Beziehung:** Eine Beziehung verknüpft wechselseitig zwei oder mehr Entitäten. Beispiele: <Handstück, Mineral>; <Publikation, Autor>; ...

Eine Abbildung der Realität mit Konstruktionselementen zur Darstellung von Einzelfällen ist jedoch äusserst mühsam und kommt deshalb in der Praxis nicht zur Anwendung. Man verwendet Konstruktionselemente, die stellvertretend für viele Einzelfälle stehen können, denn damit lassen sich allgemeingültige Aussagen der folgenden Art formulieren: «Ein Mineral hat einen Namen und kommt in einem Handstück vor».

Entitätsmenge: Eine Entitätsmenge ist eine eindeutig benannte Sammlung von Entitäten, die aufgrund gleicher Eigenschaften (nicht aufgrund gleicher Eigenschaftswerte!) charakterisiert werden.

Beispiel: Alle Mineralien werden aufgrund der gleichen Eigenschaften charakterisiert und können folglich als Entitätsmenge namens «Mineral» gelten.

- **Domäne:** Eine Domäne ist eine eindeutig benannte Sammlung der zulässigen Eigenschaftswerte (Wertebereich) einer Eigenschaft. *Beispiel: die Domäne «WERT» der Eigenschaft «HÄRTE»: 1, 2, 3,..., 10.*
- **Entitätsattribut:** Ein Entitätsattribut ist die Menge aller Fakten, die durch Zuordnung von Eigenschaftswerten einer bestimmten Domäne (möglicherweise mehrerer Domänen) zu den Entitäten einer Entitätsmenge zustande kommen.

Anders ausgedrückt: Ein Entitätsattribut stellt die Beziehung zwischen einer Entitätsmenge und einer Domäne dar.

Beispiel: «HÄRTE»: Beziehung zwischen der Entitätsmenge «Mineral» und der Domäne «WERT».

Beziehungsmenge: Eine Beziehungsmenge ist eine eindeutig benannte Sammlung von Beziehungselementen des gleichen Typs. In der Regel sind an einem Beziehungselement zwei Entitäten von zwei Entitätsmengen beteiligt.

Beispiel: An den Beziehungselementen der Beziehungsmenge «Schreibt» sind Entitäten der Entitätsmengen «Publikation» und «Autor» beteiligt. So kommt zum Ausdruck, welcher Autor welche Publikation schreibt.

Beziehungsattribut: Ein Beziehungsattribut ist die Menge aller Fakten, die durch Zuordnung von Eigenschaftswerten einer bestimmten Domäne (möglicherweise mehrerer Domänen) zu den Beziehungselementen einer Beziehungsmenge zustande kommen. Anders ausgedrückt: Ein Beziehungsattribut stellt die Beziehung zwischen einer Be-

ziehungsmenge und einer Domäne dar. Beispiel: Die Beziehungsmenge «Schreibt» enthält das Beziehungsattribut «REIHEN-

FOLGE», wodurch zum Ausdruck kommt, in welcher Reihenfolge die Autoren aufzuführen sind.

Tabelle C.1 veranschaulicht in einer Gegenüberstellung diese Konstruktionselemente.

Konstruktionselemente	
den Einzelfall betreffend	viele Einzelfälle betreffend
Entität	Entitätsmenge
Beziehung	Beziehungsmenge
Eigenschaft mit Eigenschaftswert(en)	Domäne (oder auch Wertebereich)
Faktum	Attribut (Entitäts- oder Beziehungsattribut)

Tab. C.1: Gegenüberstellung der Konstruktionselemente

Den Entitäts- wie auch den Beziehungsattributen können verschiedene Arten von Beziehungen, sogenannte Assoziationstypen, zugrunde liegen. Man unterscheidet:

- Einfache Assoziation (Typ 1): Eine einfache Assoziation liegt vor, wenn jedes Element der Menge A jederzeit mit einem Element der Menge B in Beziehung steht. Beispiel: Menge A: Mineral, Menge B: Name. (Jedes Mineral weist genau einen Namen auf.)
- Konditionelle Assoziation (Typ C): Eine konditionelle Assoziation liegt vor, wenn ein Element in A höchstens mit einem, möglicherweise auch keinem Element in B in Beziehung steht.

Beispiel: A: Mineral, B: Modalanteil. (Jedes Mineral stellt seinen Volumen-Anteil an den Modalbestand. Vielleicht ist der Modalanteil jedoch noch nicht abgeschätzt worden.)

Komplexe Assoziation (Typ M): Eine komplexe Assoziation liegt dann vor, wenn ein Element in A mit beliebig vielen (also auch null oder nur einem) Element(en) in B in Beziehung steht.

Beispiel: A: Mineral, B: Mineraleinschlüsse.

Von Bedeutung ist auch das Prinzip der Abbildung. Abbildungen liegen den Beziehungsmengen zugrunde:

Abbildung: Eine Abbildung, die die Mengen A und B involviert, besteht aus einer Assoziation von A nach B und der dazu inversen Assoziation. Analog zu den verschiedenen Assoziationstypen unterscheidet man die Typen (1:1), (1:C), (1:M), (C:1), (C:C), (C:M), (M:1), (M:C), (M:M).

Beispiel: An den Beziehungselementen der Beziehungsmenge «Schreibt» sind Entitäten der Entitätsmengen «Publikation» und «Autor» beteiligt. «Schreibt» ist vom Typ (M:M), da ein Autor bei mehreren Publikationen mitgewirkt haben kann und eine Publikation von mehreren Autoren verfasst worden sein kann.

C.2 Relationale Datenstruktur

Auf der Basis dieser Definitionen kann nun der Begriff Relation definiert werden.

Relation: Eine Relation ist eine Menge von Tupeln. (Ein Tupel ist eine Liste von Werten.) Normalerweise ordnet man die Tupel tabellenförmig an, so dass jede Tabellenzeile einem Tupel entspricht und jede Kolonne Werte ein und derselben Domäne aufweist.

Eine Relation wird folgendermassen charakterisiert:

- Sie weist einen eindeutigen Namen auf.
- Sie hat 0 n Tupel (Tabellenzeilen). Im Gegensatz zu einer Tabelle ist die Reihenfolge der Tupel jedoch bedeutungslos, denn die Tupel werden aufgrund von Werten, nicht aufgrund einer Position angesteuert.
- Sie weist 0 m Attribute (Kolonnen) auf. Auch die Reihenfolge der Attribute ist bedeutungslos, da sie aufgrund eines Attributnamens und nicht aufgrund einer Position angesteuert werden.
- Die Attributswerte, die ein bestimmtes Attribut enthält, stammen alle aus der gleichen Domäne und sind folglich vom gleichen Typ.

- Jedes Attribut hat einen eindeutigen Namen, der mit dem Namen der Domäne übereinstimmt.
- Eine Relation hat mindestens einen Schlüssel (vgl. Kapitel C.3).

C.3 Relationale Datenintegrität

C.3.1 Die Integritätsregeln des relationalen Modells

In einer Menge kann ein Tupel nur einmal vorkommen, eine Relation darf deshalb keine doppelten Tupel aufweisen. Ein Tupel ist mit Hilfe eines *Schlüssels* eindeutig zu identifizieren. Angenommen eine Relation R enthalte die Attribute $A_1, A_2, ..., A_n$. Das Set der Attribute $K = (A_i, A_j, ..., A_k)$ gilt dann und nur dann als *Schlüsselkandidat* der Relation R, wenn die folgenden Bedingungen erfüllt sind:

- **Einmaligkeit:** Zu keiner Zeit weist die Relation R zwei Tupel mit der gleichen Attributskombination K auf.
- **Minimalität:** Keines der Attribute aus K kann aus R entfernt werden, ohne die Einmaligkeit des Tupels zu zerstören.

Jede Relation weist einen Schlüsselkandidaten auf, denn mindestens alle ihre Attribute zusammen erfüllen die obigen Bedingungen. Ein geeigneter Schlüsselkandidat wird zum *Primärschlüssel* der Relation gewählt und zur Identifikation der Tupel verwendet.

Kommt in einer Relation R ein Attribut (oder eine Attributskombination) vor, die in einer anderen Relation als Primärschlüssel in Erscheinung tritt, so nennt man dieses Attribut *Fremdschlüssel* der Relation R.

Die beiden Integritätsregeln des relationalen Modells lauten wie folgt:

- Entitätsintegrität (Entity integrity): Kein Attribut, das Teil des Primärschlüssels ist, darf Nullwerte enthalten¹.
- Beziehungsintegrität (Referential integrity): Enthält eine Relation R_2 einen Fremdschlüssel FS, der einem Primärschlüssel PS einer anderen Relation R_1 entspricht, so muss dieser Fremdschlüssel FS entweder
 - 1. den gleichen Wert aufweisen wie PK in einem Tupel von R_1 oder
 - 2. gleich Null sein.

C.3.2 Erhalt der Integrität bei Löschung

Damit die zweite Integritätsregel erfüllt bleibt, muss beim Löschen (oder Modifizieren) eines Primärschlüsselwertes dem entsprechenden Fremdschlüssel besondere Beachtung geschenkt werden. Es gibt die folgenden drei Möglichkeiten:

Weitergabe der Löschung (abgekürzt: *wl*): Falls Tupel existieren, deren Fremdschlüsselwert dem gelöschten Primärschlüsselwert entsprechen, so werden diese ebenfalls gelöscht.

¹Ein *Nullwert* (englisch: *Null Value*) bedeutet «nicht existent» und darf nicht verwechselt werden mit einem *numerischen 0-Wert* (englisch: zero).

- Bedingte Löschung (abgekürzt: *bl*): Die Löschung wird gar nicht akzeptiert, solange noch Fremdschlüssel existieren, die dem zu löschenden Primärschlüssel entsprechen.
- Nullsetzung bei Löschung (abgekürzt: *nl*): Falls für den Fremdschlüssel Nullwerte zugelassen sind, werden alle Fremdschlüssel, die dem zu löschenden Primärschlüssel entsprechen, auf Null gesetzt.

C.4 Relationale Datenmanipulation

Sämtliche zur Verfügung stehenden Operatoren der *relationalen Algebra* können nur neue Relationen aus bereits bestehenden generieren. Das System ist abgeschlossen. Jeder Operator benötigt entweder eine oder zwei Relationen als Eingabe und produziert eine neue Relation als Ausgabe. Beispiele für Operatoren sind: Vereinigung, Schnitt, Differenz von Relationen usw.

Anhang C. Das relationale Modell

Tabellenverzeichnis

2.1	Definition der Entitätsmengen	16
2.2	Beziehungsmengen und deren Abbildungstyp	17
2.3	Elementarrelationen	18
2.4	Speicherstrukturen	22
3.1	Relationen «author», «writes», «publication» und «references»	28
3.2	Relationen «sample», «mineral» und «mineralgroup»	28
3.3	Relationen «emsanalysis» und «emsprofile»	29
3.4	Relationen «paragenesis», «ptinterpretation» und «baseson»	30
3.5	Relationen, die ein Diagramm beschreiben	31
3.6	Relationen «flincassociation», «flincphase» und «flinccomposition»	32
4.1	Evaluationskriterien für Literaturguellen	38
4.2	Fehlerquellen	39
4.3	Evaluierte Literatur	40
4.4	Evaluierte Literatur (Fortsetzung)	41
4.5	Evaluierte Literatur (Fortsetzung)	42
4.6	Evaluierte Literatur (Fortsetzung)	43
4.7	Evaluierte Literatur (Fortsetzung)	44
4.8	Evaluierte Literatur (Fortsetzung)	45
4.9	Evaluierte Literatur (Fortsetzung)	46
4.10	Evaluierte Literatur (Fortsetzung)	47
4.11	Evaluierte Literatur (Fortsetzung)	48
6.1	Was findet sich in P ARA DIS ?	64
7.1	Resultate für Nuf189, Nuf183	70
7.2	Resultate für Fus46, Nuf243, Nuf244, Fus80b, Nuf27	71
7.3	Resultate für Fus70, Nuf242, Nuf237, Nuf179	73
8.1	Resultate für DS5, DS6	76
8.2	Resultate für RT159, Th46	79
8.3	Resultate für DS10a, B367, EK45, Kl437	81
8.4	Resultate für Kl185	84
8.5	Resultate für RT140, RT150, DS4, Kl264, EK50	87
8.6	Resultate für Kl98, Kl285	89
9.1	Resultate für 25	93
9.2	Resultate für 12	95
9.3	Resultate für TT513	96

9.4	Resultate für 77, NW76, NW77	100
9.5	Resultate für TT379	101
9.6	Resultate für TT480	103
9.7	Resultate für TT416, TT479	106
9.8	Resultate für 38	107
9.9	Reaktionen für 38	108
9.10	Resultate für TT337	110
9.11	Resultate für 133, 59, NW80, NW142, NW158, NW33, MF1755, 1746	113
9.12	Resultate für NW79, 121a, 14, 10	116
10.1	Resultate für DS8	118
10.2	Resultate für DS7	119
10.3	Resultate für AI349, AI405, AI378, AI518	123
A.1	Mesoalpine Metamorphose: Gruf, Bergell	157
A.2	Mesoalpine Metamorphose: Lukmaniergebiet und Olivone–nördl. V. Mesolcina	
	(nördwestliche und mittlere Adula)	158
A.3	Mesoalpine Metamorphose: Nufenen- und Bedrettoregion, Campolungo, Alpe	
	Sponda, Leventina	159
A.4	Mesoalpine Metamorphose: V. Calanca, südl. V. Mesolcina, V. Bodengo, Regi-	
	on Bellinzona	160
A.5	Mesoalpine Metamorphose: Doldenhorn, Aarmassiv, Brig, Simplon, Verampio,	
• •	Binntal	161
A.6	Mesoalpine Metamorphose: gesamtes Lepontin	162
A.7	Eoalpine Metamorphose	103
A.8	Eoalpine Metamorphose	164
A.9	Handstucke aus FARADIS mit lepontischen Paragenesen	105
A.10	Handstucke aus FARADIS mit lepontischen Paragenesen	100
A.11	Handstucke aus der Literatur init iepontischen Paragenesen	100
A.12	(Lit) und den mit DTAX benechnsten inclusive X	167
A 19	(LII) und den hitt F TAA befechneten inklusive A_{H_2O}	107
A.15	(Lit) und den mit PTAX berechnsten inklusive Xxx e	168
A 14	(L10) und den mit i TAA berechneten mitusive A_{H_2O}	100
л.14	der Literatur	168
Δ 15	DS4 Cranat Sillimanit-Biotit-Muskovit-Chaiss	160
A 16	DS4, Granat-Disthen-Muskovit-Biotit Choise	109
Δ 17	DS6 Granat-Muskovit-Disthen-Biotit-Gneiss	171
Δ 18	DS7 Granat-Disthen-Staurolith-Glimmerschiefer	179
A 19	DS8 Disthen-Staurolith-Granat-Glimmerschiefer	173
A 20	DS10a Muskovit-Granat-Disthen-Biotit-Greiss	174
A 21	Mineralsymbole modifiziert nach KRETZ (1983)	175
A.22	2 Verwendete EMS-Standards	176
C.1	Gegenüberstellung der Konstruktionselemente	182

Figurenverzeichnis

$2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5$	Datenarchitektur 1 Konzeptionelles Strukturdiagramm 1 Zugriffspfadmatrix 2 Abfolge der Frames in der Anwendung UNIVERSAL 2 Abfolge der Frames in der Anwendung SPOUT 2	.5 19 20 23 24
5.1	Zusammenstellung bisheriger P-T-Abschätzungen	53
$6.1 \\ 6.2$	Datenflussdiagramm 6 Verarbeitung 6	52 53
$7.1 \\ 7.2 \\ 7.3$	Diagramme für Nuf183, Nuf1896Diagramme für Fus46, Nuf243, Nuf244, Nuf80b, Nuf277Diagramme für Fus70, Nuf242, Nuf237, Nuf1797	59 72 74
$8.1 \\ 8.2 \\ 8.3 \\ 8.4 \\ 8.5 \\ 8.6$	Diagramme für DS5, DS6 7 Diagramme für RT159, Th46 8 Diagramme für DS10a, B367, EK45, Kl437 8 Diagramme für Kl185 8 Diagramme für Kl185 8 Diagramme für RT140, RT150, DS4, Kl264, EK50 8 Diagramme für Kl98, Kl285 8	77 30 32 33 36 38
$\begin{array}{c} 9.1 \\ 9.2 \\ 9.3 \\ 9.4 \\ 9.5 \\ 9.6 \\ 9.7 \\ 9.8 \\ 9.9 \end{array}$	Diagramme für 25 9 Diagramme für 12 9 Diagramme für TT513 9 Diagramme für TT379, TT480 9 Diagramme für TT416, TT479 10 Diagramme für TT337, 38 10 Diagramme für 133, NW80, 59, NW142, NW158, NW33, MF1755, MF1746 11 Diagramme für NW79, 121, 14, 10 11)2)4)7)9)2)9)2)9 [2
$\begin{array}{c} 10.1 \\ 10.2 \end{array}$	Diagramme für DS7, DS8	20 22
$\begin{array}{c} 11.1\\ 11.2 \end{array}$	Temperaturvergleich (°C), Histogramm	26 28
$\begin{array}{c} 12.1 \\ 12.2 \end{array}$	Isothermenkarte der mesoalpinen Metamorphose 13 Isobarenkarte der mesoalpinen Metamorphose 13	32 34

Curriculum vitae

Persönliche Daten:

Name:	Schmatz
Vornamen:	Dirk Rainer
Geburtsdatum:	27. September 1962
Geburtsort:	Luzern
Nationalität:	deutsch
Zivilstand:	ledig
Studienadresse:	Mühledorfstrasse 28
	3018 Bern
Wohnsitz:	Biregghang 2
	6005 Luzern

Ausbildung:

1969 - 1975:	Primarschule in Horw.
1975 - 1982:	Kantonsschule Luzern; Abschluss mit Matura Typus C (Realgymnasium).
1982 - 1983:	halbjähriger Aufenthalt in den USA zur Verbesserung der englischen Sprache.
1983 - 1988:	Geologiestudium an der ETH Zürich; Abschluss mit Diplom als Na- turwissenschaftler; Diplomarbeit in Italien mit dem Thema: Struktu- ren und Metamorphose der Metapelite in der Ivrea-Zone.
1988 - 1993:	Dissertation an der Universität Bern

Anstellungen:

1986 - 1988:	Hilfsassistenz am Institut für Mineralogie und Petrographie der ETH
	Zürich.
1988 - 1993:	Assistenzarbeit am Mineralogisch-petrographischen Institut der Uni-
	versität Bern; Dissertationsprojekt vom Schweizerischen National-
	fonds.