Navigation mit Access Keys



Biological control of chestnut blight


We investigate the Cryphonectria - hypovirus - Castanea pathosystem with the aim to develop successful management strategies against chestnut blight. Laboratory experiments and field studies combined with population genetic analysis are being used to understand the biology and epidemiology of C. parasitica and hypovirulence. 


Chestnut blight is caused by the ascomycete fungus Cryphonectria parasitica. An infection with C. parasitica is typically associated with extensive necrosis (cankers) of the bark on stems or branches. On the susceptible American chestnut (Castanea dentata) and European chestnut (C. sativa), the cankers may enlarge rapidly and girdle the affected stem or branch, resulting in the subsequent death of the plant part distal to the infection point. 

Cryphonectria parasitica is native to China and Japan and during the 20th century it was accidentally introduced into North America and Europe. In contrast to North America, where the fungus almost caused the extinction of the American chestnut, consequences of the disease were less dramatic in Europe because of the emergence of a virus-infection within the C. parasitica population. The so-called hypovirus reduces virulence of the infected fungal strain so that cankers are no longer lethal for the chestnut trees. This phenomenon (called hypovirulence) provides the basis for biological control of chestnut blight.


Study goals

Specifically, we aim to:

  • reconstruct the invasion history of C. parasitica and its hypovirus in Switzerland and Europe
  • understand how the C. parasitica – hypovirus interaction evolves in different environments
  • identify factors that are important for the success of biological control of chestnut blight using hypovirulence

Application of our research

Biological control with hypovirulence represents one of the few hopes for a successful management of chestnut blight both in chestnut forests and orchards. In Switzerland, natural hypovirulence is only present in chestnut stands south of the Alps (Ticino and Grisons). On the contrary, north of the Alps and in Valais only the virulent form of C. parasitica occurs causing severe decline of the local chestnut stands. In this project, we aim to artificially introduce and promote the spread of hypovirulence in hypovirus- free chestnut stands in Switzerland. For this, we treat virulent cankers with a hypo- virulent C. parasitica isolate containing a selected hypovirus from the Ticino. Biological control is considered successful if cankers become virus-infected and cease expansion. We are using molecular markers to identify the hypovirus, which allows us to assess persistence and spread of the biological control agent. Additionally, we are testing new, less time-consuming and more effective methods for canker treatment.