Winter climate change in snow-rich environments: Reactions of a sub-arctic tundra community

Sonja Wipf*#+, Christa Mulder+, Veronika Stoeckli* and Bernhard Schmid#

- *Swiss Federal Institute for Snow and Avalanche Research SLF, Davos, Switzerland
- *Institute of Environmental Sciences, University of Zurich, Switzerland
- *Institute of Arctic Biology, University of Alaska, Fairbanks

Abstract
Arctic and spine regions are particularly affected by global climate change. Winter climate has been especially subject to major changes in the two to three last decades, the measured temperature rise in the American Arctic and the European Alps was greatest during winter, and the snow cover central decreased in many regions. Nowever, climate change research mainly focuses on the effects of increased summer temperatures, CO, concentrations and nutrient availability. Previous studies on snow-vegetation interactions suggest that changes in snow deepth and composition of a source of the english of the growing season) and changes in snow depth and composition of a source of the english of the growing season and the english and composition of a source contains and the composition of arctic and alpine plant communities. We (1) experimentally disentangle the two factors of sone occurred and some depth, (2) quantify their effects on phenology, population biology of any large species and community composition in an arctic and an alpine study site, and (3) illuminate the mechanisms which may lead from changes in phenology to changes in community structure and composition. While an advanced sone-met generally results in an advanced vegetation development, our results of snow manipulation experiments in alpine and subactic hisbitats reveal that increased temperature conductance of the snow cover and subsequent decreased subrivens theraperatures can dely the development of early flowering plant species. In our experiments, we construct the interactions between stant of the growing season and winter temperature regime and explore their effect on phenology, productivity and reproduction of hundra species.

Introduction

Winter temperature and precipitation patterns have altered in the American subarctic as well as in the European Alps during the last decades as part of global climate change (Figure 1). In many regions, declines of winter snow depths, advanced spring snow melt, or both have already occurred, which not only frustrates arctic skiers and alpine mountaineers (Figure 2), but may result in changing patterns of phenology, population dynamics and the composition of arctic and alnine species communities

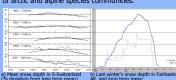


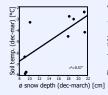
Figure 1. Recently declining snow depths a) in the Alps and b) in Interior Alaska...

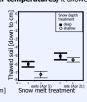
Figure 2 ...frustrate alpine and arctic Skiers

By experimentally disentangling snow depth and snow melt patterns, we aim at quantifying the effects of snow cover characteristics on phenology, productivity and reproduction of subarctic and alpine tundra communities.

Methods

We are currently carrying out field studies in Alpine and Subarctic tundra communities. The preliminary results presented here are from two Alaskan field experiments after one winter of snow manipulation

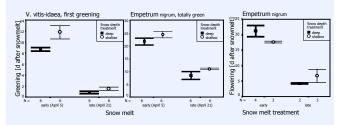


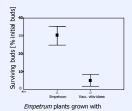

 Productivity · Diseases/parasites

Results: Study 1 - Pot experiments

1) Subnivean temperatures and soil thawing

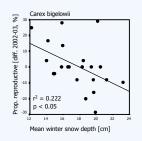
Temperatures under the snow (measured at the soil surface) correlated with the mean snow depth (r²=0.57, p<0.05), with a difference of approx. 3.25° C per 0.1 m snow depth. Lower snow depth also accounted for higher temperature variability and lower temperature minima. The active soil layer in spring was deeper 1) in plots that had been longer free of snow (early treatment) and 2) that had had shallow snow during winter. Thus, although a shallow snow cover meant colder winter temperatures, it allowed for rapid soil thawing in spring.

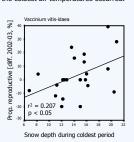



2) Phenology

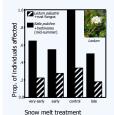
Both Empetrum nigrum and Vaccinium vitis-idaea were largely brown from accumulated pigments when emerging from under snow. The timing of the greening differed between snow melt treatments (p<0.001). Within treatments, the greening of plants from shallow snow cover was postponed in both species (Vaccinium p<0.01, first greening: Empetrum p<0.05, total greening). The **timing of flowering** of Empetrum was influenced by depth and duration of the snow cover (p<0.1 and p<0.001).

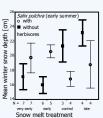
Only Empetrum nigrum was flowering and reproducing in sufficient numbers for analysis. We found no influence of any snow treatment on the number of flowering or reproducing plants per plot. The fruiting of *Empetrum* was significantly more successful when grown together with its own species than when grown with Vaccinium (Whitney-Mann p<0.05).

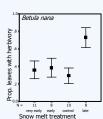




Results: Study 2 - Field experiments


The proportion of reproductive plants per population and plot did not depend on snow melt treatments. In all species but *Carex bigelowii*, it was very similar in 2002 and 2003. The proportion of reproductive Carex bigelowii was negatively correlated with the mean winter snow depth per plot (which was not manipulated in this experiment). In Vaccinium vitis-idaea, the difference in reproduction between 2002 and 2003 correlated with snow depths of the first half of the winter only, when the coldest air temperatures occurred.





2) Disease and Herbivory

The tundra dwarf shrubs Ledum palustre, Salix pulchra and Betula nana were affected by a rust fungus (Ledum) and herbivory, respectively. In mid-summer, Ledum and Salix in controls were more often affected by disease and herbivores than those in snow melt treatments. In early melting plots, herbivores preferred Salix that had been under deep snow cover over winter, while the opposite was found for control plots (melt treatm. x snow depth p<0.05). There was no difference between treatments in the proportion of Betula affected, however, when a plant was affected, it was more heavily affected in the treatment with late snowmelt than in the other treatments (p<0.05).

- Timing of snow melt and snow depth during winter both impact on plant performance.
- Phenology and reproduction of tundra plants was affected in different ways.
- Snow cover characteristics have effects on species sensitivity to diseases and herbivory.
- Ongoing analysis and future projects may highlight a) more impacts of snow cover characteristics on plants and b) mechanisms leading from changes in phenology to changes in fitness, reproduction and species interactions.