Project WaSAlp*: Forest expansion in the Swiss Alps

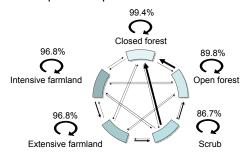
(National Research Program NRP 48 "Landscapes and Habitats of the Alps")

Dr. Priska Baur (project leader)
Dr. Peter Bebi (supervisor)
Gillian Rutherford (Ph.D student)
Mario Gellrich (Ph.D student)
Claudia Schreiber
(journalistic accompaniment)

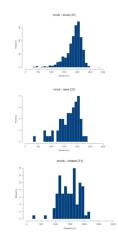
Dr. Ruedi Boesch (co-applicant) Dr. Niklaus Zimmermann (supervisor) Prof. Dr. Peter Edwards (supervisor) Prof. Dr. Barbara Koch (supervisor)

Methods and first results: Total area approach (TAA)

TAA is the first study approach in our NRP48 project that aims to investigate regeneration of forest on abandoned agricultural land in the Swiss Alps. Two different statistical approaches will be used to identify and quantify driving forces.


Forest dynamic transition model

PhD student Gillian Rutherford


Aim of the succession transition model: The aim of this study is to explain the causes of forest expansion using a transition model.

Data: Transition data derived from the areal statistics was combined with potential explanatory variables in a GIS.

Methods: Using multinomial log-linear regression, transition probabilities between land-uses and ultimately a landscape development model can be calculated.

First results: Exploratory univariate data analysis can already reveal important relationships between our explanatory variables and measured forest expansion.

Three possible transitions are shown here with the respective frequency **distributions** along the possible elevations of their occurrence.

e.g. the scrub -> scrub transition is more concentrated around 2000m in elevation than the transitions scrub -> open forest or scrub -> closed forest (note the **distribution** c.f. frequency).

Spatial econometric model

PhD student Mario Gellrich

Aim of spatial econometric model: The aim of this study is to explain causes of land abandonment and forest expansion using an economic model.

Data: Hypotheses and variables are derived from agricultural economics. 19 variables are included in the modelling process.

Methods: A spatial econometric model using **logistic regression analysis** is performed to model the probability of land abandonment and forest expansion (Code 1) between 1985 and 1997.

First results: Cost and yield related variables are the most important driving factors of land abandonment and forest expansion. *Tab.1* shows results of one spatial econometric model. *Fig.1* illustrates predicted probabilities of occurrence of forest expansion on abandoned land. *Fig.2* shows areas, where one of the the best models (Model 3) tends to predict new forest areas correctly and incorrectly. Best models predict more than 80% of abandoned and regenerated agricultural parcels of land correctly.

	Parameter		Wald		
Variables	Estimates	Std. Error	Chi-Square	Pr > Chi-Square	
NTERCEPT	11.674	2.8002	17.38	< 0.0001	
DEGREE DAYS	-0.00047	0.00011	17.01	< 0.0001	
PRECIPITATION	0.000062	0.00017	0.12	0.7234	
RADIATION	-0.00003	0.00001	5.12	0.0236	
ISTANCE TO FOREST EDGES *	-0.0162	0.00097	274.57	< 0.0001	
ISTANCE TO FOREST EDGES -SQUARED *	3.06E-06	3.33E-07	84.64	< 0.0001	
LOPE *	0.0926	0.0135	46.99	< 0.0001	
LOPE-SQUARED *	-0.0011	0.00024	20.58	< 0.0001	
ISTANCE TO ROADS *	-0.00044	0.00011	13.72	0.0002	
IUMBER OF PARCELS PER FARM (1985)	0.0147	0.00531	7.68	0.0056	
ABOR FORCE PARTICIPITATION RATE (LFPR)	-0.2933	0.0927	9.99	0.0016	
FPR-SQUARED	0.00247	0.00077	10.08	0.0015	
ROPORTION OF EMPLOYEES IN THE PRIMARY SECTOR	0.00409	0.00409	1.00	0.3168	
ATE OF CHANGE OF POPULATION (1930-1990)	0.0578	0.0916	0.39	0.5285	
ISTANCE TO URBAN PLANNING ZONES	-0.00003	0.00004	0.63	0.4257	
IUMBER OF FULLTIME FARMS 1985	-0.0181	0.00275	43.47	< 0.0001	
ATE OF CHANGE OF NUMBER OF FARMS (1939-1985)	0.2322	0.0618	14.12	0.0002	
robust covariates contained in all models					
lodel fit:		Prediction accur	racy		
og likelihood	2663.74	Optimal correct of	lassification rate %	77.40%	
I-squared	0.3594	Spatial autocom	relation of residuals	(Moran-test)	
loodness of fit:		Correlation		0.0346	
ikelihaad ratio test					
	1260.82 (p<0.0001)	p-value (2-sided)		6.24E-13	
Multicollinearity condition number	418		Areas whe		Tab.1
	418				Tab.1

For regular updates refer to the WaSAIp homepage: http://www.wsl.ch/projects/WaSAIp