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Abstract 

Information on the distribution and abundance of endangered species is integral for wildlife 

conservation and land use planning. The Wood Warbler (Phylloscopus sibilatrix) is a ground-

nesting, long-distance migratory passerine with a distinctly European range. In Western 

Europe, Wood Warbler populations have declined in the last three decades. In Switzerland, 

the Wood Warbler has been classified as vulnerable in the red list of the breeding birds. 

Furthermore, the species is one of the 50 priority species of the Swiss species recovery 

program.  

Remote Sensing (RS) methods were used to achieve an increased understanding of the 

factors that may influence the territory choice of Wood Warblers in Switzerland and to identify 

potentially suitable habitats in the Swiss Jura Mountains and the Swiss Plateau. The 

structural habitat needs were analyzed at the scale of the nesting area and at the scale of the 

territory. First, lidar metrics were correlated with structural habitat variables collected in the 

course of the research project Settlement behavior, population fluctuations and population 

structure of Wood Warbler of the Swiss Ornithological Institute, Sempach. Second, the 

following question was addressed: Is it possible to distinguish Wood Warbler territories from 

control areas without Wood Warblers using lidar data or other RS information? In a third 

step, predictive models were generated to model the current potential range of the Wood 

Warbler in the Swiss Jura Mountains and the Swiss Plateau.  

The analyses at the two spatial scales, ‘nesting area’ and ‘territory’, suggest that Wood 

Warblers prefer rather uniform forests stands of intermediate age. Stands of these stages of 

development are characterized by a closed canopy, low canopy height diversity, an open 

stem space and a sparse herb and shrub layer, features promoting the occurrence of the 

Wood Warbler. The analyses further showed that Wood Warbler occurrence is positively 

related to inclination and solar radiation during March. Since the Wood Warbler is a ground-

nesting bird, the species may benefit from small-scale variation of snow melting and 

vegetation development. Alternatively, reduced disturbance due to recreational activity or low 

forest management intensity in steep areas may explain the observed effect. Solar radiation 

may positively influence food availability, and higher food availability on south-facing slopes 

than on north-facing slopes could attract Wood Warblers.  

According to the predictive models, the current potential range of the Wood Warbler is 

predominantly located in the Swiss Jura Mountains. This finding corresponds to the 

abundance map of the Swiss Breeding Bird Atlas 1993-1996. 

Locally, forest management may contribute to the deterioration of suitable areas, for example 

when relatively closed forests are opened up due to harvesting. Therefore, the focus of forest 

management at a regional scale should be on sustainable regeneration so that suitable 

stands are always present and new suitable stands are steadily developing. In consideration 

of the Wood Warbler’s habitat needs, the femel harvesting system (Femelschlag), leading to 

a relatively homogeneous age structure, appears to be most promising to maintain 

structurally suitable stands for Wood Warblers. Selection forestry (Plenterwald/Dauerwald), 
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leading to a heterogeneous age structure and many gaps at a local scale, is rather 

unsuitable for the Wood Warbler.  

Overall, this study suggests that RS variables derived from lidar data or other sources are 

suitable for distinguishing structural characteristics of Wood Warbler habitat from non-habitat. 

Additionally, lidar metrics and other RS variables convey additional information not captured 

by variables gathered in the field, and therefore have the potential to contribute to 

understanding the ecological niche of species. 
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1 Introduction 

1.1 General introduction 

Information on the distribution and abundance of endangered species is integral for wildlife 

conservation and land use planning. For a species of interest, detailed knowledge of habitat 

needs is crucial for habitat protection (e.g. Johnson et al., 2004; Whittingham et al., 2005; 

Sellars & Jolls, 2007; Salek & Lövy, 2012), the restoration of the species to previously 

occupied habitat (Merrill et al., 1999), the identification of dispersal corridors (Reunanen et 

al., 2002; Gibson et al., 2004; Chetkiewicz & Boyce, 2009) or for predicting species 

distribution and locating suitable habitat (Sperduto & Congalton, 1996; Dettmers & Bart, 

1999; Reunanen et al., 2002; Luoto et al., 2002; Nelson et al., 2005). While the potential 

range consists of the area exhibiting favorable ecological conditions for the species’ 

existence independently of its actual presence, the realized range describes the area 

currently occupied by the species (Campell & Reece, 2003). The absence of a species in a 

particular area within the potential range may be caused by at least one or more of the 

following four ecological processes: lack of dispersal, unsuitable habitat, predation or 

competition, and unfavorable physical or chemical factors (Ricklefs, 1990).  

The relationship between an organism and its environment is often dependent on the 

spatial scale investigated (e.g. Wiens et al., 1986). With regard to habitat selection, this 

implies that an area has to fulfill the physical, chemical and biotic needs of a species at a 

landscape scale. Within this area, a smaller area is selected as territory or home range. On 

an even smaller scale, the choice of the reproduction site takes place, for which again 

specific habitat needs exist (Piper, 2011). Thus, the specific regional and local habitat needs 

of a species may vary from those at the landscape scale. As an example, Fig. 1 illustrates 

how the occurrence of four vertebrate species can be explained by different habitat 

characteristics depending on the spatial scale investigated.  

Remote sensing (RS) has become an important basis for mapping, understanding and 

modeling ecosystems, including the modeling of species’ distributions and potential habitats 

(e.g. Sperduto & Congalton, 1996; Dettmers & Bart, 1999; Reunanen et al., 2002; Luoto et 

al., 2002). Typically, the RS data used in such models does not characterize the vertical 

habitat structure (Vierling et al., 2008), because the images acquired from conventional 

sensors are not capable of completely representing the three-dimensional structure of the 

surface (Müller et al., 2009). However, many species, especially forest bird species, are 

associated with specific three-dimensional habitat structures (Dunlavy, 1935; Shaw et al., 

2002).  

Lidar (light detection and ranging) or airborne laser scanning (ALS) is an active remote 

sensing technology. A lidar sensor emits laser pulses to the earth’s surface and then 

measures the time elapsed from the emission of the pulses to the detection of their 

reflections. The exact position of the reflection can be derived with the help of this time span 

multiplied by the speed of light, the information about the sensor’s position and certain 

alignments (Baltsavias, 1999; Wagner et al., 2003). When a laser pulse hits an object, it will 
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Fig. 1: Habitat needs at different spatial scales of the four species: (a) spotted owl, (b) American 
marten, (c) golden-crowned kinglet and (d) tailed-frog (Bunnell & Huggard, 1999). 

 

be partly reflected and partly absorbed, but it will not be transmitted through the structure. 

Therefore, the laser signals returned from a structurally complex surface, such as vegetation 

canopy, contain information from objects located at varying depths within the canopy, such 

as leafs or branches, and from the ground (Fig. 2) (Lefsky et al., 2002). In contrast to 

conventional sensors, lidar sensors are able to measure the height of plant canopies and the 

subcanopy structure with high resolution over large spatial extents. Thus, they provide three-

dimensional information about the micro-topography and the structure of the vegetation, such 

as vegetation height, vegetation cover and canopy structure (Müller et al., 2009).  
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Fig. 2: Exemplary visualization of lidar data. Black points represent laser signals classified as terrain. 

Green points represent laser signals classified as vegetation or terrain.  

 

The Wood Warbler (Phylloscopus sibilatrix) is a ground-nesting, long-distance migratory 

passerine with a distinctly European range (Glutz von Blotzheim & Bauer, 1991). In 

Switzerland, the species occupies deciduous and mixed forests at low to medium altitudes 

(Glutz von Blotzheim & Bauer, 1991). Within these forests, stands are preferred that feature 

an open stem space, a closed canopy (60%-90% closure), a small herb and shrub layer, and 

trees with low branches for song-flight behavior (Quelle & Tiedemann, 1972; Schifferli et al., 

1980; Bibby, 1989; Glutz von Blotzheim & Bauer, 1991). Furthermore, territories are 

preferentially located on slopes with eastern or southerly aspects, while slopes with western 

and northern aspects are avoided (Quelle & Tiedemann, 1972; Hölzinger, 1999; Glutz von 

Blotzheim & Bauer, 1991). The species is not specialized to a specific tree species. In 

Switzerland, Wood Warblers most often breed in stands of sessile oak (Quercus petraea), 

common oak (Quercus robur), common beech (Fagus sylvatica), common hornbeam 

(Carpinus betulus) and Scots pine (Pinus sylvestris). But the species also settles in stands of 

weeping birch (Betula pendula), downy birch (Betula pubescens), trembling poplar (Populus 

tremula), European larch (Larix decidua), common spruce (Picea abies), Spanish chestnut 

(Castanea sativa), maple (Acer sp.) and lime tree (Tilia sp.) (Glutz von Blotzheim & Bauer, 
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1991). Gerber (2011) showed that occupied territories in Switzerland had denser herb layer, 

higher number of trees, lower rodent density and were located on steeper slopes than 

random control areas and abandoned territories. Reinhardt (2003) found that territories 

abandoned by Wood Warblers in forests along Lake Constance, Germany, tended to have 

older, higher and fewer trees than occupied territories. Additionally, territories of mated males 

more often featured a coherent herb layer and a higher number of grass or sedge tussocks 

compared to territories of unpaired males (Reinhardt, 2003). Pavlovic (2009) used lidar 

signals to show that Wood Warblers in the Nationalpark Bayerischer Wald in Germany 

preferred homogeneously structured forests with a sparse shrub layer.  

Wood Warbler populations in Eastern Europe are subject to strong annual fluctuations but 

seem to persist (Glutz von Blotzheim & Bauer, 1991; Burfeld et al., 2004). Low natal and 

breeding philopatry and the avoidance of areas with high rodent density are considered 

responsible for these strong annual fluctuations (Glutz von Blotzheim & Bauer, 1991; 

Wesolowski et al., 2009). In Western Europe, Wood Warbler populations have declined in 

the last three decades (Glutz von Blotzheim & Bauer, 1991; Burfeld et al., 2004; Flade & 

Schwarz, 2004; Wesolowski & Maziarz, 2009). In Switzerland, the Wood Warbler has been 

classified as vulnerable in the red list of breeding birds (Keller et al., 2010a). Furthermore, 

the species is one of the 50 priority species of the Swiss species recovery program (Keller et 

al., 2010b; Spaar et al., 2012).  

The reasons for the population decline of Wood Warblers in Western Europe are still 

unknown. The following hypotheses are controversially discussed in the research 

community: (1) structural habitat changes due to changing forestry practices (Bibby, 1989; 

Marchant, 1990; Glutz von Blotzheim & Bauer, 1991; Gatter, 2000; Marti, 2007; Reinhardt & 

Bauer, 2009; Mallord et al., 2012); (2) increased nest predation due to changes in the 

predator communities (Gatter, 2000; Wesolowski et al., 2009); (3) changes in the food supply 

as a consequence of climate change (Gatter, 2000; Both et al., 2010); (4) increase in 

disturbances due to augmented recreational activities (Miller et al., 1998; Miller & Hobbs, 

2000; Kangas et al., 2010; Spaar et al., 2012); and (5) habitat changes in migration stopover 

sites and/or in wintering sites (Weber et al., 1999; Flade & Schwarz, 2004; Reinhardt & 

Bauer, 2009). 

This master thesis addressed the first of the above hypotheses. The purpose of this study 

was (1) to achieve an increased understanding of the factors that may influence the territory 

choice of Wood Warblers in Switzerland and (2) to identify potentially suitable habitats in 

Switzerland. Both goals were addressed with the help of RS methods, particularly lidar. 

Furthermore, the habitat needs of Wood Warblers were analyzed at two spatial scales, 

namely at the scale of the nesting area and at the scale of the territory.  

Firstly, lidar metrics were correlated with structural habitat variables collected in the course of 

the research project Settlement behavior, population fluctuations and population structure of 

Wood Warbler of the Swiss Ornithological Institute (Swiss Ornithological Institute, 2013). 

Secondly, the following question was addressed: Is it possible to distinguish Wood Warbler 

territories from control areas without Wood Warblers using lidar data or other RS 

information? Based on the results obtained, thirdly, predictive models were generated to 
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model the current potential range of the Wood Warbler in parts of Switzerland, namely in the 

Swiss Jura Mountains and the Swiss Plateau.  

 

1.2 Hypotheses and predictions 

To address the second question, RS variables were compiled that possibly influence territory 

choice of Wood Warblers. These independent RS variables were divided into the following 

five thematic groups: Height, vertical diversity, penetration rate, canopy cover and 

geography. Based on the current knowledge of the Wood Warbler’s habitat preferences, one 

or more hypotheses were derived and tested for every group (Fig. 3): 

 

Height group 

H1: The probability of Wood Warbler occurrence shows a concave (inverse U-shaped) 

relationship with vegetation height. 

Trees with a height of at least 8-10 m are required (Glutz von Blotzheim & Bauer, 1991). 

Furthermore, a certain stand age and therefore a certain vegetation height is necessary to 

allow for an open stem space (Schifferli et al., 1980; Glutz von Blotzheim & Bauer, 1991). 

Thus, suitability of a forest stand is expected to first increase with tree height. After an 

optimum, a negative trend is expected because Reinhardt (2003) and Gerber (2011) found 

that occupied Wood Warbler territories have higher number of trees than abandoned 

territories and control areas, and tree number is known to decrease with increasing stand 

height (Spurr & Barnes, 1980).  

 

Vertical diversity group 

H2: The probability of Wood Warbler occurrence is negatively related to the standard 

deviation of vegetation height.  

Stands are preferred that feature a high canopy cover (60%-90%) and an open stem space 

with few bushes (Glutz von Blotzheim & Bauer, 1991). Such stands tend to have a 

homogeneous stand height and therefore a small standard deviation of vegetation height. In 

contrast, a high standard deviation of vegetation height results from stands with a mixture of 

large and small trees, and therefore from stands with a scattered crown closure (Müller et al., 

2009).  

 

Penetration rate group 

H3: The probability of Wood Warbler occurrence shows a concave relationship with the 

tree layer’s penetration rate.   
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Wood Warblers prefer stands with a well-developed canopy. On the other hand, stands are 

avoided that are either really dense or rather scattered (Glutz von Blotzheim & Bauer, 1991). 

Stands with a dense tree layer reflect a large proportion of lidar signals at the top of the 

canopy, with the result that a relatively small number of lidar signals reaches the ground. 

Therefore, the penetration rate of the tree layer is low in such stands. In open stands, 

however, many lidar signals are reflected on the ground. Therefore, the penetration rate of 

the tree layer is high in open stands (Müller et al., 2009). The optimum for Wood Warbler 

occurrence is expected to lie between high and low penetration rates.  

H4: The probability of Wood Warbler occurrence is positively related to the penetration 

rate of the mid-story layer and the penetration rate of the shrub and regeneration 

layer. 

Wood Warblers prefer stands with an open stem space and therefore a sparse mid-story 

layer (Quelle & Tiedemann, 1972; Bibby, 1989; Glutz von Blotzheim & Bauer, 1991). A 

sparse mid-story layer does not reflect many lidar signals, and therefore the penetration rate 

of the mid-story layer is high. Furthermore, the occurrence of Wood Warblers is positively 

related to the number of grass or sedge tussocks (Gerber, 2011), into which the nests are 

often placed. Therefore, it is expected that the probability of Wood Warbler occurrence 

decreases with increasing development of the shrub and regeneration layer because the 

shrub and regeneration layer inhibits the development of the underlying herb and grass layer 

(Irrgang, 1990).  

 

Canopy cover group 

H5: The probability of Wood Warbler occurrence shows a concave relationship with 

canopy cover. 

Wood Warblers prefer stands with a canopy cover of 60%-80% for settlement (Quelle & 

Tiedemann, 1972; Bibby, 1989; Glutz von Blotzheim & Bauer, 1991). 

 

Geography group 

H6: The probability of Wood Warbler occurrence increases with inclination. 

Some studies showed a positive correlation of Wood Warbler occurrence and inclination 

(Hölzinger, 1999; Reinhardt & Bauer, 2009; Gerber, 2011; Mallord et al., 2012). 

H7: The probability of Wood Warbler occurrence is positively related to solar radiation 

during March. 

Solar radiation is strongly dependent on topography and altitude (Zimmermann & Kienast, 

1999). The period of March is important for spatial differentiation of snow melting in early 

spring and therefore for spatial differentiation of vegetation phenology (Fischer, 1990). Wood 

Warblers, returning from the wintering areas to their breeding grounds in April (Glutz von 
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Blotzheim & Bauer, 1991), may be affected by such small-scale differences in vegetation 

phenology. Furthermore, solar radiation is affected by aspect. Solar radiation is higher on 

south-facing slopes than on north-facing slopes. On west and east facing slopes, solar 

radiation is similar to that on horizontal surfaces (Tian et al., 2001). Apart from solar 

radiation, aspect is of significance for prevailing wind direction and precipitation. Wood 

Warbler territories with a northern or western aspect are rare (Quelle & Tiedemann, 1972; 

Hölzinger, 1999; Glutz von Blotzheim & Bauer, 1991; Reinhardt & Bauer, 2009), suggesting 

an avoidance of areas with relatively low solar radiation and/or an avoidance of the weather 

side. Another hypothesis is that Wood Warblers are attracted by higher food availability on 

south-facing slopes than on north-facing slopes (Jedrzejewsk & Jedrzejewski, 1998). 

H8: The probability of Wood Warbler occurrence is positively related to the proportion of 

broadleaf and conifer-broadleaf mixed forests. 

Forest type was considered because Wood Warblers in Switzerland predominantly settle in 

broadleaf and conifer-broadleaf mixed forests. Some studies observed a preference for 

mixed forests, consisting of either broadleaf forests with few conifers or coniferous forests 

with few broadleaves (Quelle & Tiedemann, 1972; Glutz von Blotzheim & Bauer, 1991). 

H9: The probability of Wood Warbler occurrence increases with distance to forest edge.  

Wood Warblers prefer stands with an open stem space and a sparse mid-story layer (Glutz 

von Blotzheim & Bauer, 1991). Close to forest edge, the lateral influx of light is increased, 

allowing for the development of lush undergrowth of bushes, regeneration or herb layer 

(Wales, 1972; Chen et al., 1992). According to Glutz von Blotzheim & Bauer (1991), Wood 

Warblers only settle close to forest edge if it is well developed. In this case, the light 

conditions near the forest edge are similar to those within the forest. Another hypothesis is 

that Wood Warblers avoid forest edge because of increased predator activity along habitat 

edges (Batary & Baldi, 2004).  

H10: The probability of Wood Warbler occurrence is dependent on soil conditions. In 

particular, it is expected that Wood Warbler occurrence decreases with soil deepness 

and both nutrient and water availability.  

The distribution of plant communities is determined by environmental factors. Important 

primary factors, directly affecting plant communities, are availability of light, water and 

nutrients (Schulze et al., 2005). Soil conditions directly influence the water and nutrient 

conditions and therefore the formation and distribution of ground vegetation (Willmanns, 

1989). Very simplified and without considering light conditions within a forest stand, it can be 

assumed that deep, nutrient-rich and/or moist soils favor the development of a dense and tall 

herb layer possibly including bramble (Rubus sp.), while shallow, nutrient-poor and/or dry 

soils favor the occurrence of grasses and sedges (Ellenberg & Klötzli, 1972). 

Wood Warblers generally avoid stands with a well-developed and tall herb layer (Schifferli et 

al., 1980; Glutz von Blotzheim & Bauer, 1991). But the nesting territories are often 

characterized by a dense grass layer (Reinhardt, 2003; Gerber, 2011). The availability of 
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grass and sedges may be important for enhanced cover, while a dense herb layer may 

interferes with the nesting activities.  
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the tree layer 
penetration rate of 
the mid-story layer 

penetration rate of 
the shrub and 

regeneration layer 

H5 
Canopy cover 

H6 
Geography 

H7 
Geography 

H8 
Geography 

H9 
Geography 

     

canopy cover slope 
solar radiation 
during March 

proportion of 
broadleaf trees 

distance to forest 
edge 

Fig. 3: Expected relationships between independent variables (x-axis) and the probability of Wood 
Warbler occurrence (y-axis). 
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2 Material and methods 

2.1 Study areas 

The study areas were located in northern Switzerland, particularly in the eastern Jura 

Mountains but also in the Swiss Plateau and the Pre-Alps (Fig. 4). They were all situated in 

woodland, predominantly in beech-dominated forests. 

 

Fig. 4: Study areas. 1 Bänkerjoch AG (645'144 / 254'539), 2 Belchen SO (627'988 / 245'763), 3 Blauen BL 
(605'989 / 256'391), 4 Dittingen BL (603'249 / 254'717), 5 Erschwil SO (608'659 / 247'056), 6 
Gündelhart TG (712'618 / 278'229), 7 Ennenda GL (725'218 / 211'059), 8 Homberg SO (631'140 / 
245'407), 9 Hochwald SO (616'881 / 256'293), 10 Kleinlützel SO (599'946 / 254'110), 11 Langenbruck 
BL (626'575 / 245'376), 12 Lauwil BL (616'981 / 247'025), 13 Montsevelier JU (604'131 / 246'345), 14 
Oltingen BL (638'000 / 253'403), 15 Scheltenpass SO (613'382 / 243'854) and 16 Staffelegg AG 
(647'810 / 253'757) (Biogeographic regions according to Gonseth et al. (2001) © BFS GEOSTAT / 

BUWAL). 

 

Within each study area, sample areas were defined (Fig. 5). A sample area can have one of 

the following two occupation statuses: 1) occupied by a pair of Wood Warblers having a nest 

or 2) non-occupied. As sample areas served occupied areas and control areas mapped 

between 2010 and 2012 in the course of the research project Settlement behavior, 

population fluctuations and population structure of the Wood Warbler of the Swiss 

Ornithological Institute (Swiss Ornithological Institute, 2013). The nest position was 

considered the center of the occupied area. Control areas were assigned to the majority of 
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the occupied areas with their centers located 200-300 m away from the occupied ones. In the 

following, control areas associated with occupied areas are referred to as primary control 

areas. Further details of the nest mapping procedure and the choice of control areas can be 

found in Gerber (2011) and Grendelmeier (2011).  

 

 

Fig. 5: Schematic illustration of the arrangement of the sample areas (occupied area, primary control 
area and additional pseudo-absence control area) within a study area. 

 

Out of 136 occupied areas and 99 primary control areas, only sample areas were selected 

that did not overlap more than 10% with one another. Furthermore, occupied areas and 

primary control areas located in areas with an insufficient quality of the lidar data were 

excluded (see 2.3). Finally, 115 occupied areas and 84 primary control areas remained for 

the analyses.  

With regard to the intended model of the potential Wood Warbler range, 113 additional 

pseudo-absence control areas were sampled. This was done because variables influencing 

habitat choice at a larger spatial scale may not be identified when only comparing occupied 

and non-occupied areas located in close proximity to each other. Thus, additional pseudo-

absence control areas increased the range of environmental conditions considered. 

Additional pseudo-absence control areas were selected based on the precondition that they 

were located (1) in the forest, and (2) between 500 and 2,000 m away from the occupied 

areas and primary control areas. Given these preconditions, additional pseudo-absence 

control areas were then randomly selected. The choice of the distance is subject to a trade-
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off. With regard to the model of the potential Wood Warbler range, the distance should be as 

large as possible to allow for increased environmental variation. However, with increasing 

distance, the probability rises that possibly existing occupied areas are mistakenly classified 

as pseudo-absence control areas. Within 500 to 2,000 m from the sample areas, the 

probability that the species was really absent is relatively high because the study areas were 

intensively examined (Gerber, 2011; Grendelmeier, 2011).  

All analyses performed refer to two spatial scales, namely 1) to the scale of the nesting area 

and 2) to the scale of the territory. By using two spatial scales, the fact could be taken into 

account that variables influencing habitat choice at one scale will not necessarily influence 

habitat choice at another scale (e.g. Wiens et al., 1986).  

A territory is defined as any defended area (Noble, 1939). If intraspecific competition permits, 

Wood Warbler males occupy territories of 1 to 3 ha (Glutz von Blotzheim & Bauer, 1991). 

Within the territory of the male, the female selects the place for the nest. After the choice of 

the nest site, the territory is reduced to a maximum area of approximately 0.12-0.19 ha (Glutz 

von Blotzheim & Bauer, 1991). Very small territories of, for example, 0.05 ha are occasionally 

occupied at high population density or as secondary territories of bigynous males (Glutz von 

Blotzheim & Bauer, 1991).  

For this study, the nesting area was represented by a circular area of 0.01 ha (1,000 m2) 

around the nest, corresponding to a circle with a radius of 17.8 m centered on the nest. At 

the scale of the territory, a circular area was examined that covered 0.6648 ha (6,648 m2) 

around the nest. The corresponding radius was 2.5 times the radius of the nesting area, 

reflecting the spatial relationship between nesting area and territory.  

 

2.2 Habitat variables 

Habitat variables (Table 1) were collected for occupied areas and primary control areas 

between 2010 and 2012 within the framework of the research project accomplished by the 

Swiss Ornithological Institute. Further details on the methodology of habitat sampling can be 

found in Gerber (2011) and Grendelmeier (2011). Habitat variables were available for 62 

occupied territories and 63 primary control areas.  

 

2.3 RS variables 

The RS variables fall into two groups: lidar metrics and non-lidar RS variables. The lidar 

metrics will be presented first. All RS data was processed in the Geographic Information 

System ESRI ArcInfo 9.3 and 10.0 (ESRI, Redlands, CA), in PyScripter for Python 3.3 and in 

the statistical environment R version 2.14.1 (R Development Core Team, 2011). LAStools 

were used for the operational processing of lidar data (Isenburg, 2012). 
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Table 1: Habitat variables examined in this study. 

Variable Definition 

inclination inclination of the hillside 

canopy cover proportion of ground surface covered by tree crowns, determined by 
crown photographs 

dead wood running meter of dead wood 

vegetation cover proportion of ground surface covered by vegetation < 50 cm 

number of tussocks number of grass and sedge tussocks 

number of bushes number of bushes and young trees with a height > 50 cm and a 
trunk circumference < 25.1 cm (dbh < 8 cm) 

number of trees number of trees with a trunk circumference > 25.1 cm (dbh > 8 cm) 

amount of polewood number of trees with a trunk circumference from 25.1 cm to 62.8 cm 
(8 cm < dbh < 20 cm) 

number of immature trees number of trees with a trunk circumference from 62.8 cm to 110.0 
cm (20 cm < dbh < 35 cm) 

number of conifers number of conifers with a trunk circumference > 25.1 cm (dbh > 8 
cm) 

tree diversity Shannon Index of tree diversity 

number of dead trees number of standing dead wood with a trunk circumference > 25.1cm 
(dbh > 8 cm) 

number of trees branched below 4 m number of trees branched below 4 m 

number of trees branched below 10 m number of trees branched below 10 m 

average tree diameter average of the diameter at breast height (DBH) of all trees  

mkna „minimum known number alive“, minimum number of caught rodents  

 

2.3.1 Lidar metrics 

The airborne laser scanning data used for the calculation of the lidar metrics (Table 2) was 

collected by private companies in the years 2000 to 2007, mainly outside the growing season 

(Swisstopo, 2009). The data consisted of two digital height models provided by the Swiss 

Federal Office of Topography (Swisstopo), namely the digital terrain model (DTM) and the 

digital surface model (DSM). The DTM contains only laser signals classified as terrain. Its 

interpolation into a regular 2 m grid results in the swissALTI3D (Swisstopo, 2003). The DSM 

consists of laser signals classified as vegetation, artificial structures or buildings, and terrain 

(Swisstopo, 2005). The two models, covering the area of Switzerland below 2,000 m a.s.l., 

have an average density of 0.5 laser signals per m2 (Swisstopo, 2005). In the sample areas 

examined the average density was 1.5 laser signals per m2. The height accuracy ranges 

from 0.5 m in open terrain to 1.5 m in terrain with vegetation (Swisstopo, 2005).  

For all sample areas, lidar metrics were calculated for both the nesting area and the territory 

scale of 1,000 m2 and 6,648 m2, respectively. In addition to the two height models, the 

normalized digital surface model (nDSM), representing vegetation height, was derived by 

subtracting the DSM from the swissALTI3D. Values deviating negatively by three or more 

times the standard deviation from the mean of all negative values of the nDSM were treated 

as outliers and excluded from further analyses (Grubbs, 1969). 

The lidar metrics were assigned to the thematic groups introduced in paragraph 1.2: height, 

vertical diversity, penetration rate, canopy cover and geography. All metrics were derived 

from the nDSM except slope, which was directly calculated from the swissALTI3D.  
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Metrics of the first and second group refer to vegetation (VH) or canopy height (CH). VH 

equates to the nDSM and therefore contains the information about the height above ground 

of every lidar signal of the DSM. To calculate CH, a 2x2 m grid was laid over every sample 

area, and the maximum lidar signal for each 2x2 m cell was extracted. Finally, the following 

metrics were calculated per sample area: mean vegetation and mean canopy height 

(meanVH and meanCH), maximum vegetation height (maxVH), the 95% percentile of 

vegetation height (VH95), and the standard deviation of both vegetation and canopy height 

(sdVH and sdCH). In addition, three metrics were generated referring specifically to the tree 

layer, namely mean vegetation height above 3 m (meanVH>3m), mean canopy height above 

3 m (meanCH>3m) and the standard deviation of canopy height above 3 m (sdCH>3m). The 

three metrics were calculated including only laser signals reflecting from objects more than 3 

m above ground. Thereby, contrary to the other lidar metrics, the calculation of these metrics 

did not include lidar signals that were reflected from the ground. Mean vegetation height less 

than 3 m (meanVH<3m) refers to the shrub and regeneration layer and is represented by the 

arithmetic mean of all lidar signals less than 3 m above ground. Therefore, this metric also 

includes lidar metrics reflected from the ground.  

MeanVH is an index of vegetation height in general and describes the vertical structure of a 

stand, whereas meanCH refers specifically to the upper canopy layer. The standard 

deviation provides a measure of the vertical variation of VH and CH. A small standard 

deviation arises from sample areas with a homogeneous vegetation or tree height. On the 

other hand, a large standard deviation reflects a mixture of heterogeneous vegetation or tree 

height (Müller et al., 2009).  

 

Metrics of the third group comprise penetration rates for three different vegetation layers. 

Pen50_2 refers to the tree layer, pen10_2 to the mid-story layer and pen5_1 to the shrub and 

regeneration layer. To calculate pen50_2, the sum of all lidar signals below 2 m above 

ground was divided by the sum of all lidar signals below 50 m above ground. Pen10_2 is 

described by the ratio of the sum of all lidar signals below 2 m and the sum of all lidar signals 

below 10 m. To describe the shrub and regeneration layer, the ratio of the sum of all lidar 

signals below 1 m and the sum of all lidar signals below 5 m was calculated (Müller et al., 

2009).  

A particular layer, i.e. the tree layer, the mid-story layer, or the shrub and regeneration layer, 

is more developed the lower the corresponding penetration rate is. For example, sample 

areas with a dense tree layer exhibit a small pen50_2, because many lidar signals are 

reflected at the top of the canopy and therefore a relatively small number of signals reaches 

the ground (Müller et al., 2009; Pavlovic, 2009). 

 

The canopy cover group contains metrics describing canopy cover at four height levels, 

namely at 3 m, 10 m, 15 m and 20 m above ground. The calculation of canopy cover was 

based on the data of CH. The respective canopy cover results from the ratio of the number of 

2x2 m cells with values above the particular height level and the total number of 2x2 m cells 
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per sample area (Fig. 6). Canopy cover is higher the more lidar signals are present above 

the particular height level.  

 

Fig. 6: Illustration of the relationship between canopy cover (CC) and canopy height (CH). The figure 

shows a sample area characterized by almost closed canopy at 10 m above ground and sparse 
canopy above 20 m. This would represent a closed forest stand with few trees higher than 20 m. a) 
shows canopy height (CH) and the two height levels 10 m and 20 m for a sample area. The darker the 
color, the higher is CH. In b), the two metrics meanCC_10m and meanCC_20m are pictured (CC = 
canopy cover). CC results from the ratio of the number of 2x2 m cells with values above the particular 
height level (black cells) and the total number of 2x2 m cells per sample area. In white cells, no lidar 
signal was detected above 3 m (DSM, swissALTI3D © Swisstopo). 

 

The geography group only comprises one lidar metric, namely the slope metric. Slope 

values were extracted from the swissALTI3D grid and averaged per sample area.  
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Table 2: Lidar metrics. The metrics are grouped according to the five thematic groups and the hypotheses 

introduced in paragraph 1.2. 

Hypo-
thesis 

Metric Unit Definition Interpretation 

Height 
(H1) 

meanVH [m] mean vegetation 
height 

MeanVH describes the vertical structure of a 
stand. A well-developed overstorey leads to a high 
meanVH, because many lidar signals are reflected 
by the uppermost layer. In contrast, an 
intermediate or a low meanVH is expressed by 
stands with a well-developed medium layer and 
scattered or young stands. 

 meanCH [m] mean canopy 
height 

MeanCH is a measure for stand height. It is low 
when either the tree height is low or the stand 
structure is scattered so that few high trees are 
present.  

 meanVH<3m [m] mean vegetation 
height less than 3 
m 

MeanVH<3m specifically refers to the regene- 
ration and underwood comprised of young trees 
and shrubs. The metric will be around zero, if no 
regeneration and underwood is present and higher 
the more young trees and shrubs are present. 

 meanVH>3m [m] mean vegetation 
height above 3 m 

MeanVH>3m incorporates laser signals reflected 
by trees higher than 3 m. It does not consider 
laser signals reflected by the regeneration, 
underwood or ground. MeanVH is higher the 
higher the trees are and the better developed the 
canopy is. 

 meanCH>3m [m] mean canopy 
height above 3 m 

MeanCH>3m is a measure for stand height 
corrected for gaps located within the forest and 
the non-forested surrounding of forest edge.  

 maxVH [m] maximum 
vegetation height 

MaxVH represents the maximal tree height within 
a sample area.  

 VH95 [m] 95% percentile of 
vegetation height 

VH95 represents the height above ground below 
which 95% of all lidar signals were detected. 
Compared to maxVH, VH95 is less sensitive to 
outliers.  

Vertical 
diversity 
(H2) 

sdVH [m] standard deviation 
of vegetation 
height 

SdVH is a measure for the stratification of a stand. 
High values arise from stands with a 
heterogeneous tree height, while stands with a 
homogeneous tree height express low sdVH 
values. 

 sdCH [m] standard deviation 
of canopy height 

SdCH describes the heterogeneity of canopy 
height. Similar to sdVH, high values arise from 
stands with a heterogeneous tree height, while 
stands with a homogeneous tree height express 
low sdCH values. 

 sdCH>3m [m] standard deviation 
of canopy height 
above 3 m 

Equal to sdCH, sdCH>3m is a measure for the 
heterogeneity of canopy height. In contrast to 
sdCH, sdCH>3m does not consider gaps within 
the forest or non-forested surroundings of forest 
edge.  

Penetration 
rate 
(H3,H4) 

pen50_2 [%] penetration rate 
50-2 m above 
ground 

Pen50_2 refers to the tree layer and describes its 
penetration. Low penetration rates originate in 
stands with a well-developed tree layer, while high 
penetration rates result from scattered or open 
stands.  

 pen10_2 [%] penetration rate 
10-2 m above 
ground 

Pen10_2 describes the density of the mid-story. 
Low penetration rates originate in stands with a 
well-developed mid-story, while high penetration 
rates result from stands with a sparse mid-story. 

 pen5_1 [%] penetration rate 5-
1 m above ground 

Pen5_1 refers to the shrub and regeneration layer. 
High pen5_1 values result from stands with a 
sparse shrub and regeneration layer, while low 
values originate in stand with a well-developed 
shrub and regeneration layer.  
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Table 2 continued from previous page 

Hypo-
thesis 

Metric Unit Definition Interpretation 

Canopy 
cover 
(H5) 

meanCC [%] mean canopy 
cover above 3 m 

MeanCC describes mean cover of all trees higher 
than 3 m of a sample area. High values represent 
a high cover, while low values originate in 
scattered or open stands.  

 meanCC_10m [%] mean canopy 
cover above 10 m 

MeanCC_10m is a measure for canopy cover at 
10 m above ground. High values represent closed 
stands, while low values originate in scattered or 
open stands.  

 meanCC_15m [%] mean canopy 
cover above 15 m 

MeanCC_15m describes canopy cover at 15 m 
above ground. High values represent closed 
stands with many trees higher than 15 m, while 
low values represent scattered or open stands and 
stands with many tall trees.  

 meanCC_20m [%] mean canopy 
cover above 20 m 

MeanCC_20m is a measure for canopy cover of 
trees equal or higher than 20 m. High values 
originate in stands with many trees higher than 20 
m, while open or scattered stands and stands with 
many tall trees express low values. 

Geography 
(H6) 

slope [°] slope Slope describes mean inclination per study area.  

 

In addition, the following three quality variables were calculated to ensure that the data 

quality of the nDSM was broadly similar in all sample areas: number of lidar signals, number 

of lidar signals less than 1 m, and the ratio of the latter to the former. In doing so, it was 

detected that the data collected by Toposys was filtered in a different way than the data 

collected by other companies, so that few vegetation signals remained in the DSM (Christian 

Ginzler, pers. comm., 29.10.2012). Therefore, the sample areas affected were excluded from 

further analyses. 

 

2.3.2 Non-lidar RS variables 

In addition to the lidar metrics, the following non-lidar RS variables (Table 3) were calculated: 

potential direct solar radiation during March (r_march), forest type (forest_type), distance of 

the center of the sample area to forest edge (dist_f), and various soil condition variables, 

such as soil depth, soil skeleton, water holding capacity (WHC), soil nutrients, water 

permeability and waterlogging.  

The values for the non-lidar RS variables were derived from the data sources listed in Table 

3. R_march describes the potential direct solar radiation during March (Zimmermann & 

Kienast, 1999). The r_march values were extracted from the data source and averaged per 

sample area. Forest_type was obtained by extracting the vegetation classification, reaching 

from one to four representing coniferous to broadleaf forest, respectively (Federal Statistical 

Office, 2001). The classification values were averaged per sample area. Dist_f represents 

the shortest distance from the center of the sample area to the edge of the forest, extracted 

from the swissTLM3D. The soil condition variables were derived at the center of the 

sample areas.   
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Table 3: Non-lidar RS variables. The variables are grouped according to the five thematic groups and the 

hypotheses introduced in paragraph 1.2. 

Hypothesis Variable Unit Definition 1) Data source; 2) Data processing 

Geography 
(H7-H10) 

r_march [100 KJoule/m
2
] direct solar 

radiation during 
March 

1) Bioclimatic carts of Switzerland on 
the basis of long-term station data 
collected by MeteoSwiss; 25x25 m 
resolution © WSL (Zimmermann & 
Kienast, 1999) 

2) resampled to a resolution of 5x5 m 

 forest_type [1-4] forest type  1) Waldmischungsgrad der Schweiz; 
25x25 m resolution © Federal 
Statistical Office, GEOSTAT, CH-
2010 Neuchâtel (Federal Statistical 
Office, 2001) 

2) resampled to a resolution of 5x5 m 

 dist_f [m] distance to forest 
edge 

1) swissTLM3D © Federal Office of 
Topography swisstopo (Swisstopo, 
2012) 

2) selection: GDB-Code = 12 (Wald) 

 depth [1-6] soil depth 1) Bodeneignungskarte der Schweiz © 
Federal Statistical Office, GEO- 
STAT, CH-2010 Neuchâtel 

 skeleton [1-6] soil skeleton 

 WHC [1-6] water holding 
capacity 

 nutrients [1-6] soil nutrients 

 permeability [1-6] water permeability 

 waterlogging [1-6] waterlogging 

 

2.4 Statistical analyses 

All analyses were performed in the statistical environment R version 2.14.1 (R Development 

Core Team, 2011). The following packages were used: lme4 (Bates et al., 2012), 

AICcmodavg (Mazerolle, 2012) and PresenceAbsence (Freeman, 2012). 

 

2.4.1 Correlation analyses 

To analyze the intercorrelations of the RS variables based on Spearman’s rank correlation 

coefficients (rs), the area of the territory (6,648 m2) was used. In order to avoid spatial 

dependencies of the independent variables, the number of sample areas was reduced from 

312 to 264 so that the sample areas remaining did not overlap more than 10%.  

The analysis between the lidar metrics and habitat variables was based on data from 125 

sample areas, consisting of 62 occupied areas and 63 primary control areas, all referring to 

an area of 1,000 m2. Again, Spearman’s rank correlation coefficients (rs) were calculated. 

 

2.4.2 Data partitioning 

Prior to the statistical analysis described below, the dataset was divided into two equal parts, 

referred to as training data and testing data (Table 4) (Fielding & Bell, 1997). The training 

data was used for model building and verification, while the testing data was used for 
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validation. The partitioning of the data was done at random with the following constraints: (1) 

primary control areas paired with an occupied area belonged to the same data set as the 

corresponding occupied area; (2) if the sum of the occupied areas and the primary control 

areas was less than 10 per study area, it was ensured that half of the occupied areas and 

primary control areas was allocated to the training data and the other half to the testing data; 

and (3) it was ensured that occupied areas, primary control areas and additional pseudo-

absence control areas were assigned equally to the training and testing data. Both the 

training data and the testing data contained 156 sample areas each.  

 

Table 4: Data partitioning of the sample areas (occupied areas, primary control areas, pseudo-absence 
control areas) into training data and testing data. 

Study area 

Occupied areas Primary control areas 
Additional pseudo-

absence control areas 

training 
data 

testing 
data 

training 
data 

testing 
data 

training 
data 

testing 
data 

Bänkerjoch AG 1 1 0 1 5 3 

Belchen SO 2 2 2 1 0 0 

Blauen BL 4 4 2 1 3 2 

Dittingen BL 1 2 1 0 0 2 

Erschwil SO 1 1 1 1 5 3 

Gündelhart TG 1 0 1 0 2 4 

Ennenda GL 3 4 3 2 2 1 

Homberg SO 3 3 2 3 3 3 

Hochwald SO 2 2 2 1 2 3 

Kleinlützel SO 9 8 6 9 6 5 

Langenbruck BL 3 4 3 2 5 5 

Lauwil BL 8 10 6 6 3 2 

Montsevelier JU 9 5 6 4 3 7 

Oltingen BL 0 1 0 1 2 2 

Scheltenpass SO 9 9 7 8 9 9 

Staffelegg AG 1 2 0 2 7 5 

Total 57 58 42 42 57 56 

 

2.4.3 Model structure and model selection 

Generalized linear models (GLMs) and generalized linear mixed-effect models (GLMMs) 

were used to determine the importance of the independent RS variables for Wood Warbler’s 

territory choice. All RS variables were standardized (mean = 0, standard deviation = 1). 

The statistical analysis was performed as follows: First, occupied areas and corresponding 

primary control areas were analyzed at the scale of the nesting area (1,000 m2) to answer 

the question whether the RS variables calculated were suitable to distinguish occupied areas 

from control areas. This analysis was performed using GLMMs with two random effects, 

namely study area and occupied-control pairs nested within study area. A subset of the 

training data was used (Table 5), because only paired occupied areas and primary control 



Structural characteristics of Wood Warbler habitats 
   

 

19 

areas and no additional pseudo-absence control areas could be included in the analysis. The 

binomial response variable was specified as occupation status of the sample areas, with 1 

denoting occupied areas and 0 primary control areas.  

Second, GLMs were applied to the whole training data (Table 4), containing occupied areas, 

primary control areas and additional pseudo-absence control areas. This analysis was 

performed at both nesting area (1,000 m2) and territory (6,648 m2) scale. The binomial 

response variable was specified as occupation status of the sample areas, with 1 denoting 

occupied areas and 0 primary control areas and additional pseudo-absence control areas. 

 

Table 5: Subset of training and testing data of paired occupied areas and primary control areas used for 
GLMMs. 

Study area 

Occupied areas Primary control areas 

training 
data 

testing 
data 

training 
data 

testing 
data 

Bänkerjoch AG 0 1 0 1 

Belchen SO 2 1 2 1 

Blauen BL 2 1 2 1 

Dittingen BL 1 0 1 0 

Erschwil SO 1 1 1 1 

Gündelhart TG 1 0 1 0 

Ennenda GL 1 1 1 1 

Homberg SO 2 3 2 3 

Hochwald SO 2 1 2 1 

Kleinlützel SO 6 8 6 8 

Langenbruck BL 3 2 3 2 

Lauwil BL 5 6 5 6 

Montsevelier JU 6 3 6 3 

Oltingen BL 0 1 0 1 

Scheltenpass SO 7 8 7 8 

Staffelegg AG 0 2 0 2 

Total 39 39 39 39 

 

Model selection and model averaging were based on AIC (Akaike Information Criterion), 

following an approach described by Burnham & Anderson (2002). This approach accounts 

for model selection uncertainty and leads to more robust inferences, because they are not 

based on a single best model (Burnham & Anderson, 2002). AIC is an estimate of the mean 

log-likelihood and a measure of model fit (Akaike, 1974). It takes into account both the 

statistical goodness of model fit (log-likelihood) and the number of independent variables 

estimated to achieve this particular degree of fit. A penalty is imposed for increasing the 

number of independent variables (Everitt, 2002). In this study, AICc (corrected Akaike 

Information Criterion), a derivative of AIC, was used to account for small sample size 

(second-order bias correction), because the ratio of the number of observations to the 
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number of variables was below 40 (Hurvich & Tsai, 1989). The candidate models calculated 

were ranked from best to worst according to their AICc values, with the best supported model 

having the smallest AICc. AICc differences (ΔAICc) were calculated. Models with ΔAICc 

values < 2 compared to the best supported one are considered to have similar support. 

Models with ΔAICc values > 2 compared to the best model are considered to be less 

supported by the data (Burnham & Anderson, 2002).  

The independent variables (Table 2 and Table 3) were assigned to the five thematic groups 

introduced in paragraph 1.2. According to the hypotheses formulated, quadratic effects were 

included for the variables meanVH, meanCH, meanVH>3m, meanCH>3m, maxVH, VH95, 

pen50_2, meanCC, meanCC_10m, meanCC_15m and meanCC_20m. The variables 

describing soil conditions were excluded a priori because they hardly varied between 

occupied areas and control areas (Fig. 16/Appendix A1).  

For each thematic group, a set of candidate models was first constructed. These five sets 

included models with all combinations of the variables of the particular group, except that 

variables correlating more than l0.5l were never included together in the same model. Also, 

no interactions were considered. For GLMMs, the null model included the intercept and the 

two random effects study area and occupied-control pairs nested within study area, while, for 

GLMs, the null model consisted of the intercept only. A variable was considered relevant if 

(1) it was included in the best supported model or in a model with a ΔAICc value < 2 

compared to the best supported one and (2) had a model-averaged estimate across all 

models per group greater than the model-averaged standard error (SE). These conditions 

are referred to as selection criteria for the variables. 

Secondly, an across-group analysis was performed including only the relevant variables of 

each thematic group. In the across-group analysis, variables appearing in the best supported 

model or a model with a ΔAICc value < 2 compared to the best supported one were 

categorized according to their performance. Variables considered to have a strong effect 

were those with a model-averaged estimate greater than the model-averaged SE and a 95% 

confidence interval (CI) excluding zero. Variables with a model-averaged estimate greater 

than the model-averaged SE and a 95% CI including zero were denoted as variables with 

moderate effect. Variables considered to have a weak effect only fulfilled the criterion of 

occurring in the best supported model or a model with a ΔAICc value < 2 compared to the 

best supported one. 

 

2.4.4 Model fit 

Model performance and robustness were evaluated based on verification, validation and a 

10-fold cross validation for both the nesting area scale and the territory scale. Among the 

best supported models (ΔAICc value < 2) of the across-group analysis, model performance 

and robustness was evaluated for all models that included variables with strong and 

moderate effects. Model-averaged estimates of the across-group analysis were used as 

coefficients.  
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For verification, the models were applied to the training data, while, for validation, the 

testing data was used. The following accuracy measures were calculated for verification and 

validation: false positive rate (fpos), false negative rate (fneg), sensitivity (sens), specificity 

(spec), true skill statistic (TSS) and area under the ROC (receiver operating characteristic) 

curve (AUC).  

Fpos, fneg, sensitivity and specificity were used to evaluate the success of the models to 

correctly predict presence and absence of Wood Warblers. All of these accuracy measures 

were derived from the classification matrix (Table 6) (Everitt, 2002), also denoted as error 

matrix or confusion matrix (Allouche et al., 2006). 

 

Table 6: Classification matrix used to evaluate predictive accuracy of presence-absence models. a, 
observed presences correctly predicted by the model; b, observed absences for which the model 
predicted presence; c, observed presences for which the model predicted absence; d, observed 
absences correctly predicted by the model (Allouche et al., 2006). 

  Observation 

  Presence Absence 
 

Prediction 
Presence a b 

Absence c d 

 

Fpos equates to the proportion of sample areas predicted occupied but actually unoccupied 

to all observed absences (b/(b+d)). Fneg is the proportion of sample areas predicted 

unoccupied but actually occupied to all observed presences (c/(a+c)) (Morrison et al., 1992). 

Sensitivity is the proportion of observed presences that are predicted as such to all 

observed presences (a/(a+c)), and specificity describes the proportion of observed 

absences that are predicted as such to all observed absences (d/(b+d)) (Allouche et al., 

2006). 

Further, TSS was used to evaluate the overall agreement between predictions and observed 

data. TSS corrects the overall accuracy of model predictions by the accuracy expected to 

occur by chance. TSS is a special case of Cohen’s kappa, given that the proportions of 

presences and absences in the validation set are equal. Therefore, TSS is not dependent on 

prevalence, which is described by the proportion of observed presences ((a+c)/n). TSS is 

defined as sum of sensitivity and specificity less one (Allouche et al., 2006). The values 

obtained range from -1 to +1, where +1 indicates perfect agreement, zero a performance no 

better than random and -1 a systematically incorrect prediction (Cohen, 1960; Allouche et al., 

2006). To describe the relative strength of agreement associated with Cohen’s kappa, Landis 

& Koch (1977) assigned the following labels to the corresponding ranges of Cohen’s kappa: 

<0.00 = poor, 0.00-0.20 = slight, 0.21-0.40 = fair, 0.41-0.60 = moderate, 0.61-0.80 = 

substantial, 0.81-1.00 = almost perfect. Because TSS is a special case of Cohen’s kappa, 

the same benchmark can be applied to assess the relative strength of agreement.  

To calculate the accuracy measures introduced above, a cut-off threshold is necessary to 

classify the non-dichotomous scores derived by the model into presence and absence values 
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(Allouche et al., 2006). For verification, the threshold was used that maximized TSS. 

Validation was performed using the same threshold. 

AUC is another measure to evaluate overall accuracy. Contrary to the accuracy measures 

just described, AUC is a threshold-independent measure for model performance and 

represents the area under the ROC curve. Each point on the ROC curve represents a 

sensitivity/(1 – specificity) pair corresponding to a particular cut-off threshold. The closer the 

ROC curve is to the upper left corner, the more the AUC value approaches to its maximum 

value of 1, representing a perfect discrimination of occupied and non-occupied areas (Zweig 

& Campell, 1993). 

In addition to the verification and validation, a 10-fold cross validation was performed with 

the testing data to evaluate model robustness. For this purpose, the testing data was 

randomly split into 10 subsets of equal size. Afterwards, the model was fitted based on the 

data of nine subsets. Then, the fitted coefficients were used to predict the values of the 

subset not used before. Based on this prediction, the same accuracy measures were 

calculated as for verification and validation. This procedure was repeated until every subset 

once served as validation data (Hastie et al., 2009). For every model, the 10-fold cross 

validation was performed 10 times. Finally, the mean value and both the 5% and 95% 

quantiles were calculated for every accuracy measure. The two quantiles calculated include 

90% of all values obtained.  

 

2.5 Modeling of the current potential range in parts of Switzerland 

Among the models evaluated, two models were selected (see 3.3.1) to model the current 

potential range of Wood Warblers in the Swiss Jura Mountains and the Swiss Plateau. 

Model-averaged estimates of the across-group analysis were used as coefficients. To 

calculate the lidar metrics required, PyScripter for Python 3.3 was applied (Appendix A4). A 

prediction was calculated for 631,281 cells of 80x80 m located in the forest. The area 

covered by these forest cells corresponds to the entire forest area (swissTLM3D, GDB-Code 

= 12 (Wald)) within the two biogeographic regions Swiss Jura Mountains and Swiss Plateau. 

Only, areas with an insufficient quality of the lidar data were excluded (see 2.3.1). The output 

of the prediction was averaged within a circle with a radius of 1,000 m for each 80x80 m 

forest cell for increased distinguishability of areas including many suitable forest cells for 

Wood Warbler occurrence. 
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3 Results 

3.1 Correlation analyses 

Many lidar metrics were highly correlated with one another (Table 7). In particular, positive 

correlations occurred between meanVH, meanCH, meanVH>3m, meanCH>3m, maxVH, 

VH95, sdVH and meanCC_20m. On the other hand, meanVH<3m, pen5_1 and slope were 

weakly correlated with other lidar metrics. The lidar metrics were weakly correlated with the 

non-lidar RS variables (Table 7).  

As expected, the inclination habitat variable and the slope lidar metric were strongly 

correlated (rs = 0.82) (Table 8 and Fig. 7). Apart from that, average tree diameter and VH95 

showed the strongest correlation (rs = 0.62) (Fig. 7). 

 

 

 
Fig. 7: Scatter plots of habitat variables (y-axis) and lidar metrics (x-axis) with Spearman's rank 

correlation coefficients (rs) ≥ 0.6. N = 125. 

  



3 Results 
   

 

24 

Furthermore, average tree diameter was positively correlated with meanVH, meanCH, 

meanVH>3m, meanCH>3m, maxVH, sdVH and meanCC_20m. In contrast, number of 

tussocks, number of trees, trees branched below 4 m, trees branched below 10 m and 

amount of pole wood showed moderate to strong negative correlations with the lidar metrics 

listed before. Furthermore, both number of immature trees and number of dead trees showed 

negative correlations with maxVH and VH95. With regard to the metrics of penetration rates, 

the strongest correlations occurred between number of conifers and both pen50_2 and 

pen10_2. Canopy cover was not strongly correlated with the lidar metrics describing canopy 

cover, such as meanCC, meanCC_10m, meanCC_15m or meanCC_20m (Fig. 8). 

 

 

 
Fig. 8: Scatter plots of the canopy cover habitat variable (y-axis) and lidar metrics describing canopy 

cover (x-axis). N = 125. 
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Table 7: Spearman's rank correlation coefficients (rs) of the RS variables based on data from 82 
occupied areas, 69 primary control areas and 113 additional pseudo-absence control areas 
(N=264). Correlations ≥ l0.50l are printed in bold. Variables correlating more than l0.5l were never 

included together in the same model. A description of the variables can be found in the Tables 2 and 3.  
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Table 8: Spearman's rank correlation coefficients (rs) between habitat variables (column names) and 
lidar metrics (row names) based on data from 62 occupied areas and 63 primary control areas 
(N=125). Missing values were present for dead wood (99), average crown contacts (1) and mkna (2). 

Correlations ≥ 0.60 are printed in bold. A description of the lidar metrics is given in Table 2, while the 
habitat variables are described in Table 1. 
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3.2 Occupied territories versus control areas 

3.2.1 Nesting area scale (1,000 m2) 

GLMMs 

Wood Warbler occurrence was strongly related to the height variables. The ∆AICc value 

between the null model and the best supported one was 27.77 (Table 10). The model ranked 

highest included only maxVH. Moreover, the linear effect or the quadratic effect of maxVH 

appeared in every model with a ∆AICc < 2 compared to the best supported one. Additionally, 

these models included meanVH and meanCH. According to model averaging, the following 

variables had a model-averaged estimate greater than the model-averaged SE: 

meanVH>3m, meanCH>3m, maxVH, VH95 and the quadratic effect of VH95 (Table 9). 

However, following the selection criteria for the variables, only maxVH was considered 

relevant (the others were not included in the models with ∆AICc < 2 compared to the best 

one).  

Besides the height variables, Wood Warbler occurrence was strongly related to the vertical 

diversity variables too, because the ∆AICc value between the null model and the best 

supported model was 29.73 (Table 10). SdVH and sdCH>3m were included in the best 

supported model, which was the only model with strong support. The ∆AICc value to the 

second best model was 14.24. Both sdVH and sdCH>3m were considered relevant and were 

therefore included in the across-group analysis. 

In the group of penetration rates, the null model performed best, followed by models 

including pen50_2 and pen10_2, respectively (Table 10). No penetration rates variables 

were included in the across-group analysis, because no variable fulfilled the selection criteria 

(Table 9).  

Wood Warbler occurrence was related to the variables describing canopy cover. The best 

ranking model comprised meanCC_10m and meanCC_20m (Table 10). Besides, meanCC 

was included in the model ranked second. All three variables were selected for the across-

group analysis. 

In the geography group, Wood Warbler occurrence was strongly related to slope. It was 

included in every model considered to have substantial support (Table 10). In addition, these 

models comprised r_march, forest_type and dist_f. Following the selection criteria, slope, 

r_march and dist_f were included in the across-group analysis. 

In the across-group analysis, the best supported model included sdVH, sdCH>3m and 

slope (Table 10). The second best model comprised meanCC_20m instead of sdVH. 

Furthermore, only dist_f appeared in the other models considered to have substantial 

support. According to model-averaging, the variables of sdVH, sdCH>3m and meanCC_20m 

had the strongest effects, with their 95% confident intervals excluding 0 (Table 9). Wood 

Warbler occurrence was negatively related to all three variables. Slope and dist_f received 

weaker support. Wood Warbler occurrence was positively related to slope and negatively 

related to dist_f.  
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Table 9: Model averaged estimates (ES), standard errors (SE) and 95% confidence intervals (95% CI) 
across all models per group or across all models of the across-group analysis of the 
independent variables for GLMMs applied to the nesting area scale (1,000 m

2
). The quadratic 

effect of a variable is composed of a linear (x) and a quadratic component (x
2
). A description of the 

variables can be found in the Tables 2 and 3. The hypotheses are introduced in paragraph 1.2. 

Hypothesis Independent variable 
Within-group analysis Across-group analysis 

ES SE 95% CI ES SE 95% CI 

Height meanVH -0.37 0.45 [-1.3; 0.5]    
(H1) meanCH  0.31 0.61 [-0.9; 1.5]    
 meanVH<3m -0.16 0.30 [-0.8; 0.4]    
 meanVH>3m -1.22 0.33 [-1.9;-0.6]    
 meanCH>3m -1.32 0.34 [-2.0;-0.7]    
 maxVH -1.61 0.54 [-2.7;-0.6] -1.58 0.40 [-2.4;-0.8] 
 VH95 -1.38 0.35 [-2.1;-0.7]    
 quadratic effect of meanVH 

  linear component  
 

-0.68 
 

0.63 
 

[-1.9; 0.6] 
   

   quadratic component -0.54 0.49 [-1.5; 0.4]    
 quadratic effect of meanCH  

  linear component 
 

 0.30 
 

0.66 
 

[-1.0; 1.6] 
   

   quadratic component -0.22 0.38 [-1.0; 0.5]    
 quadratic effect of meanVH>3m  

  linear component 
 

-1.22 
 

0.34 
 

[-1.9;-0.6] 
   

   quadratic component   0.00 0.33 [-0.7; 0.6]    
 quadratic effect of meanCH>3m  

  linear component 
 

-1.30 
 

0.34 
 

[-2.0;-0.6] 
   

   quadratic component -0.17 0.35 [-0.9; 0.5]    
 quadratic effect of maxVH  

  linear component 
 

-1.62 
 

0.55 
 

[-2.7;-0.5] 
   

   quadratic component -0.21 0.46 [-1.1; 0.7]    
 quadratic effect of VH95  

  linear component 
 

-1.67 
 

0.42 
 

[-2.5;-0.8] 
   

   quadratic component -0.73 0.30 [-1.3;-0.2]    

Vertical  sdVH -1.21 0.34 [-1.9;-0.6] -1.07 0.37 [-1.8;-0.4] 
diversity sdCH -1.02 0.29 [-1.6;-0.5]    
(H2) sdCH>3m -1.47 0.46 [-2.4;-0.6] -1.63 0.53 [-2.7;-0.6] 

Penetration pen50_2  0.18 0.23 [-0.3; 0.6]    
rate pen10_2 -0.11 0.23 [-0.6; 0.3]    
(H3,H4) pen5_1 -0.03 0.23 [-0.5; 0.4]    
 quadratic effect of pen50_2 

  linear component 
 

 0.30 
 

0.26 
 

[-0.2; 0.8] 
   

   quadratic component -0.15 0.15 [-0.6; 0.2]    

Canopy meanCC  0.49 0.34 [-0.2; 1.2]  0.11 0.46 [-0.8; 1.0] 
closure meanCC_10m  0.56 0.32 [-0.1; 1.2]  0.40 0.41 [-0.4; 1.2] 
(H5) meanCC_15m -1.24 0.62 [-2.7;-0.0]    
 meanCC_20m -1.14 0.34 [-1.8;-0.5] -0.93 0.31 [-1.6;-0.3] 
 quadratic effect of meanCC 

  linear component 
 

 0.39 
 

0.54 
 

[-0.7; 1.5] 
   

   quadratic component -0.03 0.13 [-0.3; 0.2]    
 quadratic effect of meanCC_10m 

  linear component 
 

 0.71 
 

0.51 
 

[-0.3; 1.7] 
   

   quadratic component  0.05 0.12 [-0.2; 0.3]    
 quadratic effect of meanCC_15m 

  linear component 
 

-1.13 
 

0.68 
 

[-2.5; 0.2] 
   

   quadratic component  0.42 0.39 [-0.3; 1.2]    
 quadratic effect of meanCC_20m 

  linear component 
 

-1.15 
 

0.32 
 

[-1.8;-0.5] 
   

   quadratic component  0.15 0.44 [-0.7; 1.0]    

Geography slope  0.71 0.29 [ 0.2; 1.3]  0.71 0.39 [-0.1; 1.5] 
(H6-H9) r_march  0.33 0.29 [-0.2; 0.9]  0.03 0.36 [-0.7; 0.7] 
 forest_type 0.12 0.28 [-0.4; 0.7]    
 dist_f -0.40 0.25 [-0.9; 0.1] -0.42 0.33 [-1.1; 0.2] 

 intercept    -0.24 0.34 [-0.9; 0.4] 
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Table 10: Results of model selection for GLMMs applied to the nesting area scale (1,000 m
2
) based on 

data from 39 occupied areas and 39 primary control areas (N=78). Shown are models with ∆AICc 

values < 2 and the null model. K denotes the number of parameters included in the particular model 
(variables, the two random effects and the intercept). Δ represents ∆AICc values. W denotes Akaike 
weight defined as chance of the model to be the best one given all candidate models. LL denotes log-
likelihood and Δb represents ∆AICc values of the best supported models between the groups. The 
quadratic effect of a variable, composed of a linear and a quadratic component (x + x

2
), is denoted as 

(^2). A description of the variables can be found in the Tables 2 and 3. The hypotheses are introduced 
in paragraph 1.2. 

Hypothesis Variables included in the model K AICc ∆ W LL Δb 

Height 
(H1) 

maxVH 
meanVH, maxVH 
maxVH (^2) 
meanCH, maxVH 
… 
null model 

4 
5 
5 
5 
 
3 

 86.69 
 88.38 
 88.57 
 88.61 

 
114.46 

0 
 1.69 
 1.88 
 1.92 

 
27.77 

0.21 
0.09 
0.08 
0.08 

 
0.00 

-39.07 
-38.77 
-38.87 
-38.89 

 
-54.07 

 1.97 

Vertical 
diversity 
(H2) 

sdVH, sdCH>3m 
… 
null model 

5 
 
3 

 84.72 
 

114.46 

0 
 

29.73 

1.00 
 

0.00 

-36.94 
 

-54.07 

0 

Penetration 
rate 
(H3,H4) 

null model 
pen50_2 
pen10_2 

3 
4 
4 

114.46 
116.05 
116.44 

0 
 1.60 
 1.98 

0.38 
0.17 
0.14 

-54.07 
-53.75 
-53.95 

29.74 

Canopy 
cover 
(H5) 

meanCC_10m, meanCC_20m 
meanCC, meanCC_20m 
meanCC_20m 
… 
null model 

5 
5 
4 
 
3 

 99.42 
 99.81 
100.76 

 
114.46 

0 
 0.39 
 1.34 

 
15.04 

0.25 
0.21 
0.13 

 
0.00 

-44.29 
-44.49 
-46.11 

 
-54.07 

14.7 

Geography 
(H6-H9) 

slope, dist_f 
slope 
slope, r_march, dist_f 
slope, r_march 
slope, forst_type, dist_f 
… 
null model 

5 
4 
6 
5 
6 
 
3 

106.94 
107.20 
108.17 
108.26 
108.87 

 
114.46 

0 
0.26 
1.23 
1.31 
1.93 

 
7.51 

0.23 
0.20 
0.12 
0.12 
0.09 

 
0.01 

-48.05 
-49.33 
-47.49 
-48.71 
-47.84 

 
-54.07 

22.22 

Across 
groups 

sdVH, sdCH>3m, slope 
sdCH>3m, meanCC_20m, slope 
sdVH, sdCH>3m, slope, dist_f 
sdCH>3m, meanCC_20m, slope, dist_f 
sdVH, sdCH>3m, dist_f 
sdVH, sdCH>3m 
… 
null model 

6 
6 
7 
7 
6 
5 
 
3 

 82.85 
 83.09 
 83.57 
 84.13 
 84.68 
 84.72 

 
114.46 

0 
 0.23 
 0.71 
 1.28 
 1.83 
 1.87 

 
31.60 

0.14 
0.13 
0.10 
0.08 
0.06 
0.06 

 
0.00 

-34.84 
-34.95 
-33.98 
-34.27 
-35.75 
-36.94 

 
-54.07 

 

 

GLMs 

As before, maxVH appeared in every height model considered to have substantial support 

(Table 12). Contrary to the GLMMs, the quadratic effect of meanCH was substantial. The 

GLMs yielded broadly similar results for the groups of vertical diversity, penetration rate 

and canopy cover as the GLMMs (Table 10 and Table 12). In the geography group, dist_f 

did no longer receive support.  
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Table 11: Model averaged estimates (ES), standard errors (SE) and 95% confidence intervals (95% CI) 
across all models per group or across all models of the across-group analysis of the 
independent variables for GLMs applied to the nesting area scale (1,000 m

2
). The quadratic effect 

of a variable is composed of a linear (x) and a quadratic component (x
2
). A description of the variables 

can be found in the Tables 2 and 3. The hypotheses are introduced in paragraph 1.2. 

Hypothesis Independent variable 
Within-group analysis Across-group analysis 

ES SE 95% CI ES SE 95% CI 

Height meanVH  0.14 0.28 [-0.4; 0.7]    
(H1) meanCH  0.72 0.35 [ 0.0; 1.4]    
 meanVH<3m  0.08 0.24 [-0.4; 0.6]    
 meanVH>3m -0.87 0.21 [-1.3;-0.5]    
 meanCH>3m -0.86 0.20 [-1.3;-0.5]    
 maxVH -1.62 0.46 [-2.5;-0.7] -1.22 0.56 [-2.3;-0.1] 
 VH95 -0.91 0.21 [-1.3;-0.5]    
 quadratic effect of meanVH 

  linear component 
 

-0.08 
 

0.37 
 

[-0.8; 0.7] 
 

-0.56 
 

0.34 
 

[-1.2; 0.1] 
   quadratic component -0.81 0.33 [-1.5;-0.2] -0.55 0.30 [-1.1; 0.0] 
 quadratic effect of meanCH  

  linear component 
 

 0.63 
 

0.40 
 

[-0.2; 1.4] 
 

-0.59 
 

0.36 
 

[-1.3; 0.1] 
   quadratic component -0.65 0.28 [-1.2;-0.1] -0.58 0.29 [-1.2;-0.0] 
 quadratic effect of meanVH>3m  

  linear component 
 

-0.89 
 

0.22 
 

[-1.3;-0.5] 
   

   quadratic component -0.12 0.21 [-0.5; 0.3]    
 quadratic effect of meanCH>3m  

  linear component 
 

-0.95 
 

0.23 
 

[-1.4;-0.5] 
   

   quadratic component -0.31 0.22 [-0.7; 0.1]    
 quadratic effect of maxVH  

  linear component 
 

-1.75 
 

0.51 
 

[-2.8;-0.8] 
   

   quadratic component -0.27 0.32 [-0.9; 0.4]    
 quadratic effect of VH95  

  linear component 
 

-1.49 
 

0.33 
 

[-2.1;-0.8] 
   

   quadratic component -0.74 0.25 [-1.2;-0.3]    

Standard  sdVH -0.78 0.22 [-1.2;-0.4] -0.60 0.26 [-1.1;-0.1] 
deviation sdCH -0.86 0.20 [-1.3;-0.5]    
(H2) sdCH>3m -1.20 0.32 [-1.8;-0.6] -1.57 0.42 [-2.4;-0.7] 

Penetration pen50_2 -0.26 0.18 [-0.6; 0.1] -0.12 0.25 [-0.6; 0.4] 
rates pen10_2 -0.12 0.16 [-0.4; 0.2]    
(H3,H4) pen5_1  0.20 0.18 [-0.2; 0.6] -0.07 0.31 [-0.7; 0.5] 
 quadratic effect of pen50_2 

  linear component 
 

-0.24 
 

0.19 
 

[-0.6; 0.1] 
   

   quadratic component -0.06 0.14 [-0.3; 0.2]    

Canopy meanCC  1.34 0.37 [ 0.6; 2.1]  0.97 0.60 [-0.2; 2.1] 
closure meanCC_10m  1.19 0.30 [ 0.6; 1.8]  0.74 0.35 [ 0.0;1 .4] 
(H5) meanCC_15m -0.20 0.20 [-0.6; 0.2]    
 meanCC_20m -1.09 0.25 [-1.6;-0.6] -0.59 0.21 [-1.0;-0.2] 
 quadratic effect of meanCC 

  linear component 
 

 1.31 
 

0.40 
 

[ 0.5; 2.1] 
   

   quadratic component -0.08 0.47 [-1.0; 0.9]    
 quadratic effect of meanCC_10m 

  linear component 
 

 1.29 
 

0.37 
 

[ 0.6; 2.0] 
   

   quadratic component  0.10 0.17 [-0.2; 0.4]    
 quadratic effect of meanCC_15m 

  linear component 
 

-0.40 
 

0.28 
 

[-0.9; 0.1] 
   

   quadratic component -0.22 0.21 [-0.6; 0.2]    
 quadratic effect of meanCC_20m 

  linear component 
 

-1.09 
 

0.25 
 

[-1.6;-0.6] 
   

   quadratic component  0.07 0.31 [-0.5; 0.7]    

Geography slope  0.67 0.23 [ 0.2; 1.1]  0.96 0.31 [ 0.4; 1.6] 
(H6-H9) r_march  0.81 0.23 [ 0.4; 1.3]  0.52 0.25 [ 0.0; 1.0] 
 forest_type -0.04 0.22 [-0.5; 0.4]    
 dist_f  0.05 0.21 [-0.4; 0.5]    

 intercept    -0.90 0.38 [-1.7;-0.2] 
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The across-group analysis was performed with the following variables: maxVH, the 

quadratic effect of meanVH, the quadratic effect of meanCH, sdVH, sdCH>3m, pen50_2, 

pen5_1, meanCC, meanCC_10m, meanCC_20m, slope and r_march. The following 

variables received strong support: the quadratic effect of meanCH, sdCH>3m, 

meanCC_20m, slope and r_march (Table 11 and Table 12). Wood Warbler occurrence 

showed a concave relationship with meanCH (Fig. 9). Further, Wood Warbler occurrence 

was positively related to slope and r_march and negatively related to sdCH>3m and 

meanCC_20m (Fig. 9 and 10). Contrary to the GLMMs, sdVH did not occur in the best 

supported models. The quadratic effect of meanVH received moderate support, while 

pen50_2 and pen5_1 were weakly supported.  

 

Table 12: Results of model selection for GLMs applied to the nesting area scale (1,000 m
2
) based on data 

from 57 occupied areas, 42 primary control areas and 57 additional pseudo-absence control 
areas (N=156). Shown are models with ∆AICc values < 2 and the null model. K denotes the number of 

parameters included in the particular model (variables and intercept). Δ represents ∆AICc values. W 
denotes Akaike weight defined as chance of the model to be the best one given all candidate models. 
LL denotes log-likelihood and Δb represents ∆AICc values of the best supported models between the 
groups. The quadratic effect of a variable, composed of a linear and a quadratic component (x + x

2
), is 

denoted as (^2). A description of the variables can be found in the Tables 2 and 3. The hypotheses are 
introduced in paragraph 1.2. 

Hypothesis Variables included in the model K AICc ∆ W LL Δb 

Height 
(H1) 

meanCH (^2), maxVH 
meanCH

 
(^2), meanVH<3m, maxVH 

meanCH
 
(^2), maxVH

 
(^2) 

meanVH
 
(^2), maxVH 

… 
null model 

4 
5 
5 
4 
 
1 

165.16 
166.86 
166.94 
167.05 

 
206.84 

0 
 1.70 
 1.78 
 1.90 

 
41.68 

0.31 
0.13 
0.13 
0.12 

 
0 

 -78.45 
 -78.23 
 -78.27 
 -79.39 

 
-102.41 

0 

Vertical 
diversity 
(H2) 

sdVH, sdCH>3m 
… 
null model 

3 
 
1 

167.60 
 

206.84 

0 
 

39.24 

1.00 
 

0 

 -80.72 
 

-102.41 

 2.44 

Penetration 
rate 
(H3,H4) 

null model 
pen50_2 
pen50_2, pen5_1 
pen5_1 
pen10_2 
pen50_2 (^2) 

1 
2 
3 
2 
2 
3 

206.84 
206.91 
207.40 
208.06 
208.38 
208.75 

0 
 0.07 
 0.56 
 1.22 
 1.54 
 1.91 

0.23 
0.22 
0.17 
0.12 
0.11 
0.09 

-102.41 
-101.41 
-100.62 
-101.99 
-102.15 
-101.30 

41.68 

Canopy 
cover 
(H5) 

meanCC_10m, meanCC_20m 
meanCC, meanCC_20m 
meanCC_20m

 
(^), meanCC_10m 

meanCC_10m
 
(^), meanCC_20m 

… 
null model 

3 
3 
4 
4 
 
1 

168.58 
169.06 
170.35 
170.41 

 
206.84 

0 
 0.48 
 1.77 
 1.83 

 
38.26 

0.29 
0.23 
0.12 
0.12 

 
0.00 

 -81.21 
 -81.45 
 -81.04 
 -81.07 

 
-102.41 

 3.42 

Geography 
(H6-H9) 

slope, r_march 
… 
null model 

3 
 
1 

172.47 
 

206.84 

0 
 

34.37 

0.53 
 

0 

 -83.16 
 

-102.41 

 7.31 

Across 
groups 

meanCH
 
(^2), sdCH>3m, slope, r_march 

sdCH>3m, meanCC_20m, slope, r_march 
meanVH

 
(^2), sdCH>3m, slope, r_march 

meanCH (^2), sdCH>3m, pen50_2, slope, 
r_march 
meanCH (^2), sdCH>3m, pen5_1, slope, 
r_march 
… 
null model 

6 
5 
6 
7 
 
7 
 
 
1 

142.48 
142.85 
143.42 
144.14 

 
144.26 

 
 

206.84 

0 
 0.36 
 0.94 
1.65 

 
1.78 

 
 

64.36 

0.15 
0.12 
0.09 
0.07 

 
0.06 

 
 

0.00 

 -64.96 
 -66.22 
 -65.43 
 -64.69 

 
-64.75 

 
 

-102.41 
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Fig. 9:  Wood Warbler occurrence in relation to RS variables at nesting area scale. Variables of the best 

supported GLM at the nesting area scale are plotted against predicted probability of Wood Warbler 
occurrence (dots). Model-averaged estimates from the across-group analysis were used as coefficients 
(N=156). The curves represent the predicted responses for the respective variables (where the other 
variables are set to their means). 

 

 

Fig. 10: Wood Warbler occurrence in relation to mean canopy cover at 20 m above ground. This variable 

was not included in the best GLM at the nesting area scale, but still showed a strong effect (see Table 
11). Dots and line calculated as described in the legend of Fig. 9. A description of the variable can be 
found in the Table 2.  
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3.2.2 Territory scale (6,648 m2) 

GLMs 

Wood Warbler occurrence at the territory scale was related to the height variables (Table 

13). MaxVH and the quadratic effect of meanVH were strongly supported by model-

averaging (Table 14). As at the nesting area scale, the model including sdVH and sdCH>3m 

was ranked highest in the vertical diversity group. Contrary to the GLMMs and GLMs of the 

nesting area scale (Table 10 and 12), the null model was not the best supported model in the 

penetration rate group (Table 13). Two models, including either pen50_2 or pen50_2 and 

pen5_1, performed slightly better than the null model. Overall, the canopy cover group 

performed best. In the geography group, the following variables appeared in the best 

supported models: slope, r_march and forest_type.  

 

Table 13: Results of model selection for GLMs applied to territory scale (6,648 m
2
) based on data from 57 

occupied areas, 42 primary control areas and 57 additional pseudo-absence control areas 
(N=156). Shown are models with ∆AICc values < 2 and the null model. K denotes the number of 

parameters included in the particular model (variables and intercept). Δ represents ∆AICc values. W 
denotes Akaike weight defined as chance of the model to be the best one given all candidate models. 
LL denotes log-likelihood and Δb represents ∆AICc values of the best supported models between the 
groups. The quadratic effect of a variable, composed of a linear and a quadratic component (x + x

2
), is 

denoted as (^2). A description of the variables can be found in the Tables 2 and 3. The hypotheses are 
introduced in paragraph 1.2. 

Hypothesis Variables included in the model K AICc ∆ W LL Δb 

Height 
(H1) 

meanVH
 
(^2), maxVH 

meanVH
 
(^2), meanVH<3m, maxVH 

… 
null model 

4 
5 
 
1 

165.71 
167.65 

 
206.84 

0 
 1.93 

 
41.13 

0.47 
0.18 

 
0.00 

 -78.72 
 -78.62 

 
-102.41 

5.56 

Vertical 
diversity 
(H2) 

sdVH, sdCH>3m 
… 
null model 

3 
 
1 

175.89 
 

206.84 

0 
 

30.95 

0.93 
 

0.00 

 -84.86 
 

-102.41 

15.74 

Penetration 
rates 
(H3, H4) 

pen50_2, pen5_1 
pen50_2 
null model 
pen50_2

 
(^2), pen5_1 

pen50_2
 
(^2) 

3 
2 
1 
4 
3 

205.34 
205.84 
206.84 
207.01 
207.18 

0 
 0.50 
 1.50 
 1.67 
 1.84 

0.28 
0.22 
0.13 
0.12 
0.11 

 -99.59 
-100.88 
-103.41 
 -99.37 
-100.51 

45.19 

Canopy 
cover 
(H5) 

meanCC_10m, meanCC_20m 
meanCC_10m

 
(^2), meanCC_20m 

… 
null model 

3 
4 
 
1 

160.15 
160.90 

 
206.84 

0 
 0.75 

 
46.69 

0.43 
0.29 

 
0.00 

 -77.00 
 -76.32 

 
-102.41 

0 

Geography 
(H6-H9) 

slope, r_march 
slope, r_march, forest_type 
… 
null model 

3 
4 
 
1 

171.82 
173.71 

 
206.84 

0 
 1.89 

 
35.02 

0.50 
0.19 

 
0.00 

 -82.83 
 -82.72 

 
-102.41 

11.67 

Across 
groups 

meanVH
 
(^2), sdCH>3m, slope, r_march 

maxVH, meanCC_10m (^2), slope 
maxVH, meanCC_10m

 
(^2), slope, r_march 

meanVH
 
(^2), sdCH>3m, slope 

… 
null model 

6 
5 
6 
5 
 
1 

147.52 
149.01 
149.17 
149.25 

 
206.84 

0 
 1.49 
 1.65 
 1.74 

 
59.32 

0.20 
0.09 
0.09 
0.08 

 
0.00 

 -67.48 
 -69.30 
 -68.30 
 -69.43 

 
-102.41 

 

 

  



3 Results 
  

 

34 

Table 14: Model-averaged estimates (ES), standard errors (SE) and 95% confidence intervals (95% CI) 
across all models per group or across all models of the across-group analysis of the 
independent variables for GLMs applied to the territory scale (6,648 m

2
). The quadratic effect of a 

variable is composed of a linear (x) and a quadratic component (x
2
). A description of the variables can 

be found in the Tables 2 and 3. The hypotheses are introduced in paragraph 1.2. 

Hypothesis Independent variable 
Within-group analysis Across-group analysis 

ES SE 95% CI ES SE 95% CI 

Height meanVH  0.15 0.22 [-0.3; 0.6]    
(H1) meanCH  0.51 0.25 [ 0.0; 0.1]    
 meanVH<3m  0.14 0.24 [-0.3; 0.6]    
 meanVH>3m -0.78 0.21 [-1.2;-0.4]    
 meanCH>3m -0.73 0.20 [-1.1;-0.3]    
 maxVH -1.13 0.29 [-1.7;-0.6] -1.00 0.27 [-1.5;-0.5] 
 VH95 -0.97 0.21 [-1.4;-0.6]    
 quadratic effect of meanVH 

  linear component 
 

-0.08 
 

0.32 
 

[-0.7; 0.6] 
 

-0.39 
 

0.35 
 

[-1.1; 0.3] 
   quadratic component -1.00 0.30 [-1.6;-0.4] -0.83 0.32 [-1.5;-0.2] 
 quadratic effect of meanCH  

  linear component 
 

 0.59 
 

0.30 
 

[ 0.0; 1.2] 
   

   quadratic component -0.64 0.23 [-1.1;-0.2]    
 quadratic effect of meanVH>3m  

  linear component 
 

-0.78 
 

0.22 
 

[-1.2;-0.4] 
   

   quadratic component -0.08 0.19 [-0.5; 0.3]    
 quadratic effect of meanCH>3m  

  linear component 
 

-0.76 
 

0.21 
 

[-1.2;-0.3] 
   

   quadratic component -0.20 0.18 [-0.6; 0.2]    
 quadratic effect of maxVH  

  linear component 
 

-1.11 
 

0.29 
 

[-1.7;-0.5] 
   

   quadratic component  0.07 0.22 [-0.4; 0.5]    
 quadratic effect of VH95  

  linear component 
 

-1.21 
 

0.28 
 

[-1.8;-0.7] 
   

   quadratic component -0.44 0.22 [-0.9;-0.0]    

Vertical  sdVH -0.57 0.22 [-1.0;-0.2] -0.82 0.28 [-1.4;-0.3] 
diversity sdCH -0.83 0.20 [-1.2;-0.4]    
(H2) sdCH>3m -0.95 0.28 [-1.5;-0.4] -1.17 0.35 [-1.9;-0.5] 

Penetration pen50_2 -0.35 0.19 [-0.7; 0.0] -0.04 0.24 [-0.5; 0.4] 
rate pen10_2 -0.13 0.16 [-0.5; 0.2]    
(H3,H4) pen5_1  0.27 0.19 [-0.1; 0.7]  0.13 0.31 [-0.5; 0.8] 
 quadratic effect of pen50_2 

  linear component 
 

-0.31 
 

0.20 
 

[-0.7; 0.1] 
   

   quadratic component -0.11 0.15 [-0.4; 0.2]    

Canopy meanCC  1.50 0.34 [ 0.8; 2.2]    
closure meanCC_10m  1.64 0.34 [ 1.0; 2.3]  1.06 0.41 [ 0.3; 1.9] 
(H5) meanCC_15m  0.00 0.23 [-0.5; 0.5]    
 meanCC_20m -1.09 0.23 [-1.6;-0.6] -0.86 0.26 [-1.4;-0.4] 
 quadratic effect of meanCC 

  linear component 
 

 1.47 
 

0.37 
 

[ 0.7; 2.1] 
   

   quadratic component -0.13 0.40 [-0.9; 0.7]    
 quadratic effect of meanCC_10m 

  linear component 
 

1.60 
 

0.37 
 

[ 0.9; 2.3] 
 

 0.95 
 

0.44 
 

[ 0.1; 1.8] 
   quadratic component -0.46 0.45 [-1.3; 0.4] -0.85 0.53 [-1.9; 0.2] 
 quadratic effect of meanCC_15m 

  linear component 
 

-0.14 
 

0.26 
 

[-0.7; 0.4] 
   

   quadratic component -0.63 0.28 [-1.2;-0.1]    
 quadratic effect of meanCC_20m 

  linear component 
 

-1.09 
 

0.24 
 

[-1.6;-0.6] 
   

   quadratic component -0.01 0.22 [-0.5; 0.4]    

Geography slope 0.63 0.23 [ 0.2; 1.1]  0.81 0.30 [ 0.2; 1.4] 
(H6-H9) r_march 0.84 0.24 [ 0.4; 1.3]  0.48 0.28 [-0.1; 1.0] 
 forest_type 0.11 0.23 [-0.4; 0.6]    
 dist_f 0.04 0.21 [-0.4; 0.4]    

 intercept    -0.56 0.36 [-1.3; 0.2] 
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Fig. 11: Wood Warbler occurrence in relation to RS variables at territory scale. Variables of the best 

supported GLM at the territory scale are plotted against predicted probability of Wood Warbler 
occurrence (dots). Model-averaged estimates from the across-group analysis were used as coefficients 
(N=156). The curves represent the predicted responses for the respective variables (where the other 
variables are set to their means). 

  
Fig. 12: Wood Warbler occurrence in relation to maximum vegetation height (maxVH) and mean canopy 

cover at 10 m above ground (meanCC_10m). These variables were not included in the best GLM at 

the territory scale, but still showed a strong effect (see Table 14). Dots and line calculated as described 
in the legend of Fig. 11. A description of the variables can be found in the Table 2. 
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The across-group analysis was performed with the following variables: maxVH, sdVH, 

sdCH>3m, pen50_2, pen5_1, meanCC_20m, slope, r_march and the quadratic effects of 

both meanVH and meanCC_10m. Variables with strong effect were the quadratic effect of 

meanVH, maxVH, sdCH>3m and slope (Table 13 and Table 14). Wood Warbler occurrence 

showed a concave relationship with meanVH (Fig. 11). Furthermore, territory choice was 

negatively related to maxVH and sdCH>3m, while it showed a positive relationship to slope 

(Fig. 11). SdVH, the quadratic effect of meanCC_10m and r_march were classed among 

variables with moderate effect. Wood Warbler occurrence was negatively related to sdVH 

and positively related to r_march. Furthermore, occurrence showed a concave relationship 

with meanCC_10m (Fig.12). 

 

3.2.3 Comparison of the results 

The comparison of the results between GLMMs and GLMs for both the nesting area scale 

and the territory scale shows that variables of the vertical diversity group always received 

strong support (Table 15). Also, variables belonging to the height group, the canopy cover 

group and the geography group performed well.  

 

Table 15: Classification of the variables included in the best supported model or a model with a ΔAICc 
value < 2 compared to the best supported one of the across-group analysis. A description of the 

variables can be found in the Tables 2 and 3. 

GLMMs GLMs GLMs 

Nesting area scale Nesting area scale Territory scale 

Variables with strong effect Variables with strong effect Variables with strong effect 

 sdVH 
 sdCH>3m 
 meanCC_20m 

- 
- 
- 

 meanCH (^2) 
 sdCH>3m 
 meanCC_20m 
 slope 
 r_march 

concave 
- 
- 
+ 
+ 

 meanVH (^2) 
 maxVH 
 sdCH>3m 
 slope 

concave 
- 
- 
+ 

Variables with moderate effect Variables with moderate effect Variables with moderate effect 

 slope 
 dist_f 
 

+ 
- 

 meanVH (^2) 
 

concave  meanCC_10m 
(^2) 
 r_march 

concave 
+ 

Variables with weak effect Variables with weak effect Variables with weak effect 

   pen50_2 
 pen5_1 

- 
- 

  

 

The results support the following hypotheses: The probability of Wood Warbler occurrence 

shows a concave relationship with vegetation height (H1), is negatively related to the 

standard deviation of vegetation height (H2) and increases with inclination (H6) and solar 

radiation input during March (H7). The results for H5 are inconclusive: on the one hand, 

probability of Wood Warbler occurrence was strongly negatively related to meanCC_20m at 

the nesting area scale, contrary to the expectation for H5 outlined in the introduction. 
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However, this variable is highly correlated with meanCH, meanVH>3m and meanCH>3m (rs 

= 0.92, 0.84 and 0.87, respectively), which all reflect stand height. MeanCC_20m thus also 

appears to represent stand height rather than canopy cover. On the other hand, there was a 

moderately strong, concave relationship between occurrence and meanCC_10m at the 

territory scale, thus supporting H5. 

 

3.2.4 Model fit 

For the nesting area scale, model performance and robustness were evaluated for three 

models (GLMs). These models correspond to the first three models of the across-group 

analysis (Table 12). All three models contained the variables sdCH>3m, slope and r_march. 

Additionally, the first model included the quadratic effect of meanCH, the second model 

meanCC_20m and the third model the quadratic effect of meanVH. Model performance and 

robustness was not evaluated for the other two models considered to have substantial 

support, because they additionally included either pen50_2 or pen5_1, both variables with 

only weak effects.  

For the territory scale, four models were evaluated. They correspond to the best supported 

models of the across-group analysis with a ΔAICc value < 2 (Table 13). 

 

Verification 

For most models, fpos was higher than fneg (Table 16). The values of fpos ranged between 

16.16% and 26.26%, while the values of fneg varied between 8.77% and 26.32%. A small 

fneg is preferable to be certain of correctly predicting as many presences as possible. On the 

other hand, fpos should be as small as possible to be certain of actually finding the species 

(Fielding & Bell, 1997).  

For most models, sensitivity ranging between 77.19% and 91.23% was higher than 

specificity ranging between 75.76% and 81.82%. This indicates that for most models the 

probability that an observed presence is correctly predicted is higher than the probability that 

an observed absence is correctly predicted. 

TSS varied between 52.95% and 73.05% indicating a moderate to substantial strength of 

agreement between prediction and observation. AUC values reaching from 85.65% to 

88.18% slightly varied between the models.  

In summary, the models for the nesting area scale performed better than the models for the 

territory scale. The third model of the nesting area scale received strongest support. 

Compared to the other models, it exhibited the smallest fneg and the highest sensitivity, 

specificity, TSS and AUC value. 
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Table 16: Accuracy measures for verification of the models at the nesting area scale and the territory 
scale. All numbers are shown in %. The quadratic effect of a variable is composed of a linear (x) and a 

quadratic component (x
2
). A description of the variables can be found in the Tables 2 and 3. 

Spatial scale Model Variables fpos fneg sens spec TSS AUC 

Nesting area 1 
meanCH (^2), sdCH>3m, 
slope, r_march 

18.18 12.28 87.72 81.82 69.54 88.14 

 
2 

sdCH>3m, meanCC_20m, 
slope, r_march 

22.22  8.77 91.23 77.78 69.01 88.00 

 
3 

meanVH (^2), sdCH>3m, 
slope, r_march 

18.18  8.77 91.23 81.82 73.05 88.18 

Territory 1 
meanVH (^2), sdCH>3m, 
slope, r_march 

22.22 10.53 77.19 81.82 59.01 86.87 

 
2 

maxVH, meanCC_10m 
(^2), slope 

16.16 26.32 77.19 75.76 52.95 85.65 

 
3 

maxVH, meanCC_10m 
(^2), slope, r_march 

19.19 21.05 78.95 75.76 54.70 86.18 

 
4 

meanVH (^2), sdCH>3m, 
slope 

26.26 12.28 77.19 80.81 58.00 85.72 

 

Validation 

In general, the accuracy measures were poorer for validation (Table 17) than for verification 

(Table 16). For validation, the values of fpos ranged between 19.39% and 33.67%, while 

fneg took values between 20.69% and 34.48% (Table 17). Sensitivity and specificity varied 

between 65.52% and 80.61%. The first model for the nesting area scale expressed the 

lowest TSS value of 43.84%, while the last model of the territory scale reached the highest 

TSS value of 49.72%. AUC values varied between 79.77% and 81.18%.  

Overall, the fourth model of the territory scale was supported best. It expressed the smallest 

fneg and the highest sensitivity and TSS value. Furthermore, fpos was higher than fneg and 

sensitivity exceeded specificity.  

 

Table 17: Accuracy measures for validation of the models at the nesting area scale and the territory 
scale. All numbers are shown in %. The quadratic effect of a variable is composed of a linear (x) and a 

quadratic component (x
2
). A description of the variables can be found in the Tables 2 and 3. 

Spatial scale Model variables fpos fneg sens spec TSS AUC 

Nesting area 1 
meanCH (^2), sdCH>3m, 
slope, r_march 

28.57 27.59 72.41 71.43 43.84 81.18 

 
2 

sdCH>3m, meanCC_20m, 
slope, r_march 

33.67 22.41 77.59 66.33 43.91 79.77 

 
3 

meanVH (^2), sdCH>3m, 
slope, r_march 

30.61 24.14 75.86 69.39 45.25 80.67 

Territory 1 
meanVH (^2), sdCH>3m, 
slope, r_march 

30.61 20.69 79.31 69.39 48.70 81.07 

 
2 

maxVH, meanCC_10m 
(^2), slope 

19.39 34.48 65.52 80.61 46.13 79.94 

 
3 

maxVH, meanCC_10m 
(^2), slope, r_march 

24.49 29.31 70.69 75.51 46.20 80.05 

 
4 

meanVH (^2), sdCH>3m, 
slope 

29.59 20.69 79.31 70.41 49.72 81.16 
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10-fold cross validation 

The 10-fold cross validation showed broadly similar patterns to the verification (Table 18). 

Often, the accuracy measures of the models for the territory scale varied to a greater extent 

than the accuracy measures of the models for the nesting area scale, except for the first 

model of the territory scale. Therefore, the models for the nesting area scale and the first 

model of the territory scale seemed to be more robust than the other three models.  

 

Table 18: Accuracy measures for the 10-fold cross validation of the models at nesting area scale and 
territory scale applied to the training data. All numbers are shown in %. The numbers of the models 

refer to the numbers of the models of the across-group analysis in the Tables 12 and 13.  

Spatial 
scale 

Model 
 

fpos fneg sens spec TSS AUC 

Nesting area 1 average 23 13 87 77 64 87 
 5% quantile 8 0 57 56 30 67 

 95% quantile 44 43 100 92 91 100 

 

2 average 22 17 83 78 61 87 

 5% quantile 8 0 57 56 30 67 

 95% quantile 44 43 100 92 91 100 

 

3 average 21 13 87 79 67 87 

 5% quantile 0 0 57 50 38 72 

 95% quantile 50 43 100 100 90 100 

Territory 1 average 28 15 85 72 57 85 

  5% quantile 8 0 60 50 27 68 

  95% quantile 50 40 100 92 89 100 

 2 average 18 27 73 82 55 85 

  5% quantile 0 0 33 56 12 67 

  95% quantile 44 67 100 100 91 98 

 3 average 19 29 71 81 52 84 

  5% quantile 0 0 25 60 8 66 

  95% quantile 40 75 100 100 83 98 

 4 average 31 12 88 69 57 84 

  5% quantile 8 0 50 44 20 61 

  95% quantile 56 50 100 92 90 100 

 

3.3 Modeling of the current potential range in parts of Switzerland 

3.3.1 Models used for the prediction of the current potential range 

Among the models evaluated, the first and fourth models of the territory scale were selected 

as predictive models. Despite their good performance in the verification, the models of the 

nesting area scale were not considered suitable, because they performed somewhat poorer 

in the validation than the models for the territory scale. Generally, model performance was 

broadly similar for the four models of the territory scale. The first and fourth model consisted 

of the same variables except for r_march. Equally, the second and third model included the 

same variables except for r_march.  

TSS and AUC values were higher for the first and fourth model than for the second and third 

model (Table 17). For the first and fourth models, fpos was higher than fneg and sensitivity 

was higher than specificity. Furthermore, sdCH>3m always showed a strong effect (Table 
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15). Because of that, the first and fourth models were preferred to the second and third 

model. Biologically, the interpretation of the lidar metrics is broadly the same for all models: 

Stand height, and therefore stand age, and vertical stand diversity seem to critically influence 

Wood Warbler occurrence.  

 

3.3.2 Current potential range of the Wood Warbler in the Swiss Jura Mountains and 

the Swiss Plateau 

As an example, Fig. 13 shows the predicted occurrence probabilities for Wood Warbler 

occurrence for the 80x80 m forest cells near Zurich. For further examples see Fig. 14.  

According to the predictive models, the current potential range of the Wood Warbler is 

predominantly located in the Swiss Jura Mountains (Fig. 15). The output of the two models is 

very similar.  

 

Fig. 13: Predicted Wood Warbler occurrence probabilities near Zurich according to the first model of 
the territory scale. The following variables were included in the model: meanVH (^2), sdCH>3m, 

slope and r_march. A description of the variables can be found in the Tables 2 and 3. A prediction was 
calculated for 80x80 m forest cells corresponding to the forest area of the Swiss Jura Mountains and 
the Swiss Plateau. 
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Fig. 14: Predicted Wood Warbler occurrence probabilities according to the first model of the territory 
scale. a) near Brugg; b) near Rheinfelden. For further details see legend Fig. 13. 

a) 

b) 
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Fig. 15: Predicted occurrence probability. a) according to the first model; b) according to the fourth model of 

the territory scale. The numbers of the models refer to the numbers of the models of the across-group 
analysis in Table 13. A prediction was calculated for 80x80 m cells located in forest. The maps show 
the predicted occurrence probabilities averaged in a circle with a radius of 1,000 m. Absent = predicted 
occurrence probability < 0.08, low = predicted occurrence probability 0.08-0.12, medium = predicted 
occurrence probability 0.12-0.23, and high = predicted occurrence probability 0.23-1. 

b) 

a) 
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4 Discussion 

This study used RS data, particularly lidar, to achieve an increased understanding of the 

factors influencing territory choice of Wood Warblers in Switzerland and to identify potentially 

suitable habitats in Switzerland. Habitat needs of Wood Warblers were analyzed at the scale 

of the nesting area (1,000 m2) and at the scale of the territory (6,648 m2). The occurrence of 

Wood Warblers is negatively related to the vertical diversity of a forest stand and to maximal 

tree height, described by both maxVH and meanCC_20m. Furthermore, Wood Warbler 

occurrence shows a concave relationship with stand height and canopy cover at 10 m. In 

addition, the occurrence of Wood Warblers is positively related to inclination and to solar 

radiation input during March.  

 

4.1 Lidar metrics versus habitat variables 

Overall, few strong correlations occurred between the lidar metrics and the habitat variables 

(Table 8). This result suggests that metrics derived from lidar data convey additional 

information not covered with the field variables gathered (and vice versa). Lidar metrics 

mainly provide information on the vertical and horizontal stand structure, while the habitat 

variables mainly contain information on the number of specific structural elements, such as 

sedge and grass tussocks, bushes or trees. Nevertheless, the few strong correlations 

between lidar metrics and habitat variables suggest that habitat variables varying with the 

age and the height of a forest stand show plausible correlations with the lidar metrics. For 

example, number of trees is negatively correlated with the lidar metrics of the height group, 

while average tree diameter shows a positive correlation with the metrics of the height and 

canopy cover group.  

Interestingly, the canopy cover habitat variable was only weakly correlated with the lidar 

metrics describing canopy cover (Table 8). Canopy cover was always high (average 86% ± 

SD 7%), while the canopy cover lidar metrics showed more variation than canopy cover 

collected in the field (Figure 8). Canopy cover was measured by taking photographs of the 

canopy above 1.5 m above ground. Conceivably, the high values of canopy cover originate 

from surrounding stems also captured on camera. Contrary to canopy cover, the lidar metrics 

describing canopy cover refer to particular height levels, namely 3 m, 10 m, 15 m and 20 m 

above ground. Only meanCC represents the proportion of ground covered by all tree crowns.  

The lidar metrics were not highly correlated with the number of return signals (maximal rs: 

meanCC 0.45) and can therefore be considered robust to the resolution of lidar signals. 

However, the lidar signal densities of the present study (average density of 1.5 laser signals 

per m2 for the sample areas) were relatively low compared to other ecological studies (e.g. 

Morsdorf et al. (2004): > 10 laser signals per m2; Popescu & Zhao (2008): 2.6 laser signals 

per m2; Pavlovic (2009): 25 laser signals per m2 or studies using full waveform lidar data 

providing the entire signale trace (Lefsky et al., 2002): Hinsley et al., 2002; Bradbury et al., 

2005; Hyde et al., 2005; Hinsley et al., 2006; Hyde et al., 2006; Goetz et al., 2007; Chust et 

al., 2008).   
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4.2 Occupied territories versus control areas 

The GLMs obtained for the nesting area scale of 1,000 m2 indicate that the occurrence of 

Wood Warblers is negatively related to sdCH>3m and meanCC_20m and positively related 

to slope and r_march (Table 15). Furthermore, occurrence at the nesting area scale shows a 

concave relationship with meanCH. The quadratic effect of meanVH showed a moderate 

effect, while pen50_2 and pen5_1 received weak support.  

The variables best explaining occurrence at territory scale (6,648 m2) slightly vary from those 

at the nesting area scale (Table 15). In contrast to the nesting area scale, maxVH received 

strong support instead of meanCC_20m; however, both variables were strongly correlated. 

Territory occurrence showed a concave relationship with the quadratic effect of meanVH, 

while the effects of maxVH and sdCH>3m were negative and the effect of slope was positive. 

Furthermore, sdVH, the quadratic effect of meanCC_10m and r_march received moderate 

support. The penetration rate variables received no support.  

Variables that were never selected for the across-group models, neither in GLMMs nor 

GLMs, were meanVH<3m, meanVH>3m, meanCH>3m, VH95, sdCH, pen10_2, 

meanCC_15m and forest_type. 

 

The results imply that Wood Warbler occurrence is sensitive to stand height and therefore 

to stand age, thus supporting H1. According to model averaging, stand height favoring the 

occurrence of Wood Warblers reaches an optimum between 12-22 m (Fig. 9, meanCH (^2), 

GLM for nesting area scale). Thus, the optimal stages of development include late pole wood 

(dbh100 = 20-30 cm) and young timber (dbh100 = 31-40 cm) (Christian Ginzler, pers. comm., 

29. 01. 2013; Peter Rotach, pers. comm., 22. 02. 2013). With regard to the mosaic-cycle 

concept of Korpel (1995), which distinguishes the three main development phases growing-

up, optimal and break-up, the stages of development favoring Wood Warbler occurrence 

belong to late growing-up and early optimal. Stands of these stages of development are 

usually single-layered and characterized by a dense and closed canopy. This allows for an 

open stem space and inhibits both the development of the herb and shrub layer and the 

development of regeneration. Natural mortality of the dominant trees of the upper tree layer 

is very low. In natural beech-dominated stands, hardly any gaps are present at these stages 

(Korpel, 1995; Pontailler et al., 1997; Meyer et al., 2003; Rozenbergar et al., 2007). 

In contrast, the phases growing-up, late optimal and break-up are less suitable for Wood 

Warbler occurrence. Young stands, arising from natural regeneration, are too dense for 

Wood Warbler occurrence because high stand density inhibits the song flight, which is 

important for territory establishment and mate attraction (Glutz von Blotzheim & Bauer, 

1991). Old stands become unsuitable because canopy opens up, mainly due to harvesting 

(Peter Rotach, pers. comm., 22. 02. 2013). As a consequence, shrubs and bushes develop 

in the gaps due to the ameliorated light conditions. The forest ground becomes unsuitable for 

the ground-nesting Wood Warbler, inhibiting its occurrence. This conclusion is also 

supported by the negative correlation of Wood Warbler occurrence with maxVH and 
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meanCC_20m. Furthermore, the proportion of low branches for song flight behavior 

decreases with stand age.  

The findings concerning the first hypothesis comply with previous studies describing the 

preferred habitat of Wood Warblers as forest stands with an open stem space, a closed 

canopy, a little-developed herb and shrub layer, and trees with low branches for song-flight 

behavior (Quelle & Tiedemann, 1972; Schifferli et al., 1980; Glutz von Blotzheim & Bauer, 

1991). Glutz von Blotzheim & Bauer (1991) and Quelle & Tiedemann (1972) also refer to late 

pole wood and young timber as most suitable age classes. In accordance with the results of 

this study, Mallord et al. (2012) also found a concave relationship between territory 

occurrence of Wood Warblers and canopy height. Both Gerber (2011) and Reinhardt (2003) 

found that occupied territories have a higher number of trees than abandoned territories or 

random control areas. Because stem number decreases with forest age, Reinhardt (2003) 

concluded that forests of medium age are most suitable for Wood Warbler occurrence. 

Pavlovic (2009) hypothesized that Wood Warbler occurrence increases with vegetation 

height but could not confirm this hypothesis.  

Other bird species with a preference for mid-successional forests are, for example, Least 

Flycatcher (Empidonax minimus), American Redstart (Setophaga ruticilla) or Philadelphia 

Vireo (Vireo philadelphicus). Least Flycatchers are abundant in well-stratified forest, with a 

dense upper canopy and a relatively open subcanopy and therefore strongly associated with 

mid-successional forests (Breckenridge, 1956; Sherry, 1979, Holmes & Sherry, 2001). Also, 

American Redstarts and Philadelphia Vireos are species shown to frequently occur in early 

successional and mid-successional forests (Hunt, 1996; Holmes & Sherry, 2001). In their 

unmanaged study area, Holmes & Sherry (2001) observed a strong decline of all three 

species between 1969 and 1998. The authors hypothesize that maturing of the forest in the 

study area may have reduced habitat quality for these species.  

 

In accordance to previous findings (Pavlovic, 2009), a negative relationship was found 

between Wood Warbler occurrence and increasing standard deviation of canopy height 

(H2). Out of the vertical diversity metrics, sdCH>3m performed best indicating that stands 

with a high tree height diversity negatively influence Wood Warbler occurrence. This 

relationship was found for both the nesting area and the territory scale, suggesting that 

stands with even-aged trees and no gaps are preferred. These findings are closely 

connected with the findings from the first hypothesis because stands of medium height are 

characterized by homogeneous stand height and therefore by a small vertical diversity of 

canopy height (Korpel, 1995; Pontailler et al., 1997; Meyer et al., 2003; Rozenbergar et al., 

2007).  

Few bird species prefer stands with a homogeneous tree height (Scherzinger, 1996; Müller, 

2005; Winter et al., 2005; Mollet et al., 2006). In general, avian diversity in forests appears to 

be positively related to structural diversity, including vertical diversity. For example, Goetz et 

al. (2007) found that vertical distribution of the canopy was the strongest positive predictor for 

species richness. Similarly, Müller et al. (2009) found that the occurrence of many species 

was positively related to vertical variation of canopy height. The only species showing a 
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negative relationship with vertical variation of canopy height was the Nuthatch (Sitta 

europaea).  

 

Wood Warbler occurrence is related to canopy cover (H5). According to previous studies, a 

canopy cover of 60%-90% is preferred (Bibby, 1989; Glutz von Blotzheim & Bauer, 1991). 

According to this study, canopy cover favoring Wood Warbler occurrence is high at 10 m 

above ground, while canopy cover 20 m above ground should be low. Canopy cover is 

defined as area of forest floor covered by the vertical projection of the tree crowns (Jennings 

et al., 1999). Accordingly, tree crowns at every height above ground are included in the 

calculation of canopy cover, whereas the canopy cover metrics used in this study do not 

consider all tree crowns but represent a horizontal cut at a specific height level (Fig. 6). 

Therefore, canopy cover favoring Wood Warbler occurrence can be described as high due to 

the effect found for meanCC_10m. Furthermore, meanCC_20m derived from the study 

forests refers more to stand height than to canopy cover due to the strong correlations with 

meanCH, meanVH>3m and meanCH>3m (Table 7).  

Stands with closed canopy are characterized by few bushes and little ground vegetation, 

features promoting the occurrence of the Wood Warbler. Again, these findings are closely 

connected with the findings from the first hypothesis because pole wood and young timber 

are characterized by a closed canopy.  

Gerber (2011) compared occupied territories with control areas in the same study areas in 

2010 and found only weak evidence for the often-stated preference for forests with a closed 

canopy. The same result was found in analyses covering three years of data from the same 

study areas (Gilberto Pasinelli, pers. comm. 5. 04. 2013). Probably, the variation of the 

canopy cover habitat variable was too small for distinguishing occupied territories from 

control areas.  

 

According to this study, the Wood Warbler occurrence is positively related to inclination 

(H6). This relationship is rarely mentioned in the common habitat descriptions of Wood 

Warblers (but see Hölzinger, 1999; Reinhardt & Bauer, 2009; Gerber, 2011; Mallord et al., 

2012). According to Glutz von Blotzheim & Bauer (1991), Wood Warbler territories are 

equally situated on flat terrain, on crests and on slope. Therefore, it is unclear whether 

inclination is directly related to Wood Warbler occurrence or not. Mallord et al. (2012) found a 

positive association of Wood Warbler territories and slope in mid Wales. The authors bring 

forward the argument that nowadays Wood Warblers mainly settle in the upland areas of the 

UK where grazing has remained the dominant form of land management. They argue that 

the grazing maintains the open woodland structure preferred by Wood Warblers. Also in 

Switzerland, Wood Warbler occurrence has strongly declined in the lowlands. But the 

argumentation of grazing is not applicable to the situation in Switzerland, because here, 

wood pasture was already discontinued after the first half of the 19th century due to changes 

in agricultural practice (Pfister & Messerli, 1990; Bürgi, 1999).  
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An explanation for the observed effect of inclination might be that inclined areas, especially 

areas with southern aspect, warm-up earlier in spring and therefore become snow-free 

earlier compared to flat areas. This effect may only become important above a certain 

altitude because of the delayed beginning of the growing season at increased altitudes. 

Possibly, the predominant location of the study areas in the eastern Jura led to the detection 

of this relationship.  

Alternative explanations for the positive relationship between Wood Warbler occurrence and 

inclination could be that disturbances due to recreational activity or forest management 

intensity decrease with increasing inclination. Outdoor recreational activities can affect 

wildlife (e.g. Boyle & Samson, 1985; Taylor & Knight, 2003). Recreational activities in forests 

are mainly taking place on trails (Bernasconi & Schroff, 2003; Bernasconi & Schroff, 2008). 

Trails can create habitat edges, may cause an increase in nest predation or brood 

parasitism, and increase habitat fragmentation (Paton, 1994; Miller & Hobbs, 2000; Kangas 

et al., 2010). Some studies showed that bird species composition alters adjacent to trails 

(Miller et al., 1998). For nearby recreation, areas close to settlements are preferred 

(Buchecker, 2008). But the study areas of this study were relatively remote and no peri-urban 

forest stands were investigated.  

The date of last treatment is a good indicator for the intensity of forest management (Brändli, 

2010). Many study areas are located in areas where last treatment took place 20 to 50 years 

ago (Brändli, 2010), incuding also study areas situated in forest nature reserves. In 

particular, inclined areas are often treated less intensively due to higher costs of timber 

harvesting (Brändli, 2010). Harvesting usually leads to gaps in the canopy, favoring the 

development of shrubs and regeneration, which negatively affects Wood Warbler 

occurrence. However, it has to be considered that unmanaged forest stands become 

unsuitable for Wood Warbler occurrence at a certain age as well because of the lack of 

structures for song-flight behavior (Glutz von Blotzheim & Bauer, 1991) or due to mortality of 

the trees of the upper canopy layer leading to increased vertical diversity and the 

development of shrubs and regeneration.  

 

Wood Warbler occurrence was positively related to solar radiation during March (H7). At 

the nesting area scale, this relationship was stronger than at the territory scale. This 

indicates that solar radiation during March influences the small-scale location of the nesting 

area. Since the Wood Warbler is a ground-nesting bird, the species may benefit from small-

scale variation of snow melting and vegetation development. Because solar radiation is 

highest on south-facing slopes and lowest on north-facing slopes, this finding may explain 

why Wood Warbler territories with southern aspect are more common than territories with 

northern or western aspect (Glutz von Blotzheim & Bauer, 1991; Hölzinger, 1999; Reinhardt 

& Bauer, 2009). West-facing slopes may be avoided because of prevailing wind direction and 

precipitation. Alternatively, solar radiation might positively influence food availability. Higher 

food availability on south-facing slopes than on north-facing slopes could attract Wood 

Warblers, as Jedrzejewsk & Jedrzejewski (1998) reported positve correlations between 

Wood Warbler population size and food abundance.   
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Metrics referring to penetration rate, a measure of vertical diversity, and the associated 

hypotheses (H3, H4) received little support. For the distinction of a well-developed canopy 

from other canopies, a smaller height interval should perhaps be used than the whole range 

between 2 m and 50 m. Müller et al. (2009), who proposed this metric, worked with full 

waveform data collected after leaf flush in a mixed montane forest. In contrast, the data used 

in this study consisted of first and last return lidar data collected predominantly outside the 

growing season in mainly deciduous forests (Swisstopo, 2009). Full waveform lidar data 

consist of a larger number of return laser signals than first and last return lidar data. 

Therefore, full waveform lidar data is able to reflect vegetation structure more precisely than 

the data used in this study (Lefsky et al., 2002). In addition, trees prior to leaf flush reflect 

fewer lidar signals than trees after leaf flush. Pavlovic (2009) found a positive correlation 

between the penetration rate of the mid-story and the occurrence of Wood Warblers. For the 

penetration rate of the shrub and regeneration layer, he unexpectedly found a positive 

relationship with Wood Warbler occurrence. Comparing the results from Pavlovic (2009) to 

the findings presented here is complicated by three reasons. First, Pavlovic (2009) worked 

with lidar data collected in May after leaf flush. Second, average density of laser signals of 25 

signals per m2 was up to 50 times higher than in this study. Third, the stocking of the 

Nationalpark Bayerischer Wald study area mainly consisted of spruce, while the study areas 

in this study mainly consisted of beech-dominated forests.  

 

The hypothesis concerning forest type could not be confirmed (H8). It is likely that the 

spatial resolution of the data source and the classification into four groups representing 

coniferous to broadleaf forest were not sufficiently accurate to properly test this hypothesis. 

However, analyses of habitat variables recorded within the project at the Swiss Ornithological 

Institute did not either reveal a relationship between Wood Warbler occurrence and tree 

species composition of occupied territories and control areas (Gilberto Pasinelli, pers. 

comm., 5. 04. 2013). The hypothesis concerning distance to forest edge (H9) was not 

supported either. Finally, H10 could not be evaluated, because the soil condition values 

hardly varied between occupied areas and control areas.  

 

4.3 Current potential range 

The Wood Warbler was widespread in the 1950s across Switzerland up to 1300 m a.s.l. 

(Knaus et al., 2011) and still common in the entire Swiss Plateau and Jura, and in parts of 

the Canton of Tessin, Valais and Grisons in 1970s (Schifferli et al.,1980). Twenty years later, 

however, Wood Warbler’s main range was predominantly located in Western Jura and the 

region Northern Jura - Hochrhein. Declines of the population were mainly observed in forests 

closed to residential areas (Schmid et al., 1998).  

According to the predictive models, the current main range of the Wood Warbler is located 

predominantly in the Jura mountains. Hence, the prediction based on RS variables mirror the 

situation in 1996.   
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While interpreting the predicted current potential range, several issues have to be 

considered. Firstly, the model used to predict the current potential range of Wood Warblers 

only includes structural forest characteristics and topographical characteristics. However, as 

in many other species, habitat selection of the Wood Warbler within the structurally and 

topographically suitable habitat spectrum is influenced by other processes, such as social 

behavior, predation, disturbance, interspecific competition or food availability (Fuller, 2012), 

which all can reduce the area of potential habitat. In addition, rodent density influences 

territory choice of the Wood Warbler as well (Wesolowski et al., 2009; Gerber, 2011).  

Secondly, the models used for the prediction are empiric that is they sacrifice generality to 

realism and precision (Levins, 1966). Therefore the models are only applicable to the 

situation in Switzerland as it is today (Levins, 1966). Due to the relatively small 

environmental envelope as a consequence of the relatively small spatial scales (nesting area 

and territory) assessed here and the predominant location of the study areas in the Jura 

Mountains, the models are hardly applicable to other countries.  

 

4.4 Wood Warbler population decline in Western Europe: potential causes 

The following hypotheses are most often proposed for explaining the decline of Wood 

Warbler populations in Western Europe: (1) structural habitat changes due to changing 

forestry practices (Bibby, 1989; Marchant, 1990; Glutz von Blotzheim & Bauer, 1991; Gatter, 

2000; Marti, 2007; Reinhardt & Bauer, 2009; Mallord et al., 2012); (2) increased nest 

predation due to changes in the predator communities (Gatter, 2000; Wesolowski et al., 

2009); (3) changes of the food supply as a consequence of climate change (Gatter, 2000; 

Both et al., 2010); (4) increase in disturbances due to augmented human recreational 

activities (Miller et al., 1998; Miller & Hobbs, 2000; Kangas et al., 2010; Spaar et al., 2012); 

and (5) habitat changes in migration stopover sites and/or in wintering sites (Weber et al., 

1999; Flade & Schwarz, 2004).  

This study addressed the first hypothesis referring to structural habitat changes related to 

forestry. Changes in forest management and non-timber forest uses strongly influence forest 

types, growing stock or tree species composition and therefore forest structure (Bürgi, 1999). 

The average age and growing stock of forests have been increasing since the 20th century 

(Bürgi, 1999). Hence, some authors argue that these changes result in a decrease of 

suitable habitat for Wood Warblers (Reinhardt & Bauer, 2009; Mallord et al., 2012). Others 

assume that conversion of woods to conifers is responsible for the population decline of 

Wood Warblers (Bibby, 1989; Marchant et al., 1990; Glutz von Blotzheim & Bauer, 1991; 

Marti, 2007). Furthermore, Marti (2007) supposed that extensive extraction of timber leads to 

habitat loss due to decreased canopy cover, while Gatter (2000) hypothezised that the 

increasing amount of natural regeneration combined with increased growth of herbs due to 

nitrification may adversly affect Wood Warbler populations. Other effects may be the 

promotion of open forests to increase biodiversity in forest or the enhancement of selection 

forest leading to structurally heterogeneous forest stands.  
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Many studies showed that structural habitat characteristics are crucial for the occurrence of 

Wood Warblers (e.g. Bibby, 1989; Reinhardt & Bauer, 2009; Gerber, 2011). However, a 

number of findings indicate that structural habitat changes due to changing forestry practices 

hardly seem to be the main cause for the large-scale decrease of Wood Warbler populations 

in Western Europe.  

Firstly, Wood Warbler decline should not mistakenly be associated with the century-old 

decline of species of open, dry, and warm locations (Gatter, 2000). These species are 

strongly associated with the centuries-long exploitation of forests in Switzerland that stopped 

around 1800 with the beginning of modern forestry and the enactment of the 

Forstpolizeigesetz in 1876 (Bürgi, 1999; Gatter, 2000). Since then, forest area and growing 

stock have been steadily increasing resulting in a decline of open-canopy sites. The Wood 

Warbler, however, is not a typical species of open, dry and warm locations and the strong 

population decline in Switzerland started mainly during the 1990s (Schmid et al., 1998). If 

structural changes caused by increasing growing stock were the major reason for the 

population decline of Wood Warblers, an onset of the decline should have been observed 

much earlier than 1990. 

Secondly, the proportion of broadleaf on the growing stock and the proportion of natural 

regeneration have steadily been increasing since 1983 (Brändli, 2010). Therefore, the 

population decline of Wood Warbler hardly seems to originate from the increase in 

coniferous species preferred in artificial regeneration in the second half of the 19th century 

(Bürgi, 1999).  

Furthermore, the proportion of regularly managed forests (managed within the last 20 years) 

in Switzerland declined from 69% in 1985 to currently 63% (Mahrer, 1988; Brändli, 2010). 

This development is favorable for the habitat needs of the Wood Warbler because a stand is 

expected to remain suitable for a longer time period under unmanaged circumstances than 

under managed ones. But even under unmanaged circumstances, forest stands become 

unsuitable for Wood Warbler occurrence at a certain age due to natural succession, resulting 

in a lack of structures for song-flight behavior, such as low branches (Glutz von Blotzheim & 

Bauer, 1991) or opening of canopy due mortality.  

To enhance biodiversity, forests are increasingly opened up. So far, the dimension of areas 

affected is marginal, e.g. the target value in the canton of Zurich is 2% (Bertiller & Keel, 

2006).  

Also, selection forest in deciduous forest (Dauerwald) is often propagated (e.g. Knok, 2010; 

Huth & Wagner, 2013). Selection forest (Plenterwald) is characterized by mixed stages of 

stand development and high vertical stand diversity (Brändli, 2010). Selection forest covers 

8% of the Swiss forest area and is most common in the Alps, where coniferous trees prevail. 

In lowlands, the proportion of selection forest, and especially selection forest in deciduous 

forest, is marginal (Brändli, 2010). 

Wood Warblers prefer stands of late pole wood and young timber, that is, forest at an 

intermediate seral stage. In Switzerland, the stages of stand development are not evenly 

distributed (Brändli, 2010). According to the Swiss National Forest Inventory (2004-2006) 



Structural characteristics of Wood Warbler habitats 
   

 

51 

(NFI3), pole wood and young timber cover 17% and 15% of the forest area stocked with 

uniform high forest (77% of the forest area), corresponding to approximately 139’000 ha and 

122’000 ha, respectively (Brändli, 2010). For the area of the Jura Mountains and the Swiss 

Plateau, the proportion of pole wood and young timber together is 29% and 12%, 

respectively (Brändli, 2010). According to the Swiss National Forest Inventory (1993-1995) 

(NFI2), pole wood and young timber covered 44% and 36% of the forest area stocked with 

uniform high forest in the Jura Mountains and in the Swiss Plateau, respectively (Brassel & 

Brändli, 1999). In the area of the Jura Mountains, medium timber (dbh: 41-50 cm) covers 

40% of the forest area stocked with uniform high forest and is the most widespread stage of 

stand development. In contrast, old timber (dbh > 50 cm) represents the most common stage 

of development in the Swiss Plateau and the Northern Pre-Alps (Brändli, 2010).  

Whether the population decline of the Wood Warbler has been caused by the maturing of 

Swiss forests is difficult to assess. The above-mentioned reduction in the extent of pole wood 

and young timber, favored habitats of the Wood Warbler, might have contributed to the 

decline. A balanced age structure of the Swiss forest is all the more important in the long 

term, so that new stands of pole wood and young timber can grow up and replace stands 

that became unsuitable for the Wood Warbler. 

 

With regard to the second hypothesis referring to increased nest predation due to changes 

in the predator communities, Wesolowski et al. (2009) found that Wood Warbler population 

crashes in eastern Poland coincided with local rodent outbreaks. But the expected higher 

nest depredation caused by increased predator activity during the outbreaks of the rodents 

could only partially be confirmed. The authors concluded that the arriving Wood Warblers 

refused to settle in rodent outbreak areas what may result in the nomadic behavior of the 

species. Along the same lines, Gerber (2011) found that Wood Warbler territories had lower 

rodent densities than adjacent control areas without Wood Warblers. Why Wood Warblers 

avoid areas with high rodent density remains unclear. Grendelmeier (2011) has shown with 

trail cameras that rodents do not predate Wood Warbler nests in the study areas examined 

here. Furthermore, Flade & Schwarz (2004) argued that three ground-nesting forest species 

have significantly increased between 1989 and 2003. Holmes & Sherry (2001) analyzed 

abundances of forest birds in an unfragmented, undisturbed and relatively mature temperate 

deciduous forest in New Hampshire, USA, between 1969 and 1998. No indications were 

found for nest predation rates that would account for population declines.  

 

Changes of the food supply as a consequence of climate change are considered to 

contribute to the decline of avian populations. According to the mismatch hypothesis, 

negative fitness consequences may result from different phenological responses to climate 

change of different trophic levels leading to a temporal mismatch between resource 

requirement and resource availability (e.g. Both et al., 2006). Different studies showed that 

broods missing the food supply peak produced less surviving offspring than broods not 

missing the food supply peak. Furthermore, an advancement of the laying date was 

observed for many bird species during the last few decades (Both, 2010). With regard to the 



4 Discussion 
   

 

52 

Wood Warbler, Maziarz & Wesolowski (2010) found that the timing of the Wood Warbler 

breeding in eastern Poland did not match the caterpillar peak, that is, the peak of the 

preferred food for nestlings. Instead, timing of breeding was constrained by the females’ 

arrival time, which did not significantly change between 1976 and 2005 (Wesolowski & 

Maziarz, 2009). The mismatch between the breeding phenology of the Wood Warbler and 

the caterpillar peak had no effect on nestlings’ development, perhaps because caterpillars 

were replaced by other prey items after the caterpillar peak (Maziarz & Wesolowski, 2010). 

Also, Reinhardt & Bauer (2009) concluded that food availability during the breeding time 

hardly explains the decline of Wood Warbler populations.  

 

Concerning the disturbance hypothesis, no clear results are available. Schmid et al. (1998) 

observed a distinct decrease and local disappearance of Wood Warbler populations in 

forests near densely-settled areas. Kangas et al. (2010) found that open-cup nesters 

breeding on the ground, which is true for Wood Warblers, showed strongest negative 

responses to visitor pressure. Gerber (2011) could not find an effect of disturbance on 

territory choice. A possible explanation for the lacking effect may be that Gerber (2011) 

mainly examined study areas that were quite remote and thus not very frequented by 

humans.  

 

Finally, the fifth hypothesis proposes that habitat changes in migration stopover sites 

and/or in wintering sites are the main causes for the population decline of Wood Warblers. 

According to Flade & Schwarz (2004), seven out of ten declining forest bird species in 

Germany are long-distance migrants, including the Wood Warbler Therefore, Flade & 

Schwarz (2004) concluded that environmental changes in the African wintering sites or at 

stopover sites along the way currently appear to be the biggest threat for German forest 

birds. Also, Reinhardt & Bauer (2009) suggest that the main causes of the extensive Wood 

Warbler population decline around Lake Constance during the last 20 years are 

environmental changes outside the breeding ground, because the breeding habitat did not 

considerably change. 
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5 Conclusions 

Overall, this study suggests that RS variables derived from lidar data or other sources 

convey additional information for describing species-specific habitat needs to that provided 

by field variables. Lidar metrics mainly provide information on the vertical and horizontal 

stand structure. Therefore, lidar metrics and other RS variables are a valuable complement 

to variables gathered in the field. Furthermore, RS has additional advantages, such as data 

collection over large spatial extents for which collection in the field is impractical or 

impossible (Lefsky et al., 2002; Bradbury et al., 2005). Also, the use of lidar allows for direct 

vertical measurement of canopy and sub-canopy structure which provides critical information 

about other biophysical parameters, such as growing stock or productivity (Dubayah & 

Drake, 2000; Lefsky et al., 2002). 

The analyses of the two spatial scales, nesting area and territory, suggest that Wood 

Warblers prefer rather uniform forest stands of intermediate age. Stands of these stages of 

stand development are characterized by a closed canopy, an open stem space and a sparse 

herb and shrub layer, features promoting the occurrence of the Wood Warbler. The analyses 

further showed that Wood Warbler occurrence is positively related to inclination and solar 

radiation during March. 

With regard to forest management, it should be considered that every forest development 

phase has its own bird species composition. For example, Tree Pipit (Anthus trivialis), 

Dunnock (Prunella modularis) and Yellowhammer (Emberiza citrinella) ofen appear in 

regeneration, while other species, such as Eurasian Nuthatch (Sitta europaea), Eurasian 

Treecreeper (Certhia familiaris) and woodpeckers (Picidae), need stands with old trees. In 

beech-dominated stands, especially young and old stands exhibit high bird diversity (Winter 

et al., 2005; Mollet et al., 2006). According to Müller (2005), the following factors favor a high 

avian diversity: abundance of regeneration and shrubs, presence of mature broad-leaved 

trees, presence of coniferous tree species, proportion of oaks, broadleaves of high value 

(Alnus, Fraxinus) and pioneer deciduous trees (Salix, Populus), stand age, standing dead 

wood (snags, dead wood at living trees) and the availability of cavities. Furthermore, forest 

boundaries (i.e. habitat edges) are of high value for many bird species (e.g. Scherzinger, 

1996). Even though many bird species prefer structurally rich stands, the Wood Warbler 

seems to favor a rather uniform environment. Forest management may locally contribute to 

the deterioration of suitable areas, for example when relatively closed forests are opened up 

due to harvesting. Therefore, the focus of forest management at a regional scale should be 

on sustainable regeneration so that sufficiently large suitable stands are always present and 

new suitable stands are steadily developing. In consideration of the Wood Warbler’s habitat 

needs, femel harvesting system (Femelschlag), leading to a relatively homogeneous stand 

age structure, appears to be most appropriate to maintain structurally suitable stands for 

Wood Warblers. Selection forestry (Plenterwald/Dauerwald), leading to a heterogeneous age 

structure and many gaps on a small scale, is rather unsuitable.  
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Appendix 

A1 Soil variables 

  

  

  
Fig. 16:  Soil characteristics of the sample areas. 1 denotes extremely low, while 6 denotes extremely high 

characteristics. N=156. 
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A2 Processing of lidar metrics and non-lidar RS variables in ArcGIS 

sample areas (.shp) 

create shape file for every sample area 

processing of lidar data (.las) 

lasmerge: .las (several sample areas together) 

las2shp: converts .las to points (not Multipoint!) 

spatial join (join one to many): joins the ID of the sample area (shape file) to the points 

add field (z, Double) 

calculate geometry: writes the height of every point in the z field 

calculation of nDSM 

extract values to points: every point of the DSM receives the according value of the swissALTI3D 

add field (h)  

field calculator: h = z - value swissALTI3D   nDSM 

export as .txt 

meanCH 

point to raster: maximum nDSM value per 2x2 cell 

(cell size & snap raster: swissALTI3D) 

raster to point: ID of sample area 

spatial join(one to many, closest) 

export as .txt 

slope 

buffer: 10 m around sample area 

extract by mask: with swissALIT3D 

slope 

extract by mask: B46 (reduce buffered area to area of the according spatial scale) 

zonal statistics: mean/sample area 

int: outputs integer values 

extract values to points (RASTERVALUE) 

add field: slope 

raster calculator: slope = RASTERVALUE 

r_march 

extract by mask: extract values of r_march for the sample areas  

zonal statistics: mean/sample area 

int: outputs integer values 

extract values to points (RASTERVALUE) 

add field: r_march  

raster calculator: r_march=RASTERVALUE 

export as .txt (slope and r_march together)  
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A3 Processing of lidar metrics and non-lidar RS variables in R 

######################################################################### 
Import the data into R 

######################################################################### 
## import the data (illustrated here using data from 2012, first part) 

B46_12_1_all <- read.table("B46_12_1_h.txt",sep=";",header=TRUE); 
summary(B46_12_1_all); 
df10_all <- data.frame(B46_12_1_all[,c("Territory","Type","h")]); 
B46_all_1 <- rbind(df10_all, …);   # …: combination with other data 

## number of signals per sample area 
count_B46_1 <- data.frame(table(B46_all_1[,"Territory"])); 
colnames(count_B46) <- c("Territory","#sig"); 
summary(count_B46) 

## number of signals < 1m per sample area 
B46_h1_all_1 <- B46_all_1[B46_all_1[,"h"]<1, ]; 
count_B46_1m_1 <- data.frame(table(B46_h1_all_1[,"Territory"])); 
count_B46_1m <- rbind(count_B46_1m_1, …) # …: combination with other data 
colnames(count_B46_1m) <- c("Territory","#sig_1m"); 
summary(count_B46_1m)  

## proportion of lidar signals < 1m 
r_1m <- matrix(count_B46_1m[,"#sig_1m"]/count_B46[,"#sig"]); 
colnames(r_1m) <- c("r_1m"); 
summary(r_1m) 

## negative values 
B46_neg_1 <- B46_all_1[,"h"]<0 
B46_n_1 <- B46_all_1[B46_neg_1,] 
B46_n <- rbind(B46_n_1[,c("Territory","h")], …)  # …: combination with other data 
plot(B46_n[,"Territory"],B46_n[,"h"]) 
summary(B46_n) 
hist(B46_n[,"h"], nclass=100, main="negative values at territory scale”, xlab="h < 0 [m]", 
ylab="count") 
nlevels(B46_n[,"Territory"]) 

## removal of negative values smaller than 3x sd 
sd(B46_n[,"h"]) 
sdok_B46_12_1 <- B46_12_1_all[,"h"]>(sd(B46_n[,"h"])*-3) 
B46_12_1 <- B46_12_1_all[sdok_B46_12_1,] 
summary(B46_12_1) 
plot(B46_12_1[,"Territory"],B46_12_1[,"h"],main="B46_12_1", ylab="h [m]") 

## combination of the data 
df10 <- data.frame(B46_12_1[,c("Territory","Type","h")]); 
B46 <- rbind(…,df10,…);    # …: combination with other data 

 
######################################################################### 

calculation of the lidar metrics 
######################################################################### 
## meanVH, maxVH, VH95, sdVH 

aggB46_meanVH <- aggregate(B46$h, list(B46$Territory), mean);  
colnames(aggB46_meanVH) <- c("Territory","meanVH"); 
aggB46_maxVH <- aggregate(B46$h, list(B46$Territory), max); 
colnames(aggB46_maxVH) <- c("Territory","maxVH"); 
aggB46_VH95 <- aggregate(B46$h, list(B46$Territory), function(x) {quantile (x, probs = 0.95)}); 
colnames(aggB46_VH95) <- c("Territory","VH95"); 
aggB46_sdVH <- aggregate(B46$h, list(B46$Territory), sd); 
colnames(aggB46_sdVH) <- c("Territory","sdVH"); 

## pen50_2, pen10_2 and pen5_1 
B46_h2 <- B46[B46[,"h"]<2, ];  
B46_h50 <- B46[B46[,"h"]<50, ]; 
B46_h10 <- B46[B46[,"h"]<10, ]; 
B46_h1 <- B46[B46[,"h"]<1, ]; 
B46_h5 <- B46[B46[,"h"]<5, ]; 
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pen50_2 <- matrix(table(B46_h2[,"Territory"])/table(B46_h50[,"Territory"]));  
colnames(pen50_2) <- c("pen50_2"); 
pen10_2 <- matrix(table(B46_h2[,"Territory"])/table(B46_h10[,"Territory"])); 
colnames(pen10_2) <- c("pen10_2"); 
pen5_1 <- matrix(table(B46_h1[,"Territory"])/table(B46_h5[,"Territory"])); 
colnames(pen5_1) <- c("pen5_1"); 

## meanVH<3m 
B46_h3_d <- B46[B46[,"h"]<3, ]; 
aggB46_meanVH_3md <- aggregate(B46_h3_d$h, list(B46_h3_d$Territory), mean); 
colnames(aggB46_meanVH_3md) <- c("Territory","meanVH_3md"); 

## meanVH> 3m 
B46_h3 <- B46[B46[,"h"]>3, ]; 
aggB46_meanVH_3m <- aggregate(B46_h3$h, list(B46_h3$Territory), mean); 
colnames(aggB46_meanVH_3m) <- c("Territory","meanVH_3m"); 

## meanCH 
setwd(" …") 
B46_12_1_CH <- read.table("B46_12_1_h_max.txt",sep=";",header=TRUE); 
df8_CH <- data.frame(B46_12_1_CH[,c("Territory","Type","GRID_CODE")]); 
B46_CH <- rbind(…, df8_CH, …); 
colnames(B46_CH) <- c("Territory","Type","CH"); 
plot(B46_CH[,"Territory"],B46_CH[,"CH"],main="B46_CH",ylab="h [m]") 
aggB46_meanCH <- aggregate(B46_CH$CH, list(B46_CH$Territory), mean);  
colnames(aggB46_meanCH) <- c("Territory","meanCH"); 

## meanCH>3m 
B46_CH_3m <- B46_CH[B46_CH[,"CH"]>3, ];  # selection of values > 3m 
aggB46_meanCH_3m <- aggregate(B46_CH_3m$CH, list(B46_CH_3m$Territory), mean);  
colnames(aggB46_meanCH_3m) <- c("Territory","meanCH_3m"); 

## sdCH 
aggB46_sdCH <- aggregate(B46_CH$CH, list(B46_CH$Territory), sd); 
colnames(aggB46_sdCH) <- c("Territory","sdCH"); 

## sdCH>3m 
aggB46_sdCH_3m <- aggregate(B46_CH_3m$CH, list(B46_CH_3m$Territory), sd); 
colnames(aggB46_sdCH_3m) <- c("Territory","sdCH_3m"); 

## meanCC 
B46_meanCC <- matrix(table(B46_CH_3m[,"Territory"])/table(B46_CH[,"Territory"]));  
colnames(B46_meanCC) <- c("meanCC"); 

## meanCC_10m 
B46_CH_10m <- B46_CH[B46_CH[,"CH"]>10, ];  
B46_meanCC_10 <- matrix(table(B46_CH_10m[,"Territory"]) / table(B46_CH[,"Territory"]));  
colnames(B46_meanCC_10) <- c("meanCC_10"); 

## meanCC_15m 
B46_CH_15m <- B46_CH[B46_CH[,"CH"]>15, ];  
B46_meanCC_15 <- matrix(table(B46_CH_15m[,"Territory"]) / table(B46_CH[,"Territory"]));  
colnames(B46_meanCC_15) <- c("meanCC_15"); 

## meanCC_20m 
B46_CH_20m <- B46_CH[B46_CH[,"CH"]>20, ];  
B46_meanCC_20 <- matrix(table(B46_CH_20m[,"Territory"]) / table(B46_CH[,"Territory"]));  
colnames(B46_meanCC_20) <- c("meanCC_20"); 

## combine the metrics 
B46_results <- cbind(…);   # …: list with all metrics 
colnames(B46_results) <- c(…);  # …: list with the names of the metrics 

 
######################################################################### 

correlations 
######################################################################### 
cor(B46_results_all[,3:36],method="spearman",use="pairwise.complete.obs")  
pairs(B46_results[,3:36],main="B46_results_all {cor spearman}") 
 
######################################################################### 

GLMs (GLMMs) 
######################################################################### 
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#open packages 
library(lme4) 
library(AICcmodavg) 
library(arm) 

#dataset 
setwd("…") 
all <-read.table("WW10_12.txt",header=TRUE) 

#standardize all values with a mean of 0 and a SD of 1  
all$x.meanVH <-as.numeric(scale(all$meanVH))  
all$x.meanVHlin <-as.numeric(scale(all$meanVH))  # linear term for quadratic model 
all$x.meanCH <-as.numeric(scale(all$meanCH))  
all$x.meanCHlin <-as.numeric(scale(all$meanCH))  # linear term for quadratic model 
all$x.meanVH_3md <-as.numeric(scale(all$meanVH_3md))  
all$x.meanVH_3m <-as.numeric(scale(all$meanVH_3m)) 
all$x.meanVH_3mlin <-as.numeric(scale(all$meanVH_3m)) # for quadratic model 
all$x.meanCH_3m <-as.numeric(scale(all$meanCH_3m))  
all$x.meanCH_3mlin <-as.numeric(scale(all$meanCH_3m)) # for quadratic model 
all$x.maxVH <-as.numeric(scale(all$maxVH))  
all$x.maxVHlin <-as.numeric(scale(all$maxVH))  # linear term for quadratic model 
all$x.VH95 <-as.numeric(scale(all$VH95))  
all$x.VH95lin <-as.numeric(scale(all$VH95))  # linear term for quadratic model 
all$x.sdVH <-as.numeric(scale(all$sdVH))  
all$x.sdCH <-as.numeric(scale(all$sdVH))  
all$x.sdCH_3m <-as.numeric(scale(all$sdCH_3m))  
all$x.pen50_2 <-as.numeric(scale(all$pen50_2))  
all$x.pen50_2lin <-as.numeric(scale(all$pen50_2))  # linear term for quadratic model 
all$x.pen10_2 <-as.numeric(scale(all$pen10_2))  
all$x.pen5_1 <-as.numeric(scale(all$pen5_1))  
all$x.meanCC <-as.numeric(scale(all$meanCC)) 
all$x.meanCClin <-as.numeric(scale(all$meanCC))  # linear term for quadratic model  
all$x.meanCC_10m <-as.numeric(scale(all$meanCC_10m))  
all$x.meanCC_10mlin <-as.numeric(scale(all$meanCC_10m)) # for quadratic model 
all$x.meanCC_15m <-as.numeric(scale(all$meanCC_15m))  
all$x.meanCC_15mlin <-as.numeric(scale(all$meanCC_15m)) # for quadratic model 
all$x.meanCC_20m <-as.numeric(scale(all$meanCC_20m))  
all$x.meanCC_20mlin <-as.numeric(scale(all$meanCC_20m)) # for quadratic model 
all$x.slope <-as.numeric(scale(all$slope))  
all$x.rmarch <-as.numeric(scale(all$rmarch))  
all$x.forest_type <-as.numeric(scale(all$WMG))  
all$x.dist_f <-as.numeric(scale(all$near_dist_f)) 
#all$pooled<-as.character(all$area)  # ADAPTION FOR GLMMs 
#all$pooled<-factor(all$pooled)  # ADAPTION FOR GLMMs 
#all$nr.pair <- factor(all$nr.pair)  # ADAPTION FOR GLMMs 

################################################################################# 
## 1st step – within-group analysis 
## height group 

Cand.models<-list() 
Cand.models[[1]] <- glm(PA ~ x.meanVH + x.meanVH_3md, family = binomial, data = all) 
#Cand.models[[1]] <- glmer(PA ~ x.meanVH + x.meanVH_3md + (1|pooled) + (1|nr.pair), #family = 
binomial, data = all) # ADAPTION FOR GLMMs 
Cand.models[[2]] <- glm(PA ~ x.meanVH + x.meanVH_3md + x.maxVH, family = binomial, data = 
all) 
Cand.models[[3]] <- glm(PA ~ x.meanVH + x.maxVH, family = binomial, data = all) 
Cand.models[[4]] <- glm(PA ~ x.meanVH, family = binomial, data = all) 
Cand.models[[5]] <- glm(PA ~ x.meanCH + x.meanVH_3md, family = binomial, data = all) 
Cand.models[[6]] <- glm(PA ~ x.meanCH + x.meanVH_3md + x.maxVH, family = binomial, data = 
all) 
Cand.models[[7]] <- glm(PA ~ x.meanCH + x.maxVH, family = binomial, data = all) 
Cand.models[[8]] <- glm(PA ~ x.meanCH, family = binomial, data = all) 
Cand.models[[41]] <- glm(PA ~ x.meanVH_3md + x.meanVH_3m, family = binomial, data = all) 
Cand.models[[9]] <- glm(PA ~ x.meanVH_3md + x.meanCH_3m, family = binomial, data = all) 
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Cand.models[[10]] <- glm(PA ~ x.meanVH_3md + x.maxVH, family = binomial, data = all) 
Cand.models[[11]] <- glm(PA ~ x.meanVH_3md + x.VH95, family = binomial, data = all) 
Cand.models[[12]] <- glm(PA ~ x.meanVH_3md, family = binomial, data = all)  
Cand.models[[13]] <- glm(PA ~ x.meanVH_3m, family = binomial, data = all)  
Cand.models[[14]] <- glm(PA ~ x.meanCH_3m, family = binomial, data = all)  
Cand.models[[15]] <- glm(PA ~ x.maxVH, family = binomial, data = all) 
Cand.models[[16]] <- glm(PA ~ x.VH95, family = binomial, data = all)  
Cand.models[[17]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2) + x.meanVH_3md, family = 
binomial, data = all) 
Cand.models[[18]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2) + x.meanVH_3md + x.maxVH, 
family = binomial, data = all) 
Cand.models[[19]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2) + x.meanVH_3md + 
x.maxVHlin + I(all$x.maxVHlin^2), family = binomial, data = all) 
Cand.models[[20]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2) + x.maxVH, family = binomial, 
data = all) 
Cand.models[[21]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2) + x.maxVHlin + 
I(all$x.maxVHlin^2), family = binomial, data = all) 
Cand.models[[22]] <- glm(PA ~ x.meanVHlin + I(all$x.meanVHlin^2), family = binomial, data = all) 
Cand.models[[23]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2) + x.meanVH_3md, family = 
binomial, data = all) 
Cand.models[[24]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2) + x.meanVH_3md + x.maxVH, 
family = binomial, data = all) 
Cand.models[[25]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2) + x.meanVH_3md + 
x.maxVHlin + I(all$x.maxVHlin^2), family = binomial, data = all) 
Cand.models[[26]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2) + x.maxVH, family = binomial, 
data = all) 
Cand.models[[27]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2) + x.maxVHlin + 
I(all$x.maxVHlin^2), family = binomial, data = all) 
Cand.models[[28]] <- glm(PA ~ x.meanCHlin + I(all$x.meanCHlin^2), family = binomial, data = all)  
Cand.models[[29]] <- glm(PA ~ x.meanVH_3md + x.meanVH_3mlin + I(all$x.meanVH_3mlin^2), 
family = binomial, data = all)  
Cand.models[[30]] <- glm(PA ~ x.meanVH_3md + x.maxVHlin + I(all$x.maxVHlin^2), family = 
binomial, data = all)  
Cand.models[[31]] <- glm(PA ~ x.meanVH_3md + x.maxVHlin + I(all$x.maxVHlin^2) + x.meanVH, 
family = binomial, data = all) 
Cand.models[[32]] <- glm(PA ~ x.maxVHlin + I(all$x.maxVHlin^2) + x.meanVH, family = binomial, 
data = all) 
Cand.models[[33]] <- glm(PA ~ x.meanVH_3md + x.meanCH_3mlin + I(all$x.meanCH_3mlin^2), 
family = binomial, data = all) 
Cand.models[[34]] <- glm(PA ~ x.meanVH_3md + x.maxVHlin + I(all$x.maxVHlin^2) + x.meanCH, 
family = binomial, data = all) 
Cand.models[[35]] <- glm(PA ~ x.maxVHlin + I(all$x.maxVHlin^2) + x.meanCH, family = binomial, 
data = all)  
Cand.models[[36]] <- glm(PA ~ x.meanVH_3md + x.VH95lin + I(all$x.VH95lin^2), family = binomial, 
data = all)  
Cand.models[[37]] <- glm(PA ~ x.meanVH_3mlin + I(all$x.meanVH_3mlin^2), family = binomial, 
data = all)  
Cand.models[[38]] <- glm(PA ~ x.meanCH_3mlin + I(all$x.meanCH_3mlin^2), family = binomial, 
data = all)  
Cand.models[[39]] <- glm(PA ~ x.maxVHlin + I(all$x.maxVHlin^2), family = binomial, data = all) 
Cand.models[[40]] <- glm(PA ~ x.VH95lin + I(all$x.VH95lin^2), family = binomial, data = all)  
Cand.models[[42]] <- glm(PA ~ 1, family = binomial, data = all) 
 
# print AICc table 
modnames.geo<-paste("mod", 1:length(Cand.models), sep=" ") 
print(aictab(cand.set = Cand.models, modnames = modnames.geo, sort = TRUE), digits = 4, LL = 
TRUE) 
 
# print model-averaged estimates, standard errors and 95% CIs across all models per group 
modavg(cand.set = Cand.models, parm = "x.meanVH", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.meanVHlin"))  
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modavg(cand.set = Cand.models, parm = "x.meanCH", modnames = modnames.geo, 
exclude=list("x.meanCHlin"))  
modavg(cand.set = Cand.models, parm = "x.meanVH_3md", conf.level = 0.95, modnames = 
modnames.geo) 
modavg(cand.set = Cand.models, parm = "x.meanVH_3m", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.meanVH_3mlin"))  
modavg(cand.set = Cand.models, parm = "x.meanCH_3m", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.meanCH_3mlin"))  
modavg(cand.set = Cand.models, parm = "x.maxVH", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.maxVHlin"))  
modavg(cand.set = Cand.models, parm = "x.VH95", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.VH95lin"))  
modavg(cand.set = Cand.models, parm = "x.meanVHlin", conf.level = 0.95, modnames = 
modnames.geo, exclude=list("x.meanVHlin^2"))  
modavg(cand.set = Cand.models, parm = "I(all$x.meanVHlin^2)", conf.level = 0.95, modnames = 
modnames.geo)  
modavg(cand.set = Cand.models, parm = "x.meanCHlin", conf.level = 0.95, modnames = 
modnames.geo,exclude=list("x.meanCHlin^2"))  
modavg(cand.set = Cand.models, parm = "I(all$x.meanCHlin^2)", conf.level = 0.95, modnames = 
modnames.geo)  
modavg(cand.set = Cand.models, parm = "x.meanVH_3mlin", conf.level = 0.95, modnames = 
modnames.geo,exclude=list("x.meanVH_3mlin^2")) 
modavg(cand.set = Cand.models, parm = "I(all$x.meanVH_3mlin^2)", conf.level = 0.95, modnames 
= modnames.geo) 
modavg(cand.set = Cand.models, parm = "x.meanCH_3mlin", conf.level = 0.95, modnames = 
modnames.geo,exclude=list("x.meanCH_3mlin^2")) 
modavg(cand.set = Cand.models, parm = "I(all$x.meanCH_3mlin^2)", conf.level = 0.95, 
modnames = modnames.geo) 
modavg(cand.set = Cand.models, parm = "x.maxVHlin", conf.level = 0.95, modnames = 
modnames.geo,exclude=list("x.maxVHlin^2"))  
modavg(cand.set = Cand.models, parm = "I(all$x.maxVHlin^2)", conf.level = 0.95, modnames = 
modnames.geo) 
modavg(cand.set = Cand.models, parm = "x.VH95lin", conf.level = 0.95, modnames = 
modnames.geo,exclude=list("x.maxVHlin^2"))  
modavg(cand.set = Cand.models, parm = "I(all$x.VH95lin^2)", conf.level = 0.95, modnames = 
modnames.geo) 

## vertical diversity group (same code as before) 
… 

## penetration rate group 
… 

## canopy cover group 
… 

## geography group 
… 

# 2nd step – across-group analysis 
(same code as before) 

 
######################################################################### 

Verification, Validation and 10-fold cross validation 
######################################################################### 
#open packages 

library(lme4) 
library(AICcmodavg) 
library(arm) 

## dataset 1 (used for model building) 
setwd("…") 
all<-read.table("WW10_12.txt",header=TRUE) 

#standardize all values with a mean of 0 and a SD of  
all$x.meanVH <-as.numeric(scale(all$meanVH))  
all$x.meanVHlin <-as.numeric(scale(all$meanVH))  # linear term for quadratic model 
… 
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## dataset 2 (for validation) 
all_2<-read.table("WW10_12_2.txt",header=TRUE) 

#standardize all values with a mean of 0 and a SD of 1 
all_2$x.meanVH <-as.numeric(scale(all_2$meanVH))  
all_2$x.meanVHlin <-as.numeric(scale(all_2$meanVH))  # linear term for quadratic model 
… 

# B_B46 (territory scale) 
# predictive model 1: meanVHlin + meanVHlin^2, sdCH_3m, slope, r_march 

B46.binomial_1 <- glm(PA ~ x.meanVHlin + I(x.meanVHlin^2) + x.sdCH_3m + x.slope + x.rmarch, 
family = binomial, data = all) 
B46.binomial_1$coefficients <- c(-0.56,-0.39,-0.83,-1.17,0.81,0.48) # coefficients according to 
model-averaging  
B46.binomial_1$coefficients 
summary(B46.binomial_1) 

# predictive model 2: maxVH, meanCC_10m^2, slope 
B46.binomial_2 <- glm(PA ~ x.maxVH + x.meanCC_10mlin + I(x.meanCC_10mlin^2) + x.slope, 
family = binomial, data = all) 
B46.binomial_2$coefficients <- c(-0.56,-1,0.95,-0.85,0.81) # coefficients according to model-
averaging 
B46.binomial_2$coefficients 

# predictive model 3: maxVH, meanCC_10m^2, slope, r_march 
B46.binomial_3 <- glm(PA ~ x.maxVH + x.meanCC_10mlin + I(x.meanCC_10mlin^2) + x.slope + 
x.rmarch, family = binomial, data = all) 
B46.binomial_3$coefficients <- c(-0.56,-1,0.95,-0.85,0.81,0.48) # coefficients according to model-
averaging 
B46.binomial_3$coefficients 

# predictive model 4: meanVHlin + meanVHlin^2, sdCH_3m, slope, r_march 
B46.binomial_4 <- glm(PA ~ x.meanVHlin + I(x.meanVHlin^2) + x.sdCH_3m + x.slope, family = 
binomial, data = all) 
B46.binomial_4$coefficients  <- c(-0.56,-0.39,-0.83,-1.17,0.81) # coefficients according to model-
averaging 
B46.binomial_4$coefficients 

# validation and verification for selected model 
B46.binomial <- B46.binomial_1 

################################################################################# 
## verification for dataset 1 

pred <- data.frame(all$PA,predict.glm(B46.binomial, 
type="response",newdata=all),residuals(B46.binomial, type="response",newdata=all)) 
pred_model_B46_1 <- cbind(all$terr.id, pred) 
colnames(pred_model_B46_1) <- c("Territory", "observed","predicted","residuals") 

# TSS (This function calculates the threshold that maximizes the True Skill Statistic (TSS).) 
tss <- function(observed,prediction){ 
  levs <- seq(from=0.001,to=0.999,by=0.001) 
  obsnum <- paste("obs_",1:length(observed),sep="") 
  data1 <- data.frame(obsnum,observed,prediction) 
  val <- numeric() 
  sens <- numeric() 
  spec <- numeric() 
  thresh <- NA 
  for (i in 1:length(levs)) { 
    confmat <- cmx(data1,threshold=levs[i]) 
    sens <- c(sens,as.numeric(sensitivity(confmat)[[1]])) 
    spec <- c(spec,as.numeric(specificity(confmat)[[1]])) 
  } 
  val <- sens + spec -rep(1,length(levs)) 
  to.average <- which(val==max(val)) 
  thresh <- mean(levs[to.average]) 
  return(thresh) 
} 
t_TSS_1 <- tss(pred_model_B46_1[,"observed"],pred_model_B46_1[,"predicted"]) 
t_TSS_1 
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cmx_pred_model_B46_1 <- data.frame(ID=1:length(pred_model_B46_1[ ,"observed"]), 
pred_model_B46_1[ ,"observed"], pred_model_B46_1[, "predicted"]) 
Sen_B46_1 <- sensitivity(cmx(cmx_pred_model_B46_1,0.398),st.dev=TRUE) 
Spec_B46_1 <- specificity(cmx(cmx_pred_model_B46_1,0.398),st.dev=TRUE) 

# fpos, fneg (with threshold from TSS: t_TSS_1)  
cmx_1 <- cmx(pred_model_B46_1[,c(1:3)],t_TSS_1) 
fpos_1 <- cmx_1[1,2]/(cmx_1[1,2]+cmx_1[2,2]) 
fneg_1 <- cmx_1[2,1]/(cmx_1[1,1]+cmx_1[2,1]) 
acc_1 <- cbind(fpos_1, fneg_1) 
acc_1 

# AUC  
library(PresenceAbsence) 
auc(pred_model_B46_1, st.dev=TRUE, which.model = 1) 

######################################################################### 
## Validation for dataset 2 

pred <- data.frame(all_2$PA,predict.glm(B46.binomial, newdata=all_2, type="response"), 
residuals(B46.binomial, newdata=all_2, type="response")) 
pred_model_B46_2 <- cbind(all_2$terr.id, pred) 
colnames(pred_model_B46_2) <- c("Territory", "observed","predicted","residuals") 

# TSS (with threshold from verification: t_TSS_1) 
cmx_pred_model_B46_2 <- data.frame(ID=1:length(pred_model_B46_2[,"observed"]), 
pred_model_B46_2[,"observed"], pred_model_B46_2[,"predicted"]) 
Sen_B46_2 <- sensitivity(cmx(cmx_pred_model_B46_2,t_TSS_1),st.dev=TRUE) 
Spec_B46_2 <- specificity(cmx(cmx_pred_model_B46_2,t_TSS_1),st.dev=TRUE) 

# fpos, fneg (with threshold from verification) 
cmx_2 <- cmx(pred_model_B46_2[,c(1:3)],t_TSS_1) 
fpos_2 <- cmx_2[1,2]/(cmx_2[1,2]+cmx_2[2,2]) 
fneg_2 <- cmx_2[2,1]/(cmx_2[1,1]+cmx_2[2,1]) 
acc_2 <- cbind(fpos_2,fneg_2) 
acc_2 

# AUC  
auc(pred_model_B46_2, st.dev=TRUE, which.model = 1) 

######################################################################### 
# 10-fold cross validation 
evalacc_10_binom<- function(glm.obj, filesppclim, dvar)  
{ 
  xvs10=sample (rep(c(1:10), length=nrow(filesppclim)))  #takes a sample from vector 1:10 for the 
number of plots 
  pred.xval10=rep (0, length=nrow(filesppclim)) #replicates the values vector (0) with the length of the 
data frame 
  fpos=rep(0, length=10) 
  fneg=rep(0, length=10) 
  auc=rep(0, length=10) 
  sen=rep(0, length=10) 
  spec=rep(0, length=10) 
   
  for (i in 1:10)  
  { 
    tr10=filesppclim[xvs10!=i,]       #takes the values with index 1-9 
    te10=filesppclim[xvs10==i,]     #takes the values wiht index 10 
    fit = glm(glm.obj$formula, family=binomial, data=tr10)   #fits a model on values with index 1-9 
    pred.xval10 [xvs10==i] = predict (fit, newdata=te10, type="response") 
    #predicts model on values with index i 
 
    pred10 = pred.xval10[xvs10==i] 
    file10 = data.frame(ID=1:length(pred10),te10[,dvar],pred10) 
    cmx_10 <- cmx(file10,0.327) 
    fpos[i] <- cmx_10[1,2]/(cmx_10[1,2]+cmx_10[2,2]) 
    fneg[i] <- cmx_10[2,1]/(cmx_10[1,1]+cmx_10[2,1]) 
    auc[i] <- auc(file10, st.dev=FALSE, which.model = 1) 
    sen[i] <- sensitivity(cmx(file10,0.327),st.dev=FALSE) 
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    spec[i] <- specificity(cmx(file10,0.327),st.dev=FALSE) 
  } 
  all.acc=cbind(fpos,fneg,auc,sen,spec) 
  colnames(all.acc)=c("fpos","fneg","AUC","sensitivity","specificity") 
  all.acc 
} 
evalacc_10_binom(B46.binomial,all, 'PA')   
 
# calculation of 5% and 95% quantiles 

setwd("…") 
crossval<-read.table("cross_validation.txt",header=TRUE) 
rbind(quantile(crossval[,1],probs=c(0.05,0.95)),quantile(crossval[,2],probs=c(0.05,0.95)),quantile(cr
ossval[,3],probs=c(0.05,0.95)),quantile(crossval[,4],probs=c(0.05,0.95)),quantile(crossval[,5],probs
=c(0.05,0.95)),quantile(crossval[,6],probs=c(0.05,0.95))) 

 
################################################################################# 
PREDICTION FOR CURRENT POTENTIAL RANGE 
################################################################################# 
# data used for modelbuilding 

setwd("…") 
all<-read.table("WW10_12.txt",header=TRUE) 

#standardize all values with a mean of 0 and a SD of 1  
all$x.meanVH <-as.numeric(scale(all$meanVH))  
all$x.sdCH_3m <-as.numeric(scale(all$sdCH_3m))  
all$x.slope <-as.numeric(scale(all$slope))  
all$x.rmarch <-as.numeric(scale(all$rmarch))  

# new data (e.g. data from Jura) 
setwd("…") 
lidar_j <- read.table("Result_Jura.txt",sep=","); 
slope_j <- read.table("J_slope_rmarch.txt",sep=";",header=TRUE); 
var_j1 <- data.frame(lidar_j[,1],slope_j[,2:4],lidar_j[,3:4]) 
colnames(var_j1) <- c("Region","POINTID","r_march","slope","meanVH","sdCH_3m"); 
summary(var_j1) 
ok <- var_j1[,"slope"]>-9998 
var_j <- var_j1[ok,] 
summary(var_j) 
hist(var_j[,"r_march"],nclass=20) 
hist(var_j[,"slope"], nclass=20) 
hist(var_j[,"meanVH"], nclass=20) 
hist(var_j[,"sdCH_3m"],nclass=20) 

# transformation according to data transformation for modelbuilding 
var_j$x.r_march <-scale(var_j$r_march,center=mean(all$rmarch),scale=sd(all$rmarch)) 
var_j$x.slope <-scale(var_j$slope,center=mean(all$slope),scale=sd(all$slope)) 
var_j$x.meanVH <-scale(var_j$meanVH,center=mean(all$meanVH),scale=sd(all$meanVH)) 
var_j$x.sdCH_3m <-scale(var_j$sdCH_3m, center=mean(all$sdCH_3m), scale= sd(all$sdCH_3m)) 
hist(var_j[,"x.r_march"],nclass=20) 
hist(var_j[,"x.slope"], nclass=20) 
hist(var_j[,"x.meanVH"], nclass=20) 
hist(var_j[,"x.sdCH_3m"],nclass=20) 

# prediction  
pred <- -0.56 -0.39*var_j[,"x.meanVH"] -0.83*(var_j[,"x.meanVH"]^2) -1.17*var_j[,"x.sdCH_3m"] + 
0.81*var_j[,"x.slope"] + 0.48*var_j[,"x.r_march"] 
trans_pred  <- (2.71828182845904^pred)/(1+2.71828182845904^pred) 
pred_J <- cbind(var_j[,1:2],trans_pred) 
colnames(pred_J)=c("Region","POINTID","pred") 
write.table(pred_J, "…\pred_J.txt", sep=",", row.names=F) 
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A4 Python Code for processing of the lidar data for the prediction of the current 

potential range 

import arcpy, string, time, subprocess, fileinput, os, time 

 

# ------------------------------------------------ 

# Environment 

arcpy.env.overwriteOutput = True 

arcpy.env.extent = "MAXOF" 

arcpy.CheckOutExtension('3D') 

 

# ------------------------------------------------ 

# Input FeatureClass 

pPath = r"Y:\Scratch"     # output directory 

inFC = r"…"+ "\\" + "j1_pol"    # …: input directory; change name of area “xx_pol” 

outFC = pPath + "\\" + "Temp.shp" 

pDTM_AV               = r"\\speedy1\Data_1\_RASTER\swissalti3d" 

 

OutputFile = r"Y:\Result.txt" 

OutputFile_Result = open(OutputFile, 'w') 

 

#-------------------------------------------------- 

# Identify the geomety field 

 

shapeName = arcpy.Describe(inFC).shapeFieldName 

 

#-------------------------------------------------- 

# Create search cursor 

# 

rows = arcpy.SearchCursor(inFC) 

 

#-------------------------------------------------- 

# Calculate the extent of all Polygons 

# 

Count = 0 

for row in rows: 

    Count += 1 

    if Count < 1000000:     # 'Count' is just for testing ... 

 

        #---------------------------------------------- 

        # Create the geometry object 

        # 

        feat    = row.getValue(shapeName) 

        extent  = str(feat.extent) 

        a       = string.split(extent, " ") 

        xmin    = round (float(a[0]),2) 

        ymin    = round (float(a[1]),2) 

        xmax    = round (float(a[2]),2) 

        ymax    = round (float(a[3]),2) 

        #--------------------------------------------- 

        # Name of the Field with unique Key 

        # 

        pName = str(int(row.GRIDCODE)) 
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        Zeit                  = time.asctime() 

        print str(Zeit) + " ... Berechne " + str(pName) 

 

        pWhereClause = ' "GRIDCODE" = ' + pName 

        arcpy.Select_analysis(inFC,outFC,pWhereClause) 

 

        ToDo = r"H:\lastools\lastools\bin\lasclip.exe -i \\speedy1\Data_7\_LIDAR\LWN\DOM\LAZ\*.laz -o  

        " + pPath + "\\" + "j1_pol" + pName + "_DOM.laz -merged -poly " + pPath + "\\" + "Temp.shp" 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        pOutDTM = pPath + "\\" + "DTM_CLIP.tif" 

        pOutDTM_Ascii = pPath + "\\" + "DTM_CLIP.asc" 

        arcpy.Clip_management(pDTM_AV, extent, pOutDTM, "", "", "NONE") 

        arcpy.RasterToASCII_conversion(pOutDTM, pOutDTM_Ascii) 

 

        pOutHeight = pPath + "\\" + "j1_pol" + pName + "_nDOM.las" 

        ToDo = r"H:\lastools\lastools\bin\lasheight.exe -i " + pPath + "\\" + "j1_pol" + pName + "_DOM.laz 

        -replace_z -drop_below -1 -ground_points " + pOutDTM_Ascii + " -o " + pOutHeight 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        # average ndom (meanVH) 

        pOutVH = pPath + "\\" + "j1_pol" + pName + "_meanVH.xyz" 

        ToDo =  r"H:\lastools\lastools\bin\lasgrid.exe -i " + pPath + "\\" + "j1_pol" + pName + "_nDOM.las  

        -step 500 -ll " + str(xmin) + " " + str(ymin) + " -elevation -average -oxyz"  + " -o " + pOutVH 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        # CHM (highest value per 2x2 m)  

        pOutCH = pPath + "\\" + "j1_pol" + pName + "_CH.tif" 

        ToDo =  r"H:\lastools\lastools\bin\lasgrid.exe -i " + pPath + "\\" + "j1_pol" + pName + "_nDOM.las  

        -step 2 -elevation -highest"  + " -o " + pOutCH 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        pOutCH_P = pPath + "\\" + "j1_pol" + pName + "_CH.shp" 

        field = "VALUE" 

        arcpy.RasterToPoint_conversion(pOutCH, pOutCH_P, field) 

        OutFC = pPath + "\\" + "j1_pol" + pName + "_CH_3D.shp" 

        Height_Field = 'GRID_CODE' 

        arcpy.FeatureTo3DByAttribute_3d(pOutCH_P, OutFC, Height_Field) 

 

        # CHM to las 

        pOutCH_las = pPath + "\\" + "j1_pol" + pName + "_CH_3D.las" 

        ToDo = r"H:\lastools\lastools\bin\shp2las.exe -i " + pPath + "\\" + "j1_pol" + pName +  

        "_CH_3D.shp " + " -o " + pOutCH_las 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        # sd CH_3m 

        pOutsdCH = pPath + "\\" + "j1_pol" + pName + "_sdCH_3m.xyz" 
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        ToDo =  r"H:\lastools\lastools\bin\lasgrid.exe -i " + pPath + "\\" + "j1_pol" + pName + "_CH_3D.las  

        -step 500 -clip_z_above 3 -oxyz -elevation -stddev"  + " -o " + pOutsdCH 

        process = subprocess.Popen(ToDo, shell=True) 

        process.wait() 

 

        for line in fileinput.input(pOutVH): 

            pLine = string.split(line,",") 

            VH  = pLine[2] 

        for line in fileinput.input(pOutsdCH): 

            pLine = string.split(line,",") 

            sdCH  = pLine[2] 

 

        OutputFile_Result.write("j1_pol," + str(pName)+"," + str(VH)[:-1]+","+str(sdCH)[:-1]+"\n") 

 

        if os.path.isfile(pOutHeight): 

            os.remove(pOutHeight) 

 

        if os.path.isfile(pOutVH): 

            os.remove(pOutVH) 

 

        if os.path.isfile(pOutCH): 

            os.remove(pOutCH) 

 

        if os.path.isfile(pOutCH_P): 

            os.remove(pOutCH_P) 

 

        if os.path.isfile(pOutCH_las): 

            os.remove(pOutCH_las) 

 

        if os.path.isfile(pOutsdCH): 

            os.remove(pOutsdCH) 

 

OutputFile_Result.close() 

 

 

 


