

RESEARCH QUESTIONS

Leaf level – specific measurements:

How is i) the potential and ii) diurnal course of leaf gas exchange (A, g_{s_i} E) for *Pinus sylvestris* affected by elevated soil water availability - in comparison to natural drought conditions?

Canopy level – combined measurements:

How does the whole-tree CO_2 assimilation rate (A_{Tree}) perform under elevated soil water availability – in comparison to natural drought conditions.

METHODS

Approach:

Estimate whole-tree CO₂ assimilation rate (A_{Tree}) based on photosynthetic water-use-efficiency (WUE) (Farquhar *et al.*, 1989; Hu *et al.* 2010)

Parameters:

Leaf gas-exchange (LiCor 6400): A, g_s, E_{needle}, A:C_i, A_{Light}, A_{diurnal}, SLA, ...

 $A_{Tree} = WUE * E_{Sap flow}$

WUE = $f(\delta^{13}C)$

 $E_{Tree} = f (Sap flow)$

20 trees: 12, 19, 38, 52, 87, 110, 124, 125, 189

155, 169, 254, 255, 264, 267, 268, **274**, **275**, **276**, 333

PLANNED ANALYSES

- Specific leaf-level analyses:
 - Physiological leaf level
- Combined / integrative whole-tree analyses:
 - Calibration / validation:
 - Whole-tree CO2 assimilation modeling
 - DO3SE ozone flux modeling

OUTLOOK

We are looking forward to ...

- integrative analyses
- to help disentangling carbon starvation from hydraulic failure
- better, safer, broader access into canopy

