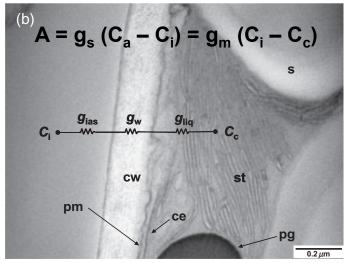


OBJECTIVES


Leaf level – mechanistic questions:

- diurnal course of leaf gas exchange (A, g_{s_i} E, WUE, SLA)
- potential leaf gas exchange (A/C_i, A_{light})
- stomatal vs. sub-stomatal regulation of A (V_{cmax} , J_{max} , g_m)

for *Pinus sylvestris* under elevated soil water availability (irrigation of 100% ambient precip.) *vs.* natural drought conditions (ambient = control).

Canopy level – system-relevant question:

How does the whole-tree CO_2 assimilation rate (A_{tree}) perform under elevated soil water availability vs. natural drought conditions?

Flexas et al. 2018

METHODS PARAMETERS

Approach

Estimate whole-tree CO₂ assimilation rate (A_{Tree}) based on photosynthetic water-use-efficiency (WUE) (Farquhar *et al.*, 1989; Hu *et al.* 2010)

Parameters

Measured (LiCor 6400XT): δH_2O , δCO_2 , $Temp_{air}$, $Temp_{leaf}$, PAR Calculated: A, g_s , E, A/C_i, A_{light} , $A_{diurnal}$, V_{cmax} , J_{max} , $A_{diurnal}$, Ψ_w , WUE Whole-tree CO_2 assimilation rate (A_{Tree} = WUE * $E_{sap\ flow}$) $WUE = f(\delta^{13}C)$ $E_{Tree} = f(sap\ flow)$

METHODS **S**AMPLES

Dates

2013 June, July, Aug / 2014 May, June, July, Aug

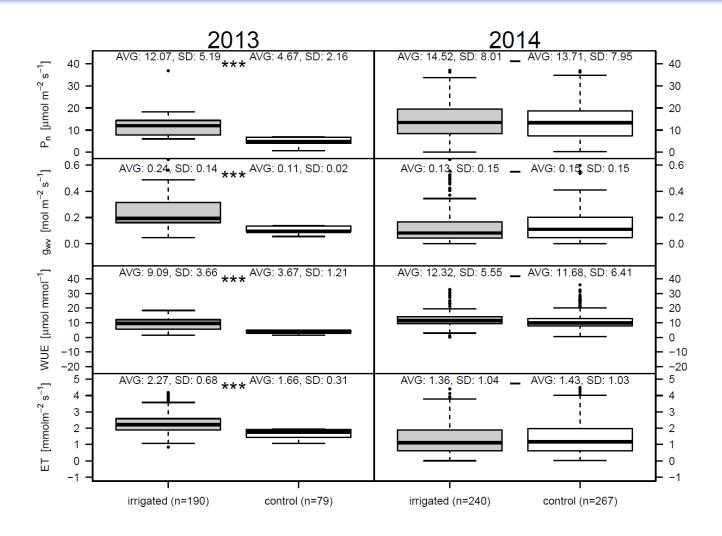
A/C_i curves

18 trees x 1 branch x 7 dates = 126 curves

A_{light} curves

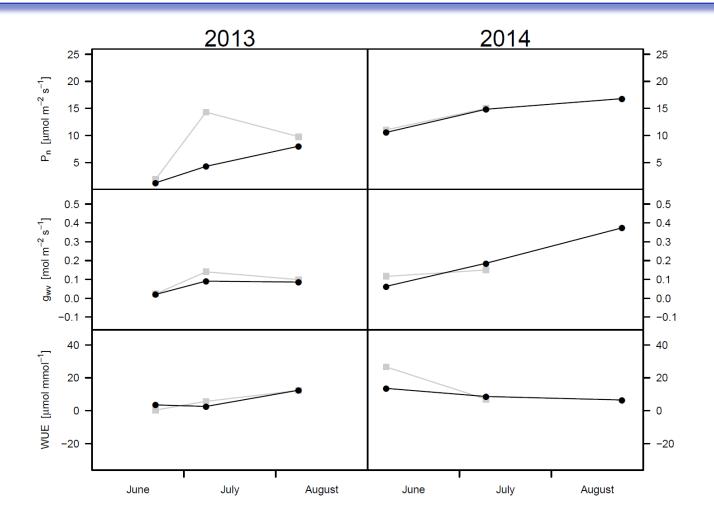
18 trees x 1 branch x 2 dates = 36 curves

Diurnal gas exchange samples


6 trees x 5 branches x 3-4 times/date x 7 dates = 630

Treatments

control & irrigated (+100% ambient)



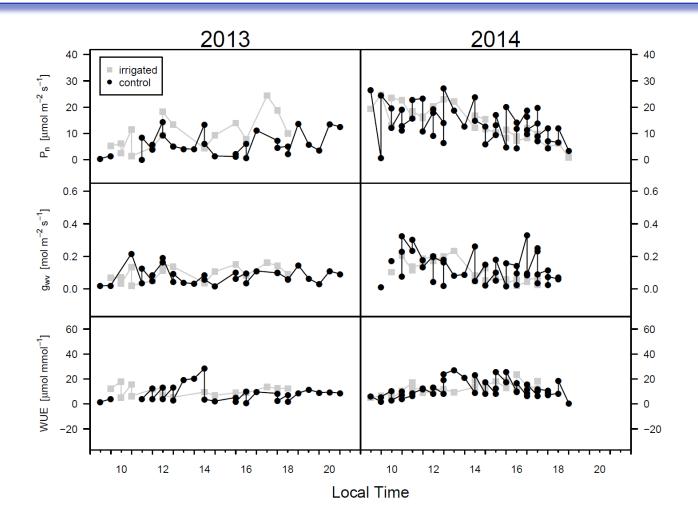


Figure 1. Box plots for diurnal leaf gas exchange (P_n , g_w , WUE, ET).

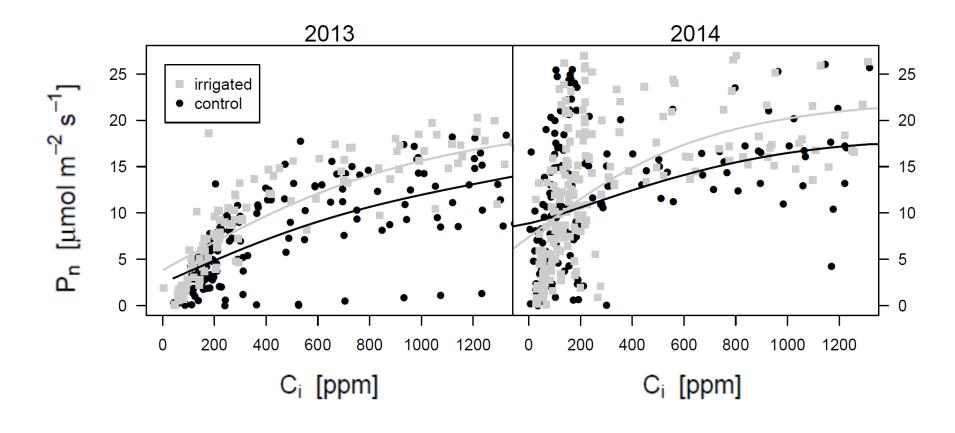
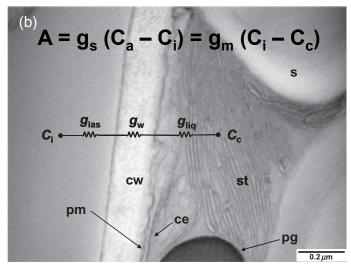

Figure 2. Average & SD for Photosynthesis (P_n; *u*mol m⁻² s⁻¹), stomatal conductance (g_w; mol m⁻² s⁻¹) and water use efficiency (WUE) over the season.

Figure 3. Average & SD for Photosynthesis (P_n; *u*mol m⁻² s⁻¹), stomatal conductance (g_w; mol m⁻² s⁻¹) and water use efficiency (WUE) over daytime.

Figure 4. Average & SD for the ratio of Photosynthesis (P_n ; umol m⁻² s⁻¹) over internal CO2 concentration (C_i ; Pa).


FURTHER ANALYSES

Leaf level - mechanistic

- Light response curve (A_{light})
- Rubisco-mediated carboxylation (V_{cmax})
- Electron transport-mediated maximum rate of carboxylation (J_{max})
- *Mesophyll-mediated* conductance (g_m)
- Specific leaf area (SLA)

Canopy level – integrative & system-relevant

- Correlation with soil water availability vs. VPD
- Whole-tree CO₂ assimilation rate (A_{tree}= f(sap flow))
- Disentangling carbon starvation from hydraulic failure

Flexas et al. 2018

