Resin Flow in Pfynwald

What causes the differences in resin flow?

Master thesis of Crest Simeon, student ETH Environ. Sc.

Supervised by Andreas Rigling and Beat Wermelinger

1. Methods

Resin Flow

- 100 trees, selection on a gradient of crown transparency and equal numbers of irrigated/ control
- 13mm hole through bark and phloem to expose xylem
- Resin collection with specialized sampler in 15ml centrifuge tubes
- 24h collection duration
- Weighed to the nearest 0.001 g
- 2x Sampling, April and August

Methods

Methods

Dendrochronology

- 41 trees, selection in 4 groups
 - Irrigated, high resin flow
 - Irrigated, low resin flow
 - Control, high resin flow
 - Control, low resin flow
- 2 cores (South and North) at 50-100 cm above ground
- Tree ring measurements at WSL Dendrolab
- Sapwood, marked in the field for later measuring

3. Statistical Analysis

Model

- Linear mixed effects model LMM
 - R version 3.1.1, Package Ime4, function Imer
 - → Imm.RF <- Imer(sqrt(RF) ~ (CT14 + Vit + Mistl) * Treat + DBH09 + DCT1 + regCoef11yr + Date + comp + X + Y + (1|Team) + (1|Tree), data=d.RF)</p>

Variables

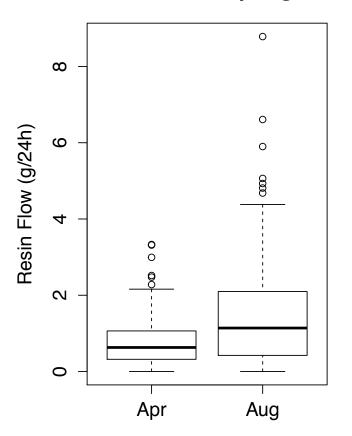
- Response variable
 - Resin flow
- Predictors
 - Treatment: Irrigated/Control
 - Crown transparency in 2014
 - Crown transparency trend over past 1 and 11 years (regression coefficient)
 - Tree vitality: derived from basal area growth between 2003 and 2009
 - Date: April/August
 - Mistletoe
 - Location of tree: X/Y coordinates
 - Competition: sum of basal area of neighboring trees within 3.5m radius
- Predictors-Random Effects
 - Tree number
 - Plot (correlates highly with tree number)
 - Team (the groups that collected the resin, several groups per sample date)

5. Results

Analysis of Variance Table

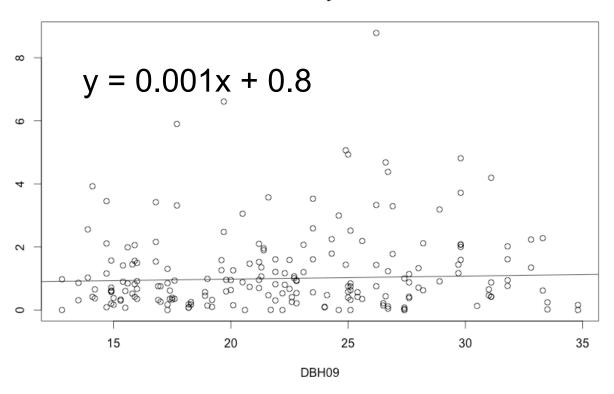
```
Df Sum Sq Mean Sq F value
            1 0.21248 0.21248 1.5028
CT14
Vit
            1 0.03307 0.03307 0.2339
Mistl
            3 0.35998 0.11999 0.8487
Treat
            1 0.12149 0.12149 0.8593
DBH09
            1 0.27611 0.27611 1.9528
DCT1
            1 0.00278 0.00278 0.0196
regCoef11yr
            1 0.19073 0.19073
                               1.3490
Date
            1 1.70218 1.70218 12.0391
            1 0.00843 0.00843 0.0596
comp
Х
            1 0.21808 0.21808 1.5424
            1 0.17384 0.17384 1.2295
CT14:Treat
            1 0.07958 0.07958 0.5629
            1 0.00246 0.00246 0.0174
Vit:Treat
            3 0.32286 0.10762 0.7612
Mistl:Treat
```

	Df	AIC	LRT	Pr(Chi)	
<none></none>		299.44			
DBH09	1	299.10	1.6609	0.197484	
DCT1	1	297.49	0.0503	0.822498	
regCoef11yr	1	298.92	1.4807	0.223667	
Date	1	305.92	8.4717	0.003607	**
comp	1	297.50	0.0553	0.814109	
X	1	299.49	2.0489	0.152314	
Y	1	298.36	0.9214	0.337105	
CT14:Treat	1	298.78	1.3352	0.247875	
Vit:Treat	1	297.48	0.0344	0.852952	
Mistl:Treat	3	296.13	2.6910	0.441762	

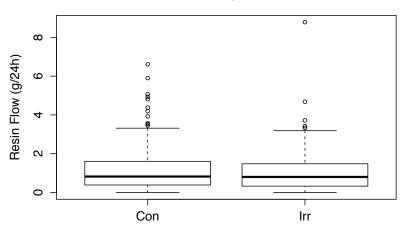


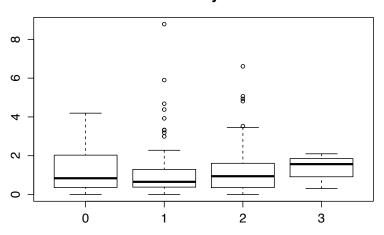
Resin Flow

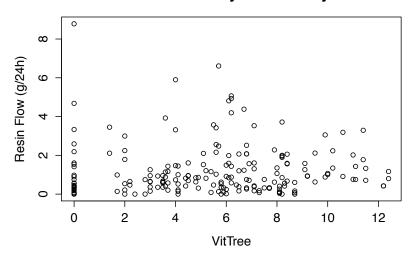
2x Resin flow sampling

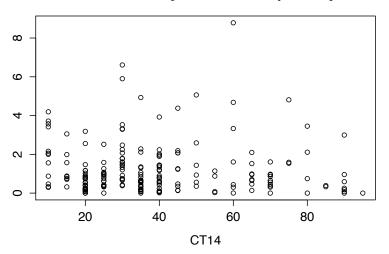

- Apr: n=101
 - mean±SD=0.84±0.75
 - min=0, max=3.33
- Aug: n=97
 - mean±SD=1.61±1.63
 - min=0, max=8.78

Resin Flow Sampling 2014

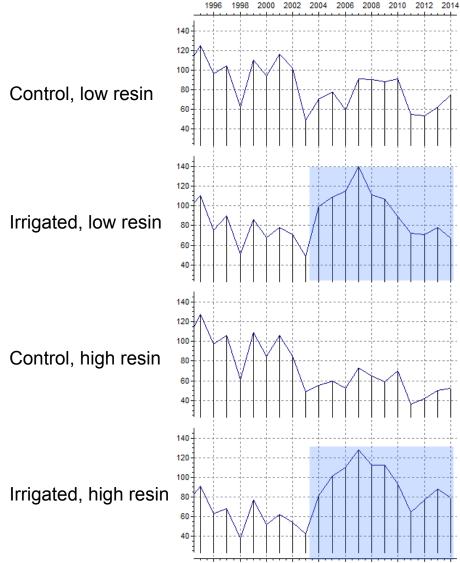



Resin Flow by Tree Size


Resin Flow by Treatment


Resin Flow by Mistletoe

Resin Flow by Tree Vitality


Resin Flow by Crown Transparency

250 -200 -150-Control, low resin 100-350+ 300 250 200 150 Irrigated, low resin 350-300 250 -Irrigation 200-150 Control, high resin 100-50-350+ 300-250 -200-150-Irrigated, high resin 50-1925 1930 1935 1940 1945 1950 1955 1960


6. Conclusions

- Non of the environmental or tree physiological factors have a clear influence on the resin flow
- Date is the only factor showing a significant influence
 - Date is a proxy for the climatic condition (mainly temp.) of the sampling day and other factors not accounted for
- Other studies have found minimal correlation between resin flow and DBH, tree age, competition

Crest Simeon

Thank You

