

Typically, it's neither carbon starvation nor hydraulic failure: a modeling perspective on drought

Harald Bugmann

Forest Ecology, ETH Zürich, Switzerland

The case of tree mortality

Journal of Ecology 2015, 103, 31-43

doi: 10.1111/1365-2745.12335

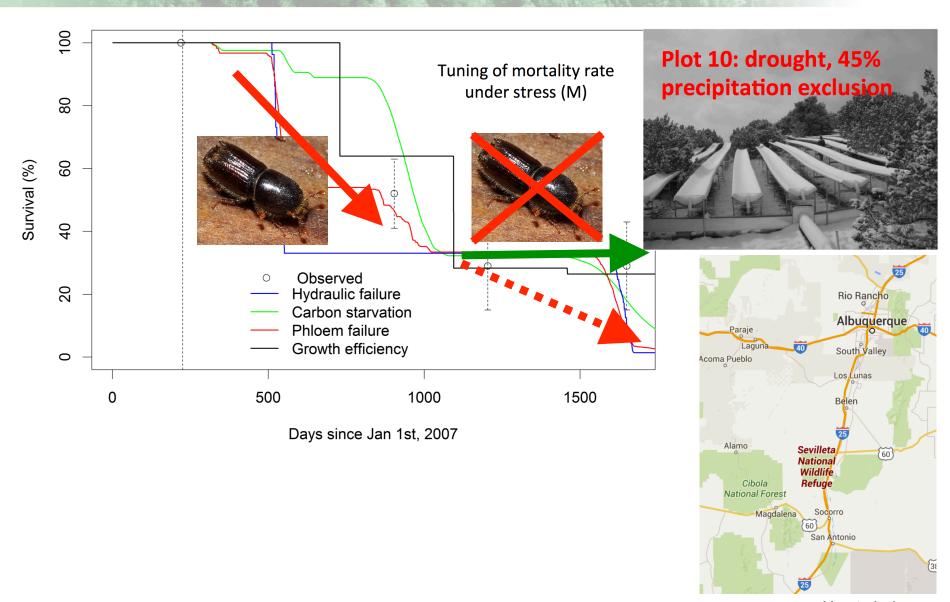
SPECIAL FEATURE

FOREST RESILIENCE, TIPPING POINTS AND GLOBAL CHANGE PROCESSES

Is drought-induced forest dieback globally increasing?

Jörg Steinkamp^{1,2}* and Thomas Hickler^{1,2,3}

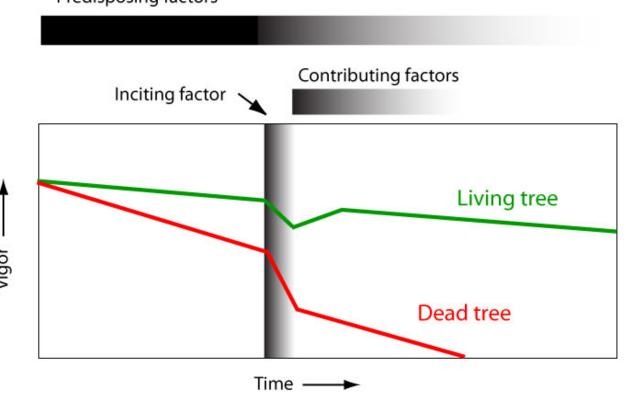
Jemez Mts. (New Mexico), October 2002



Jemez Mts., May 2004

Allen et al. (2010), For Ecol Management; Pictures courtesy of C.D. Allen (USGS)

Pinyon pine drought experiment, Sevilleta



Xu et al., in prep.

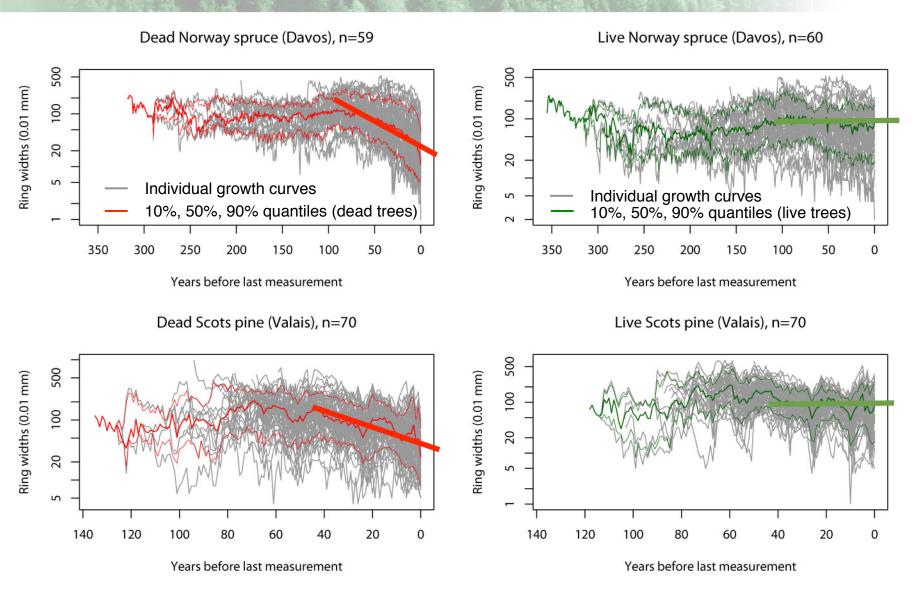
Decline Disease "Theory"

Predisposing factors

"Predicting" mortality

Contributing factors

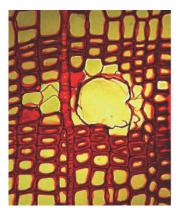
Living tree


Dead tree

Inciting factor

- Heat & drought in a developing country:
 Mortality = f(lack of water OR heart attacks OR disease)?
- Research is not unbiased: we do research on what we can measure (better – best ?):
 - "This reflects the human fascination with electronic machinery rather than spades, but lacks any scientific rationale" Körner (1998), Oecologia Predisposing factors
- Plant physiology may not provide robust estimators of tree mortality
- More integrative (aggregated)
 predictors are more likely to be successful

Tree rings are telling a story...


Bigler & Bugmann (2003), Can J For Res; Bigler et al. (2006), Ecosystems

Pinyon pine mortality in 1950s and 2000s

Statistical models to predict fate of individual trees

- Growth variables:
 - Average ring width (mm)
 - Mean sensitivity

- Wood anatomy variables:
 - No. of resin ducts
 - Mean duct size
 - Duct density
 - Relative duct area

Pinyon pine mortality in 1950s and 2000s

		Coefficeints			Model Diagnostics			Correct Classification Rates			
	Fixed + (1 site)							Internal			External
	,				ΔΑΙΟ	ROC	Evidence Weight	Dead Trees	Live Trees	All Trees	Dead Trees
	Growth and Resin Duct										
Top model overall	RW15 + Sens15 + Size3 RW20 + Sens15 + Size3	-3.54 -3.6	-7.06 -7.01	410 405	0 0.5	0.94 0.93	9.68E+18 7.50E+18	83.5% 83.3%	81.7% 81.7%	82.6% 82.5%	70.0% 70.0%
	Resin Duct Only										
	RelArea3 + Size3 RelArea5 + Size3	40.9 56	347 353		5.5 5.8	0.94 0.94	6.11E+17 5.34E+17	85.6% 84.8%	80.7% 83.2%	83.2% 84.0%	65.0% 65.0%
	Best 1-variable Resin Duct										
	Size3	366			17.7	0.92	1.40E+15	81.8%	74.9%	78.4%	56.5%
	Growth Only										
Reference model	log(RW3) + Sens20 log(RW3) + Sens15	0.79 0.8	-4.44 -3.39		87.4 92.1	0.78 0.76	1.00E+00 9.76E-02	70.2% 70.3%	71.5% 69.1%	70.8% 69.7%	25.0% 30.0%
	Best 1-variable Growth										
	Sens20 log(rw3)	-5.84 1.23			92.9 99	0.74 0.73	6.43E-02 3.02E-03	66.7% 66.5%	63.8% 69.8%	65.2% 68.2%	35.0% 40.0%

• Growth-only models do a decent job classifying dead vs. surviving trees, **but** fail in external validation

• Growth + duct models correctly classify over 80% of trees, and pass the external validation test

To conclude this very brief presentation...

- Tree mortality is a complex process that defies a physiological explanation based on one or a few factors
- Typically, trees die neither of carbon starvation nor of hydraulic failure (alone)
- Yet, to better understand hydraulic failure and carbon starvation is a laudable goal in itself
- If we want to predict future tree mortality, integrative approaches based on tree-ring or forest inventory data are more promising than "mechanistic", "physiological" models