3D Tree

An Alternative Visualization Approach for Complex Data

Manuel A. Luck

How can we visualize the complex interaction between forest, soil, and atmosphere to the general public?

What level of detail can be implemented / what makes it get to complex?

Sketch by Jonas Gisler of the setup.

Step 1: Create Tree Model

Step 1: Create Tree Model

[1]: Andrew Hale et al. <u>Blender Documentation</u>

Branch Splitting:				
Levels	4			
Base Splits	0			
Split Height 0.20	Split Bias 0.00			
Start Length:	0.20			
	0.25			
Branch Distribution	3.00			
Whorls	50			
Branches:	Segment Splits:			
0	0.00			
50	0.30			
10	0.40			
10	0.00			
Split Angle:	Split Angle Variation:			
0.00	0.00			
44.00	5.00			
50.00	0.00			
0.00	0.00			
Rotate Angle:	Rotate Angle Variation:			
99.50	15.00			
137.50	0.00			
-90.00	0.00			
137.50	0.00			
Branch Attachment:	Branching Mode:			
Alternate Opposite	Rotate ~			
Split relative to le	Split Straigh 0.50			

Curve Resolution:

imes Sapling: Add Tree					
Settings: Branch Growth					
Branch Growth:					
Shape:		Custom S	hape 🗸		
		Tapered C	ylindrical 🗸		
Custom Sha	pe:				
0.10	0.60	0.70	0.40		
Length:		Length Variation:			
1.	00	0	.00		
0.	0.33		.15		
0.	75	0	.25		
0.45		0.00			
Down Angle:		Down Angle Variation:			
90.	90.00		0.00		
110.00		42.00			
45.00		10.00			
45.00		10.00			
Curvature:		Curvature Variation:			
0.	0.00		12.50		
40.00		20.00			
30.00		33.33			
0.	00	0.00			
Outward Att	Outward Attraction:		Vertical Attraction:		
0.	00	2	.00		
0.00		0.00			
0.00		0.50			
0.00		0.50			
Vise pare	nt angle				

Data Visualization Pfynwald

Step 1: Create Tree Model

Blender – "Sapling Tree Gen" Tool 1

∨ Sapling: Add Tree				
Settings:	Branch Radius			
Branch Radius:				
🗹 Bevel		Bevel Resolut	tio 2	
Ratio			0.01	
Minimum	n Radius	(0.002	
Close Tip				
Root Flar	e		1.25	
Split Rad	ius Ratio		0.00	
Other:				
🛃 Auto Tap	er	No branch at		
Radius So	al 1.00	Radius Scal	0.10	
Radius R	atio Power		1.00	
Taper:		Tweak Radius:		
1.0	00	1.00		
1.0	00	1.00		
1.0	00	1.00		
1.0	00	1.00		

✓ Sapling: A	Add Tree					
Settings:	Geome	etry				
Geometry:						
🛃 Bevel				Make Mesh		
Bevel R	esolutio	2		Curve Reso	lutio	4
Handle Ty.	Auto					
Materi	0	0		0	0	
Random	Seed					0
Tree Scale:						
Scale	17.0	0	5	Scale Varia	it 1.0	0
Prese				Export	Prese	:
				Overwrite		
Load Pres	et			Limit Impo		

Step 1: Create Tree Model

Blender – "Sapling Tree Gen" Tool 1

Step 1: Create Tree Model

Step 2: Extract Curves from Tree Object

>> Hierarchically structured bezeir curves

>> Extract points alonge the curve

>> Connect start point of branch to closest point in parent

>> Generate a graph network by connecting the neighbouring points

Step 1: Create Tree Model

Step 2: Extract Curves from Tree Object

Step 3: Find Endpoints of Curves

>> List all points at the end of a branch

>> Mark the point that connects the tree to the ground

>> Looping through the graph from endpoint to groundpoint or otherwise

Step 1: Create Tree Model

Step 2: Extract Curves from Tree Object

Step 3: Find Endpoints of Curves

Step 1: Create Tree Model

Step 2: Extract Curves from Tree Object

Step 3: Find Endpoints of Curves

Step 4: Connect to Real World Data

>> VPD values on three level with 4 - 5 sensors each

>> Interpolate between 3 nearest neighbours for each endpoint

Step 1: Create Tree Model

Step 2: Extract Curves from Tree Object

Step 3: Find Endpoints of Curves

Step 4: Connect to Real World Data

Step 5: Simulation of Photosynthesis, Respiration and Transpiration

>> Simulation for the visualization of stomatal gas exchange

>> Not to get numerical accurate consumtion or production values

Step 5: Simulation of Photosynthesis, Respiration and Transpiration

>> Simulation for the **visualization** of stomatal gas exchange

>> Not to get numerical accurate consumtion or production values

Real World Data

>> VPD – Vapour Pressure Deficit

> Temperatur (air & canopy), relative humidity

> VPD = saturated_vapour_pressure * (1-relative_humidity/100)

>> Day/Night

Frames / Timesteps

Step 5: Simulation of Photosynthesis, Respiration and Transpiration

>> Simulation for the **visualization** of stomatal gas exchange

>> Not to get numerical accurate consumtion or production values

Simulated Data

- >> Internal storage (CO2, O2, H2O, Glucose)
- >> Stomata Closure & Calvin cycle approximated based on VPD-readings and light
- >> Stomata Closure
 - > To what extend is gas exchange possible

Frames / Timesteps

Step 5: Simulation of Photosynthesis, Respiration and Transpiration

>> Simulation for the **visualization** of stomatal gas exchange

>> Not to get numerical accurate consumtion or production values

Photosynthesis or Photorespiration?

>> Each endnode gets assigned n – cores

> 10 "cores" for Photosynthesis or Photorespiration during the day

> 2 "cores" for Respiration during the night

--> Approximately 10'000 "decisions" each frame Photosynthesis | Photorespiration

>> "Speed" currently constant

Normalized VPD Fig 1: n (10000) normal distributed values (mean = 0.8, std = 0.2)

Step 5: Simulation of Photosynthesis, Respiration and Transpiration

>> Simulation for the **visualization** of stomatal gas exchange

>> Not to get numerical accurate consumtion or production values

>> Transpiration while the stomata is open

>> O2 & CO2 exchange rate based on opening level of stomate

>> surplus & shortage

>> H2O atm not limited --> Soil moisture values should be integrated in the future

Outlook

Integrate Soil Moisture - Additional Internal Flux Visualization

Refine Cycles - Make the Simulation adjust Parameters on the go

Close to Real Time Update on the Website