Ghiacciai e calotte di ghiaccio polari
Contenuto principale
I ghiacciai alpini modellano il nostro paesaggio e svolgono un ruolo importante per l'energia idroelettrica e per le forniture locali di acqua potabile. Come le regioni polari, sono particolarmente colpite dal riscaldamento globale. Stiamo facendo ricerche su queste regioni per prevedere gli sviluppi futuri.
Se le condizioni climatiche nelle regioni polari cambiano, ciò influenza il clima globale. Questo perché le correnti oceaniche, che regolano il clima, dipendono dallo scambio di calore tra le regioni polari e quelle tropicali. Anche i manti nevosi polari svolgono un ruolo importante nel clima globale, poiché riflettono circa il novanta per cento della luce solare. In confronto, l'acqua di mare irradia nello spazio solo il trenta per cento circa.
Nelle spedizioni nel continente più meridionale e in Groenlandia, stiamo osservando da vicino il manto nevoso antartico e artico. Perché se capiamo come la neve si trasforma in ghiaccio, possiamo ricostruire la storia climatica del passato in modo più affidabile di prima.
Con l'aiuto di stazioni di misurazione automatiche, registriamo i dati meteo e del vento nell'Antartide orientale. Questo ci permette di determinare dove e quanta neve si è depositata. Tutti questi dati alimentano il nostro modello del manto nevoso e del bilancio radiativo e migliorano i modelli climatici esistenti.
Fondazione dello Swiss Polar Institute
Per unire le forze nell'ambito della ricerca polare, nel 2016 abbiamo fondato insieme ad altre quattro istituzioni lo Swiss Polar Institute. L'obiettivo di questo istituto è promuovere la ricerca sui Poli e sulle regioni estreme.
Qual è l'impatto delle Alpi senza ghiaccio?
Le ricerche mostrano che i ghiacciai alpini si scioglieranno in gran parte entro la fine di questo secolo. Stiamo studiando gli effetti che ciò avrà sulla disponibilità di acqua (acqua potabile, energia idroelettrica, irrigazione). Stiamo anche utilizzando modelli computerizzati per simulare il pericolo di eruzioni di ghiacciai e valanghe di ghiaccio.
Temi
ULTERIORE INFORMAZIONI
Contatto
Prof. Dr. Michael Lehning
Professor Atmospheric Physics
lehning(at)slfto make life hard for spam bots.ch
+41 81 417 01 58+41 81 417 01 58
Dr. Martin Schneebeli
Senior Scientist, Aushilfe / Lecturer
Pubblicazioni
Farinotti, D.; Immerzeel, W.W.; De Kok, R.J.; Quincey, D.J.; Dehecq, A., 2020: Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience, 13, 1: 8-16. doi: 10.1038/s41561-019-0513-5
Zekollari, H.; Huss, M.; Farinotti, D., 2020: On the imbalance and response time of glaciers in the European Alps. Geophysical Research Letters, 47, 2: e2019GL085578 (9 pp.). doi: 10.1029/2019GL085578
Werder, M.A.; Huss, M.; Paul, F.; Dehecq, A.; Farinotti, D., 2020: A Bayesian ice thickness estimation model for large-scale applications. Journal of Glaciology, 66, 255: 137-152. doi: 10.1017/jog.2019.93
Farinotti, D.; Round, V.; Huss, M.; Compagno, L.; Zekollari, H., 2019: Large hydropower and water-storage potential in future glacier-free basins. Nature, 575, 7782: 341-344. doi: 10.1038/s41586-019-1740-z
Delaney, I.; Werder, M.A.; Farinotti, D., 2019: A numerical model for fluvial transport of subglacial sediment. Journal of Geophysical Research F: Earth Surface, 124, 8: 2197-2223. doi: 10.1029/2019JF005004
Schaefli, B.; Manso, P.; Fischer, M.; Huss, M.; Farinotti, D., 2019: The role of glacier retreat for Swiss hydropower production. Renewable Energy, 132: 615-627. doi: 10.1016/j.renene.2018.07.104
Zekollari, H.; Goderis, S.; Debaille, V.; Van Ginneken, M.; Gattacceca, J.; Aster Team; Timothy Jull, A.J.; Lenaerts, J.T.M.; Yamaguchi, A.; Huybrechts, P.; Claeys, P., 2019: Unravelling the high-altitude Nansen blue ice field meteorite trap (East Antarctica) and implications for regional palaeo-conditions. Geochimica et Cosmochimica Acta, 248: 289-310. doi: 10.1016/j.gca.2018.12.035
Brunner, M.I.; Farinotti, D.; Zekollari, H.; Huss, M.; Zappa, M., 2019: Future shifts in extreme flow regimes in Alpine regions. Hydrology and Earth System Sciences, 23: 4471-4489. doi: 10.5194/hess-23-4471-2019
Boesch, R.; Graf, C., 2019: Mass movements of an alpine rock glacier. In: Vosselman, G.; Oude Elberink, S.J.; Yang, M.Y. (eds), 2019: ISPRS Geospatial Week 2019. ISPRS Geospatial Week 2019, Enschede, The Netherlands. 215-219. doi: 10.5194/isprs-archives-XLII-2-W13-215-2019
Compagno, L.; Jouvet, G.; Bauder, A.; Funk, M.; Church, G.; Leinss, S.; Lüthi, M.P., 2019: Modeling the re-appearance of a crashed airplane on Gauligletscher, Switzerland. Frontiers in Earth Science, 7: 170 (8 pp.). doi: 10.3389/feart.2019.00170
Zekollari, H.; Huss, M.; Farinotti, D., 2019: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. Cryosphere, 13, 4: 1125-1146. doi: 10.5194/tc-13-1125-2019
Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.H.; Landmann, J.; Oesterle, F.; Recinos, B.; Rothenpieler, T.; Vlug, A.; Wild, C.T.; Marzeion, B., 2019: The open global glacier model (OGGM) v1.1. Geoscientific Model Development, 12, 3: 909-931. doi: 10.5194/gmd-12-909-2019
Farinotti, D.; Huss, M.; Fürst, J.J.; Landmann, J.; Machguth, H.; Maussion, F.; Pandit, A., 2019: A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12, 3: 168-173. doi: 10.1038/s41561-019-0300-3
Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.; Farinotti, D.; Gimbert, F.; Guo, W.; Huggel, C.; Kargel, J.S.; Leonard, G.J.; Tian, L.; Treichler, D.; Yao, T., 2018: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11, 2: 114-120. doi: 10.1038/s41561-017-0039-7
Gindraux, S.; Farinotti, D., 2018: Skill transfer from meteorological to runoff forecasts in glacierized catchments. Hydrology, 5, 2: 26 (14 pp.). doi: 10.3390/hydrology5020026
Feiger, N.; Huss, M.; Leinss, S.; Sold, L.; Farinotti, D., 2018: The bedrock topography of Gries- and Findelengletscher. Geographica Helvetica, 73, 1: 1-9. doi: 10.5194/gh-73-1-2018
Delaney, I.; Bauder, A.; Werder, M.A.; Farinotti, D., 2018: Regional and annual variability in subglacial sediment transport by water for two glaciers in the Swiss Alps. Frontiers in Earth Science, 6: 175 (17 pp.). doi: 10.3389/feart.2018.00175
Duethmann, D.; Vorogushyn, S.; Farinotti, D.; Menz, C.; Merz, B.; Kriegel, D.; Bolch, T.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A., 2018: ГИДРОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ В ЛЕДНИКОВЫХ БАССЕЙНАХ Р.ТАРИМ, ЦЕНТРАЛЬНАЯ АЗИЯ: НАБЛЮДАЕМЫЕ ИЗМЕНЕНИЯ РАСХОДОВ ВОДЫ И ОЦЕНКА БУДУЩИХ ИЗМЕНЕНИЙ. Hydrological change in glacier covered headwater catchments of the tarim river, Central Asia: observed streamflow c. In: Sychev, V.G.; Mueller, L. (eds), 2018: Understanding and monitoring processes in soils and water bodies. Moscow, Publishing House FSBSI (Pryanishnikov Institute of Agrochemistry). 410-414. doi: 10.25680/3139.2018.68.11.002
Pruessner, L.; Phillips, M.; Farinotti, D.; Hoelzle, M.; Lehning, M., 2018: Near-surface ventilation as a key for modeling the thermal regime of coarse blocky rock glaciers. Permafrost and Periglacial Processes, 29, 3: 152-163. doi: 10.1002/ppp.1978
Zekollari, H.; Huybrechts, P., 2018: Statistical modelling of the surface mass-balance variability of the Morteratsch glacier, Switzerland: strong control of early melting season meteorological conditions. Journal of Glaciology, 64, 244: 275-288. doi: 10.1017/jog.2018.18
Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; Huwald, H.; Lehning, M.; López-Moreno, J.; Magnusson, J.; Marty, C.; Morán-Tejéda, E.; Morin, S.; Naaim, M.; Provenzale, A.; ... Vincent, C., 2018: The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere, 12, 2: 759-794. doi: 10.5194/tc-12-759-2018
Schwerpunkt aus dem WSL-Magazin Diagonal, 1/18: Im Kältelabor des SLF experimentieren Forschende mit Schnee. Manchmal werden dabei nicht nur ihre Instrumente und Materialien, sondern auch sie selbst auf Kältetauglichkeit geprüft.
Focus WSL magazine Diagonal, 1/18: In SLF’s cold laboratory, researchers are experimenting with snow. Sometimes this tests not just the ability of their instruments and materials to function in the cold, but also their own.
Thème central Magazine du WSL Diagonale, 1/18: Dans le laboratoire réfrigéré du SLF, les expériences se font avec de la neige. Parfois, ce ne sont pas seulement les instruments et matériaux qui sont testés par rapport à leur résistance au froid, mais aussi les chercheurs eux-mêmes.
Farinotti, D., 2017: Glacier modeling. In: Richardson, D.; Castree, N.; Goodchild, M.F.; Kobayashi, A.; Liu, W.; Marston, R.A. (eds), 2017: The international encyclopedia of geography. People, the earth, environment, and technology. sine loco, John Wiley & Sons, Ltd.. 1-4. doi: 10.1002/9781118786352.wbieg0038
Schmale, J.; Flanner, M.; Kang, S.; Sprenger, M.; Zhang, Q.; Guo, J.; Li, Y.; Schwikowski, M.; Farinotti, D., 2017: Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Scientific Reports, 7: 40501 (10 pp.). doi: 10.1038/srep40501
Hoelzle, M.; Azisov, E.; Barandun, M.; Huss, M.; Farinotti, D.; Gafurov, A.; Hagg, W.; Kenzhebaev, R.; Kronenberg, M.; MacHguth, H.; Merkushkin, A.; Moldobekov, B.; Petrov, M.; Saks, T.; Salzmannöne, N.; Schöne, T.; Tarasov, Y.; Usubaliev, R.; Vorogushyn, S.; ... Zemp, M., 2017: Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia. Geoscientific Instrumentation, Methods and Data Systems, 6, 2: 397-418. doi: 10.5194/gi-6-397-2017
Gindraux, S.; Boesch, R.; Farinotti, D., 2017: Accuracy assessment of digital surface models from unmanned aerial vehicles' imagery on glaciers. Remote Sensing, 9, 2: 186 (15 pp.). doi: 10.3390/rs9020186
Farinotti, D.; Brinkerhoff, D.J.; Clarke, G.K.C.; Fürst, J.J.; Frey, H.; Gantayat, P.; Gillet-Chaulet, F.; Girard, C.; Huss, M.; Leclercq, P.W.; Linsbauer, A.; Machguth, H.; Martin, C.; Maussion, F.; Morlinghem, M.; Mosbeux, C.; Pandit, A.; Portmann, A.; Rabatel, A.; ... Andreassen, L.M., 2017: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere, 11, 2: 949-970. doi: 10.5194/tc-11-949-2017
Calonne, N.; Montagnat, M.; Matzl, M.; Schneebeli, M., 2017: The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica. Earth and Planetary Sciences Letters, 460: 293-301. doi: 10.1016/j.epsl.2016.11.041
Leinss, S.; Round, V.; Hajnsek, I., 2017: Single pass InSAR missions for monitoring hazardous surging glaciers. In: 2017: 2017 IEEE international geoscience and remote sensing symposium (IGARSS). 2017 IEEE international geoscience and remote sensing symposium (IGARSS), Fort Worth, TX, USA. 934-937. doi: 10.1109/IGARSS.2017.8127106
Zekollari, H., 2017: TopoZeko: A MATLAB function for 3-D and 4-D topographical visualization in geosciences. SoftwareX, 6: 285-292. doi: 10.1016/j.softx.2017.10.004
Farinotti, D., 2017: Asia’s glacier changes. Nature Geoscience, 10, 9: 621-622. doi: 10.1038/ngeo2995
Round, V.; Leinss, S.; Huss, M.; Haemmig, C.; Hajnsek, I., 2017: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere, 11, 2: 723-739. doi: 10.5194/tc-11-723-2017
Steger, C.R.; Reijmer, C.H.; Van den Broeke, M.R.; Wever, N.; Forster, R.R.; Koenig, L.S.; Kuipers Munneke, P.; Lehning, M.; Lhermitte, S.; Ligtenberg, S.R.M.; Miège, C.; Noël, B.P.Y., 2017: Firn meltwater retention on the Greenland Ice Sheet: a model comparison. Frontiers in Earth Science, 5: 3 (16 pp.). doi: 10.3389/feart.2017.00003
Miller, N.B.; Shupe, M.D.; Cox, C.J.; Noone, D.; Persson, P.O.G.; Steffen, K., 2017: Surface energy budget responses to radiative forcing at Summit, Greenland. Cryosphere, 11, 1: 497-516. doi: 10.5194/tc-11-497-2017
Huggel, C.; Marty, C.; Nötzli, J.; Paul, F., 2016: Schnee, Gletscher und Permafrost. In: Mittler, M.; Hosi, S. (eds), 2016: Brennpunkt Klima Schweiz. Grundlagen, Folgen und Perspektiven. Bern, Akademien der Wissenschaften Schweiz. 80-83.
Huggel, C.; Marty, C.; Nötzli, J.; Paul, F., 2016: Neige, glaciers et pergélisol. In: Mittler, M.; Hosi, S. (eds), 2016: Coup de projecteur sur le climat suisse. Etat des lieux et perspectives. Berne, Académies suisses des sciences. 80-83.
Maslanka, W.; Leppänen, L.; Kontu, A.; Sandells, M.; Lemmetyinen, J.; Schneebeli, M.; Proksch, M.; Matzl, M.; Hannula, H.; Gurney, R., 2016: Arctic snow microstructure experiment for the development of snow emission modelling. Geoscientific Instrumentation, Methods and Data Systems, 5, 1: 85-94. doi: 10.5194/gi-5-85-2016
Kronenberg, M.; Barandun, M.; Hoelzle, M.; Huss, M.; Farinotti, D.; Azisov, E.; Usubaliev, R.; Gafurov, A.; Petrakov, D.; Kääb, A., 2016: Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014. Annals of Glaciology, 57, 71: 92-102. doi: 10.3189/2016AoG71A032
Farinotti, D.; Pistocchi, A.; Huss, M., 2016: From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps?. Environmental Research Letters, 11, 5: 054022 (9 pp.). doi: 10.1088/1748-9326/11/5/054022
Machguth, H.; Thomsen, H.H.; Weidick, A.; Ahlstrøm, A.P.; Abermann, J.; Andersen, M.L.; Andersen, S.B.; Bjørk, A.A.; Box, J.E.; Braithwaite, R.J.; Bøggild, C.E.; Citterio, M.; Clement, P.; Colgan, W.; Fausto, R.S.; Gleie, K.; Gubler, S.; Hasholt, B.; Hynek, B.; ... Van de Wal, R.S.W., 2016: Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 62, 235: 861-887. doi: 10.1017/jog.2016.75
Bokhorst, S.; Højlund Pedersen, S.; Brucker, L.; Anisimov, O.; Bjerke, J.W.; Brown, R.D.; Ehrich, D.; Essery, R.L.H.; Heilig, A.; Ingvander, S.; Johansson, C.; Johansson, M.; Jónsdóttir, I.S.; Inga, N.; Luojus, K.; Macelloni, G.; Mariash, H.; McLennan, D.; Rosqvist, G.N.; ... Callaghan, T.V., 2016: Changing arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio, 45, 5: 516-537. doi: 10.1007/s13280-016-0770-0
Berkelhammer, M.; Noone, D.C.; Steen-Larsen, H.C.; Bailey, A.; Cox, C.J.; O'Neill, M.S.; Schneider, D.; Steffen, K.; White, J.W.C., 2016: Surface-atmosphere decoupling limits accumulation at Summit, Greenland. Science Advances, 2, 4: e1501704 (9 pp.). doi: 10.1126/sciadv.1501704
Parrella, G.; Farinotti, D.; Hajnsek, I.; Papathanassiou, K.P., 2016: Monitoring the subsurface of an alpine glacier using polarimetric SAR observations at L-band. In: 2016: Proceedings of EUSAR 2016: 11th European conference on synthetic aperture radar. 11th European conference on synthetic aperture radar (EUSAR), Hamburg, Germany, June 6-9, 2016. 800-805.
Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A., 2015: Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8, 9: 716-722. doi: 10.1038/ngeo2513
Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A., 2015: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resources Research, 51, 6: 4727-4750. doi: 10.1002/2014WR016716
Barandun, M.; Huss, M.; Sold, L.; Farinotti, D.; Azisov, E.; Salzmann, N.; Usubaliev, R.; Merkushkin, A.; Hoelzle, M., 2015: Re-analysis of seasonal mass balance at Abramov glacier 1968-2014. Journal of Glaciology, 61, 230: 1103-1117. doi: 10.3189/2015JoG14J239
Mernild, S.H.; Holland, D.M.; Holland, D.; Rosing-Asvid, A.; Yde, J.C.; Liston, G.E.; Steffen, K., 2015: Freshwater flux and spatiotemporal simulated runoff variability into Ilulissat Icefjord, West Greenland, linked to salinity and temperature observations near tidewater glacier margins obtained using instrumented ringed seals. Journal of Physical Oceanography, 45, 5: 1426-1445. doi: 10.1175/JPO-D-14-0217.1
Mernild, S.H.; Hanna, E.; McConnell, J.R.; Sigl, M.; Beckerman, A.P.; Yde, J.C.; Cappelen, J.; Malmros, J.K.; Steffen, K., 2015: Greenland precipitation trends in a long-term instrumental climate context (1890-2012): evaluation of coastal and ice core records. International Journal of Climatology, 35, 2: 303-320. doi: 10.1002/joc.3986
Kuipers Munneke, P.; Ligtenberg, S.R.M.; Noël, B.P.Y.; Howat, I.M.; Box, J.E.; Mosley-Thompson, E.; McConnell, J.R.; Steffen, K.; Harper, J.T.; Das, S.B.; Van den Broeke, M.R., 2015: Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere, 9, 6: 2009-2025. doi: 10.5194/tc-9-2009-2015
Gafurov, A.; Vorogushyn, S.; Farinotti, D.; Duethmann, D.; Merkushkin, A.; Merz, B., 2015: Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data. Cryosphere, 9, 2: 451-463. doi: 10.5194/tc-9-451-2015
Normand, S.; Randin, C.; Ohlemüller, R.; Bay, C.; Høye, T.T.; Kjær, E.D.; Körner, C.; Lischke, H.; Maiorano, L.; Paulsen, J.; Pearman, P.B.; Psomas, A.; Treier, U.A.; Zimmermann, N.E.; Svenning, J., 2013: A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 1624: 20120479 (12 pp.). doi: 10.1098/rstb.2012.0479
Bernasconi, S.M.; Bauder, A.; Bourdon, B.; Brunner, I.; Bünemann, E.; Christl, I.; Derungs, N.; Edwards, P.; Farinotti, D.; Frey, B.; Frossard, E.; Furrer, G.; Gierga, M.; Göransson, H.; Gülland, K.; Hagedorn, F.; Hajdas, I.; Hindshaw, R.; Ivy-Ochs, S.; ... Zumsteg, A., 2011: Chemical and biological gradients along the Damma Glacier soil chronosequence, Switzerland. Vadose Zone Journal, 10, 3: 867-883. doi: 10.2136/vzj2010.0129
Magnusson, J.; Farinotti, D.; Jonas, T.; Bavay, M., 2011: Quantitative evaluation of different hydrological modelling approaches in a partly glacierized Swiss watershed. Hydrological Processes, 25, 13: 2071-2084. doi: 10.1002/hyp.7958
Farinotti, D.; Magnusson, J.; Huss, M.; Bauder, A., 2010: Snow accumulation distribution inferred from time-lapse photography and simple modelling. Hydrological Processes, 24, 15: 2087-2097. doi: 10.1002/hyp.7629
Raffl, C.; Holderegger, R.; Parson, W.; Erschbamer, B., 2008: Patterns in genetic diversity of Trifolium pallescens populations do not reflect chronosequence on alpine glacier forelands. Heredity, 100, 5: 526-532. doi: 10.1038/hdy.2008.8
Schönswetter, P.; Stehlik, I.; Holderegger, R.; Tribsch, A., 2005: Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology, 14, 11: 3547-3555. doi: 10.1111/j.1365-294X.2005.02683.x
Holderegger, R.; Stehlik, I.; Smith, R.I.L.; Abbott, R.J., 2003: Populations of Antarctic Hairgrass (Deschampsia antarctica) show low genetic diversity. Arctic, Antarctic, and Alpine Research, 35, 2: 214-217. doi: 10.1657/1523-0430(2003)035[0214:Poahda]2.0.Co;2
Holderegger, R.; Abbott, R.J., 2003: Phylogeography of the Arctic‐Alpine Saxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and ITS sequence variation. American Journal of Botany, 90, 6: 931-936. doi: 10.3732/ajb.90.6.931
Stehlik, I.; Blattner, F.R.; Holderegger, R.; Bachmann, K., 2002: Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the central Alps during the ice ages. Molecular Ecology, 11, 10: 2027-2036. doi: 10.1046/j.1365-294X.2002.01595.x
Holderegger, R.; Stehlik, I.; Abbott, J., 2002: Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps. Molecular Ecology, 11, 8: 1409-1418. doi: 10.1046/j.1365-294X.2002.01548.x
Gugerli, F.; Holderegger, R., 2001: Nunatak survival, tabula rasa and the influence of the Pleistocene ice-ages on plant evolution in mountain areas. Trends in Plant Science, 6, 9: 397-398. doi: 10.1016/S1360-1385(01)02053-2