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Macroecologists are increasingly using
process-based and mechanistic
models.

Process-based models need not be
reductionistic.

Such models can be used for theore-
tical, statistical, and virtual-worlds
modelling.

These innovations allow stronger infer-
ences about causes of ecological
patterns.
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Macroecology has traditionally relied on descriptive characterization of large-
scale ecological patterns to offer narrative explanations for the origin and
maintenance of those patterns. Only recently have macroecologists begun
to employ models termed ‘process-based’ and ‘mechanistic’, in contrast to
other areas of ecology, where such models have a longer history. Here, we
define and differentiate between process-based and mechanistic features of
models, and we identify and discuss important advantages of working with
models possessing such features. We describe some of the risks associated
with process-based and mechanistic model-centered research programs, and
we propose ways to mitigate these risks. Giving process-based and mecha-
nistic models a more central role in research programs can reinvigorate macro-
ecology by strengthening the link between theory and data.

The Evolution of Model-Based Ecology
The growth of mathematical modeling in ecology and the increasingly prevalent interpretation of
data analysis as model fitting and evaluation (rather than falsifying specific hypotheses about
nature) reflect a changing view of models that has paralleled the growth of model-based
conceptualizations of science in philosophy (Box 1). From the middle to the end of the 20th

century, ecology was dominated by a paradigm that reflected the influence of falsificationism
[1], strong inference [2], and the use of threshold statistical significance as a decision rule [3].
However, ecologists have increasingly adopted approaches to data analysis that emphasize
estimation of model parameter values and selection among alternative models [4,5]. This
approach often eschews null hypothesis testing or strong inference, but, more fundamentally,
it entails a reassessment of the roles, importance, and even nature of theories, models, and
hypotheses in the scientific process [6]. This shift has occurred alongside several other trends in
ecology. One such trend is the greater use of custom-built ecological models – commonly
described as ‘process-based’ or ‘mechanistic’ – to fit to data, rather than models that test for
associations between response and explanatory variables [7,8]. Simultaneously, improvements
in computing technology have made fitting such models to data practicable [9]. Increasingly,
ecologists have been called upon to supply knowledge for managing vulnerable ecosystems
and exploited populations, which often requires estimates of effect sizes and associated
confidence intervals to inform management decisions [10,11]. Not least of these trends has
been the growth of macroecology.

Because macroecologists focus on large-scale patterns and processes, experimental manip-
ulation is often impossible, limiting the extent to which macroecology could employ the
methods of falsification and strong inference to test alternative explanations for phenomena.
Instead, macroecologists have focused on the consistency (across taxa, ecosystems, and
spatial and temporal scales) of macroecological patterns, such as Taylor’s mean–variance
scaling law, species–area relationships, and species-abundance distributions [12]. Recently,
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Box 1. Theories of Scientific Explanation

For much of the first half of the 20th century, predominant theories of scientific explanation were ‘syntactic’, meaning that they treated theories as formal axiomatic
systems, from which explanations or predictions of natural phenomena were deduced. The paradigmatic example of this approach is Hempel and Oppenheim’s
‘Covering Law Model’ [76] (Figure IA). According to this model, a scientific explanation consists of a set of deterministic or statistical laws and a set of specific
antecedent conditions that, if met, entail that a particular natural phenomenon either must follow, or follows with high probability (here termed the ‘hypothesis’;
formally the ‘explanandum’ in [76]). If empirical data conform to the hypothesis, then the explanation is supported; if they do not, then the explanation is either falsified
or rendered unlikely to be true, implying that one of the putative laws or antecedent conditions is false. The key point is that the theory’s axioms – its laws and
antecedent conditions – are assumed to apply literally to the natural system itself, so an explanation is either true or false, and empirical data are used to assess the
likelihood that the explanation is true (in the earlier positivist framework), or to show that the explanation is false or unlikely (in the later falsificationist framework).

In model-based conceptualizations of science, by contrast, hypotheses are derived from models that are known, a priori, to be idealized representations of nature
(Figure IB). Model assumptions are akin to the axioms of the syntactic framework, but they are assumed to be strictly true only for the model itself, not the natural
system(s) being modelled. Consequently, model-based explanations for natural phenomena are not strictly true or false in the same sense as in the syntactic
framework. Rather, explanations about natural phenomena are evaluated based on the degree and nature of the (invariably imperfect) resemblance between the
empirical data and the model on which the explanation is based [77]. Differences among proponents of model-based conceptualizations of science exist, for instance
concerning the precise meaning of representation or explanation, and whether models are constituents of theory or mediate between theory and nature [78].
Nevertheless, this summary captures, to a first approximation, the key distinctions between the model-based view of science and the syntactic view that dominated
philosophy of science in the first half of the 20th century [78].
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Figure I. Schematic Illustration of Two Different Models of Science. (A) Example of a ‘syntactic’ view, in which a theory is a formal axiomatic system, whose
relevant laws and antecedent conditions are combined to derive predictions, and whose explanations are true or false based on the validity of its hypotheses. (B)
Example of a ‘model-based’ view, according to which a theory is a constellation of models, which are used to derive predictions. According to this view, explanations
are based on an assessment of the resemblance between the model and nature, rather than an assessment of whether the model is ‘true’ or ‘false’. Panel (B) is
adapted from Giere [6].
macroecological studies increasingly offer ‘mechanistic’ or ‘process-based’ explanations for
macroecological patterns, using model-based methodological approaches. These include
testing quantitative predictions about model parameter values [13], and model analyses that
demonstrate how particular combinations of macroecological processes or mechanisms may
give rise to well-documented macroecological patterns [14–16].

The growth of process-based and mechanistic models (hereafter PBMs and MMs, respectively)
raises several questions. Firstly, what are the characteristics of a model that make it mecha-
nistic or process-based (or not), as opposed to models that lack these characteristics (often
termed ‘descriptive’, ‘correlative’, ‘phenomenological’, or ‘purely statistical’ models)? Sec-
ondly, what are the advantages of employing PBMs and MMs in macroecological research, and
how do these advantages follow from the distinguishing features of PBMs and MMs? Finally,
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does a PBM- or MM-centered research program entail any particular risks? In this contribution,
we offer answers to these questions. Although we focus on macroecology, a field that has only
recently seen widespread use of such models, much of what we say is relevant to ecology more
broadly.

What Makes Models Mechanistic or Process-Based?
Recent reviews of PBMs and MMs in ecology consider these two types of models to be
synonymous, either explicitly [7,8] or implicitly (for instance, by defining process-based models
as incorporating mechanism or being reductionistic [17–20]). However, the use of the term
‘mechanistic’ by ecologists (including macroecologists) is somewhat inconsistent, and we
know of no attempts to clarify what qualifies a model as ‘mechanistic’ or ‘process-based’ (other
than simply that it includes mechanisms and processes, respectively). We therefore begin by
proposing definitions for MMs and PBMs, in order to capture two distinct aspects of models
that make it possible to employ them in a range of ways not possible with other models.

In philosophy of science, multiple definitions of ‘mechanism’ have been proposed, but these
definitions share some key features: a phenomenon to be explained, and component parts
whose activities and interactions produce the phenomenon [21,22]. In this spirit, we define a
mechanistic model (MM) as ‘a characterization of the state of a system as explicit functions of
component parts and their associated actions and interactions’. Models that would fail to meet
this definition include the standard statistical models usually employed by ecologists, such as
regressions of species richness against environmental variables. However, our definition also
excludes other models, such as the logistic model of population growth, for which changes in
population size depend only on current population size, and no information about the states of
the population’s component individuals is needed. Nevertheless, in practice, we believe that
most ecologists would consider fitting such a model to empirical data to be qualitatively
different than, for instance, fitting a simple moving average to population size over time. To
capture such models, we define process-based models (PBMs) as ‘models that characterize
changes in a system’s state as explicit functions of the events that drive those state changes’.
By this definition, the logistic model of population growth is a process-based model, because
the state variable, population size, is modelled as an explicit function of the births and deaths
that drive changes in population size. But neither a simple regression of species richness on, for
example, temperature, nor a running-average model fitted to population size data, is a PBM,
because their parameters or components do not correspond directly to events or entities in
nature. We acknowledge that some ecologists use the term ‘mechanistic model’ more broadly
than we have done here, and thus may prefer to consider these two groups to be (overlapping)
subclasses of mechanistic models (e.g., ‘component-based mechanistic’ and ‘process-based
mechanistic’); conversely, others may consider an ecological model to be mechanistic only if it
incorporates individual-level physiology or behavior (Box 2).

Although many mechanistic macroecological models are process-based, and vice versa, our
definitions above imply that models may also belong to one class and not the other. Many niche
models of species distributions, for example, are mechanistic but not process-based. Func-
tional constraints on organisms’ physiological tolerance may be derived from process-based
studies, but if their implementation in species-distribution models is based on static functional
relationships between performance and environment [23], then there is no explicit representa-
tion of process in the model. Conversely, island-biogeographic models that characterize the
dynamics of species richness as a function of species-level immigration, speciation, and
extinction rates are process-based (they explicitly include processes that drive changes in
the state variable, richness), but not mechanistic, because the dynamics of species diversity
depend only on the standing species richness (not on information about the variable states of
particular species; e.g., [24]).
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Box 2. What Is a Mechanistic Model?

The mechanism concept in philosophy of science, upon which we base our definition of a mechanistic model, is
consistent with the concept’s use in the macroecological literature on, for example, niche modeling: ‘If a species’ niche
is to be modelled mechanistically . . . the organism must not enter the model as a point on a map but rather as a set of
behavioral, morphological, and physiological traits’ [23]. This implies that a mechanistic model must explicitly represent
the mechanism’s component parts (in this case, individual physiology) that produce the higher-level phenomenon (a
species’ distribution). Some ecologists have maintained that these component levels must include individual-level
ecology, such as physiology or behavior [79]. However, this is not necessary to satisfy our definition. In macroecology,
habitat patches and species are common components of mechanistic models. For instance, in neutral macroecological
models, the component parts of the metacommunity are local communities, whose internal workings (community
dynamics) and interactions (dispersal) are modelled explicitly. Such models have been explicitly termed mechanistic,
even though they specifically ignore differences among individuals [80]. Similarly, in mechanistic models of species
richness gradients, large-scale species richness patterns are produced by the modeling of variable and dynamic
geographic range states of species, and species’ effects on one another’s colonization, extinction, or dispersal (i.e., their
interactions) [56]. Because models with such group-level components (sensu [79]) offer the advantages summarized in
this paper, we consider them to be mechanistic.

We also recognize that, even when they share a definition of mechanism, macroecologists may hold differing concepts
of mechanistic model, arising from different views about how the mechanism concept should be employed in modeling.
For instance, Tilman’s consumer-resource competition model incorporates mechanism only implicitly: the Michaelis–
Menton resource uptake function can be derived from a submodel of uptake by individual cells, even though individual
cells’ uptake dynamics are not explicitly modelled. Some ecologists consider such models to be mechanistic (e.g.,
[81,82]). Our definition requires explicit modeling of component states because we could not determine how to define
MMs to include models with implicit mechanisms without allowing any model based on mechanistic reasoning (e.g.,
simple correlative statistical models), to be considered MMs as well. Nevertheless, macroecologists who prefer a
broader definition of mechanistic model may prefer to consider our MMs and PBMs to be sub-classes of mechanistic
model (component-based mechanistic models and process-based mechanistic models, for instance).
Advantages of Process-Based and Mechanistic Models
The preceding discussion identifies two distinct ways that PBMs and MMs can move beyond
other models in how they represent nature, and clarifies that PBMs need not explicitly
characterize entities or events at a lower or more fundamental level (such as explaining
population growth in terms of the physiological states of individuals). What PBMs and MMs
share is an explicit representation of causal structure. Indeed, past reviews have differentiated
PBMs and MMs from other models because they incorporate ‘causality’, ‘causal effects’,
‘causal mechanisms’ or ‘causal relationships’ [7,8,17]. This structure means that PBMs and
MMs have several important advantages as research tools. Specifically, they can be confronted
with empirical data in more diverse and informative ways than models based purely on
statistical associations between variables. Moreover, insights can be gained by using PBMs
and MMs themselves as objects of study.

Richer Inferences from Statistical Modeling
Increases in computing power, coupled with the growth of methods for fitting purpose-built
models to data, mean that many PBMs or MMs can be explicitly fitted to empirical data. For
some models, it is possible to specify a goodness-of-fit function (e.g., a likelihood) explicitly, and
use numerical methods to fit the model. In macroecology, such approaches have been
important, for instance, in testing species-abundance models [14,25], in quantifying drivers
of diversity–stability relationships at regional scales [26], and in inferring biogeographical
dynamics in macroevolutionary time [27–31]. For models that are analytically intractable,
stochastic simulation can be used to approximate expected distributions of observed (data)
values whose correspondence with empirical data can then be quantified via summary
statistics [32–35].

One major advantage of PBMs and MMs is that they have parameters with a direct biological
interpretation: they refer to properties of entities that compose the system of interest, or to the
rates at which particular processes occur. This correspondence makes those parameters
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independently estimable, at least in principle, independent of the state of the system being
modelled. For instance, one can estimate carrying capacity based on the resource require-
ments of individual organisms and knowledge of the distribution of limiting resources in a
landscape [36]; one can measure the thermal reaction norms believed to determine a species’
distributional limits without knowing that species’ distributional limits [37]. Similarly, one can
estimate parameters of many multispecies competition models from single-species and pair-
wise competition experiments (e.g., [38]). By contrast, the parameters of the statistical models
traditionally used by ecologists are not measurable in such ways. In a regression model of site
occupancy as a function of a set of environmental variables, for instance, the model parameters
have no meaning independent of the calibrated relationship itself. Consequently, when such
independent estimates are possible in practice, PBMs and MMs can be used to predict a
system’s state without directly fitting the model to observations of that state [36]. Conversely, a
PBM or MM may be fitted to data obtained from observations of a system’s state, and the
resulting parameter estimates compared with those obtained by independent estimation [25].
Indeed, one major criticism of early neutral models of biodiversity was that estimates of
speciation rates from fitted neutral models differed far too much from plausible values of those
rates to be realistic [39]. Alternatively, these two approaches may be combined, with some
parameter values independently estimated and others optimized to fit an observed macro-
ecological pattern [40], or by independently estimating model parameter values and then using
the results of these estimates as prior distributions when fitting a full, process-based model to
the pattern under investigation [41].

The causal structure of process-based and mechanistic models usually implies greater capac-
ity to make multiple predictions simultaneously than with other types of statistical models,
which often specify relationships between a single response variable and one or more explan-
atory variables. Multiple predictions can be particularly useful when a model is formulated to
explain a pattern that is already known, such as the hollow-curve shape of species-abundance
distributions or the power-law shape of species-area curves. Because the parameters of PBMs
or MMs tend to have biological meaning, they often yield predictions about additional macro-
ecological patterns. Such predictions can be evaluated either by fitting a model to multiple
patterns simultaneously, and asking whether the model’s fit to all of the patterns is adequate
[42], or by fitting a model to one or more patterns, and then using the estimated parameters to
predict another pattern [34,43–45]. Such analyses are widely considered to be particularly
strong tests of models [46], and they are less likely to be possible with models lacking explicit
processes or mechanisms (see [47] for an exception).

Using Models as Objects of Investigation
Because PBMs and MMs explicitly represent a set of specific assumptions about the causal
structure of a system, the models’ behavior can be explored to determine the implications of a
system being structured in a particular way. Indeed, historically, the most common use of
PBMs and MMs in ecology has been for theoretical modeling: an analysis of the model itself, to
understand how the model’s assumptions influence the phenomenon or pattern that the model
characterizes. Theoretical modeling is a deductive ‘if–then’ exercise: if aspects of the system’s
organization or the nature of the events is changed, how will the system respond? Such
investigation may be undertaken using symbolic analysis, numerical analysis, or stochastic
simulation, but in all cases the model itself is the object of study. In macroecology, symbolic
analyses have, for example, been used to explicitly derive closed-form solutions for the species-
abundance distribution [14,25], predict the trophic structure of island-biogeographic patterns
[48,49], and derive expressions for species richness gradients in a bounded domain [50].
Numerical analyses have been used to determine the temporal evolution of species abundan-
ces in neutral communities [51], the distribution of species’ range states under stochastic
colonization and extinction dynamics [52], and food web dynamics under anthropogenic
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environmental change [53,54]. For more heavily parameterized stochastic models, or models
containing more complex functional forms, model predictions must be generated by stochastic
simulation. In macroecology, such approaches have been employed to generate predicted
species abundance distributions [55], species richness gradients [35,56–58], effects of geo-
logical history on island-biogeographic patterns [59], landscape patterns of species coexis-
tence [60], and range shifts of species [61,62].

In addition to theoretical modeling, however, PBMs and MMs may also be used in conjunction
with purely statistical models in various ways, to enrich the inferences that can be drawn from
fits of such models to empirical data. For example, highly complex PBMs and MMs, which may
be too heavily parameterized to be fitted to empirical data directly, can be used as virtual worlds
to evaluate the robustness of inferences from simpler, more tractable models. Under this
approach, virtual data, simulated from a PBM or MM, are analyzed with a simpler model (which
may or may not be a PBM or MM). Then, inferences about what is giving rise to the pattern,
based on the model used in the analysis, can be explicitly compared with the ‘truth’, since the
processes generating the data are specified in the PBM or MM used to generate the virtual
data. Virtual worlds simulation models have been used to test the performance of static and
dynamic species distribution models [63,64], the extent to which effects of competition and
environmental filtering are captured by null model tests of phylogenetic structure [65–67] (see
[68] for a similar approach to earlier null model controversies), and the ability of functional
diversity indices to detect convergence and divergence of traits [69].

In a conceptually different virtual-worlds application of PBMs and MMs, model analysis may
suggest explanations for the existence of, or systematic variation in, a common macroeco-
logical pattern that is well-characterized by a conventional statistical model like a standard
probability distribution or a simple regression, but the PBM or MM is not, itself, explicitly fitted to
empirical data. For example, by modifying the importance of demographic stochasticity,
environmental stochasticity, and density dependence in stochastic population models, the
response of the power-law scaling exponent between the mean and variance of abundance to
the nature or strength of such demographic processes has been explored [15,70]. Similarly,
individual-based ecosystem models have been used to explain the slope of community size
spectra [16,71,72]. Conversely, common predictions of models that share a particular assump-
tion or set of assumptions may be identified, to evaluate the extent to which those assumptions
approximate nature. A useful framework for this approach can be constructed by analogy to
Imre Lakatos’ philosophy of research programs (Box 3). To directly target the neutrality
assumption in neutral theory of biodiversity, for example, common features of the abundance
distributions produced by neutral models have been identified and compared with those
exhibited by empirical data [73].

Risks of Process-Based and Mechanistic Models
The shift towards PBMs and MMs in macroecological research entails multiple, but manage-
able, risks. Firstly, moving away from methodologies focused on falsification of hypotheses
increases the risk of confirmation bias. If the subjective disposition of researchers (or journals or
reviewers) is towards studies demonstrating that models perform well, then researchers may be
less inclined to actively interrogate models or model fit in ways that are likely to reveal
weaknesses and failures. Such interrogations are essential to motivating theoretical progress
in macroecology. A recognition that all models are idealizations and thus must fail to a greater or
lesser degree, coupled with a culture and ethos (sensu [74]) that values rigorous and creative
interrogation of model fit [46], can still encourage constructively skeptical approaches towards
model testing and inference. Secondly, models that share particular assumptions of macro-
ecological interest, but differ in auxiliary assumptions, often produce quite divergent patterns.
Conversely, models that make markedly different assumptions can explain very similar
840 Trends in Ecology & Evolution, November 2017, Vol. 32, No. 11



Box 3. Core and Auxiliary Assumptions in Model-Based Theory

In Lakatos’ [83] philosophy of science, a research program consists of a ‘hard core’ of fundamental assumptions with a
‘protective belt’ of auxiliary hypotheses (Figure IA). The fundamental assumptions define the research program: if one or
more of these is wrong, the research program is undermined. However, fundamental assumptions cannot be tested in
isolation, because specific hypotheses hold only if the auxiliary hypotheses, as well as the fundamental assumptions, are
correct. These auxiliary hypotheses protect the ‘hard core’ of fundamental assumptions if data appear that contradict
predictions from the theory.

The hard core/protective belt dichotomy has been criticized as a model for research programs in general because ideas
may move in and out of the hard core as a research program evolves [84]. Nevertheless, an analogous distinction
between core and auxiliary model assumptions illuminates why tests of a single model rarely resolve the underlying
questions that those tests aim to answer. Neutral theory of biodiversity, for example, seeks to explain patterns of
abundance and biodiversity as the consequence of demographic stochasticity [85]. Thus, neutral models share the
‘core’ assumptions of ecological and demographic equivalence of individuals, regardless of species, so that all
differences in abundance patterns between species arise only from chance variation in births, deaths, speciation
and dispersal events (Figure IB). However, to predict those patterns of abundance and diversity, other assumptions are
required, concerning mode of speciation, the nature of competition, and the rules governing dispersal in the landscape
or seascape (Figure IB). Because none of these assumptions is core to neutral theory, neutral models differ from one
another in these assumptions (e.g., [85–88]). Consequently, when neutral models fail to produce an empirical pattern
(e.g., realistic species lifespans, or patterns of community similarity), new models are produced that seek to capture
these patterns without violating the core neutrality assumptions (e.g., [39,55,87]).

Note that the concepts of ‘core’ and ‘auxiliary’ in Dynamic Energy Budget (DEB) theory [89] closely resemble the
Lakatosian concepts employed here, since auxiliary parameters connect the core theory (which concerns unmeasur-
able quantities) with observable quantities that can be compared with theoretical predictions. Discrepancies between
DEB models and data have been addressed by modifying elements of auxiliary rather than core theory [90,91], in a
fashion similar to that described here.
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Figure I. Core and Auxiliary Model Assumptions. (A) Schematic representation of Lakatos’ conception of research
programs. (B) An analogous representation of neutral models of biodiversity. Neutral theory of biodiversity postulates
that patterns of abundance and biodiversity can be explained without reference to demographic or niche differences
between species. For this reason, neutral models share the ‘core’ assumptions of demographic and ecological
equivalence, but differ in the additional, ‘auxiliary’ assumptions required to make predictions about species richness
and species abundances.
patterns. This indeterminacy highlights the importance of employing multiple models, and
testing models against multiple predictions, in model-based research programs.

More practically, PBMs and MMs tend to be more complicated than the statistical models more
commonly employed by ecologists, increasing the risk of modeling errors. This risk is arguably
greater in macroecology than many other fields, because advanced mathematics, statistics,
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Outstanding Questions
What formal or informal criteria should
be adopted to mitigate the risk of con-
firmation bias in model-based
macroecology?

How much can PBMs and MMs enrich
predictive macroecology (beyond spe-
cies distribution modelling), by making
more explicit the causal structure
underpinning changes in macroeco-
logical patterns under novel
conditions?

When fitting models to data by sto-
chastic simulation, how sensitive are
the conclusions drawn to the particular
choices of summary statistics used to
compare models with data?

How reliable are inferences about the
robustness of purely statistical models
that lack explicit process or mecha-
nism, when they are drawn from tests
based on virtual-worlds modeling?

Can we use families of PBMs and MMs
to target core, rather than auxiliary,
assumptions of macroecological theo-
ries besides neutral theory?

Can PBMs and MMs be used syner-
gistically in ways that are more power-
ful and illuminating than when one or
the other type is used in isolation?
and programming are rarely viewed as core curricula for aspiring macroecologists. A greater
emphasis on adequate training in the areas of mathematics most often used for macro-
ecological models (for instance, differential equations, linear algebra, and stochastic pro-
cesses), alongside requirements for greater transparency in scientific publication (such as a
requirement to make relevant computer code publicly available) should help to reduce the
frequency of errors and increase the likelihood of identifying and correcting errors that do occur.

Concluding Remarks
PBMs and MMs are in the process of dramatically changing the field of macroecology, away
from a discipline that was once defined in terms of an analytical approach based on pattern
description [75], towards one that employs PBMs and MMs to draw inferences about the
processes and mechanisms that underlie macroecological patterns (see Outstanding Ques-
tions). The potential to infer the values of process parameters from macroecological data
permits more stringent testing of models by producing estimates of parameter values or by
predicting patterns in different places, at different scales, or along different dimensions (e.g.,
time), whose plausibility can then be examined. PBMs and MMs can also be used as virtual
worlds, generating simulated data that can help us understand how well simpler models can
yield inferences about the underlying drivers of macroecological patterns. Finally, because they
can be used in theoretical analysis as well as directly confronted with data, PBMs and MMs
have the potential to advance macroecology by strengthening the relationship between theory
and data.
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