SPECIAL FEATURE

The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

JAMES S. CLARK¹, LOUIS IVERSON², CHRISTOPHER W. WOODALL³, CRAIG D. ALLEN⁴, DAVID M. BELL⁵, DON C. BRAGG⁶, ANTHONY W. D’AMATO⁷, FRANK W. DAVIS⁸, MICHELLE H. HERSHEY⁹, INES IBANEZ¹⁰, STEPHEN T. JACKSON¹¹, STEPHEN MATTHEWS¹², NEIL PEDERSON¹³, MATTHEW PETERS¹⁴, MARK W. SCHWARTZ¹⁵, KRISTEN M. WARING¹⁶ and NIKLAUS E. ZIMMERMANN¹⁷

¹Nicholas School of the Environment, Duke University, Durham, NC 27708, USA, ²Forest Service, Northern Research Station 359 Main Road, Delaware, OH 43015, USA, ³Forest Service 1992 Folwell Avenue Saint Paul, MN 55108, USA, ⁴US Geological Survey, Fort Collins Science Center Jemez Mountains Field Station, Los Alamos, NM 87544, USA, ⁵Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA, ⁶Forest Service, Southern Research Station, Monticello, AR 71656, USA, ⁷Rubenstein School of Environment and Natural Resources, University of Vermont, 04E Aiken Center, 81 Carrigan Dr., Burlington, VT 05405, USA, ⁸Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA, ⁹Department of Biology, Sarah Lawrence College, New York, NY 10708, USA, ¹⁰School of Natural Resources and Environment, University of Michigan, 2546 Dana Building, Ann Arbor, MI 48109, USA, ¹¹US Geological Survey, Southwest Climate Science Center and Department of Geosciences, University of Arizona, 1064 E. Lowell St., PO Box 210137, Tucson, AZ 85721, USA, ¹²School of Environment and Natural Resources, Ohio State University, Columbus, OH 43210, USA, ¹³Harvard Forest, Petersham, MA 01366, USA, ¹⁴Forest Service, Northern Research Station, Delaware, OH 43015, USA, ¹⁵Department of Environmental Science and Policy, UC Davis Davis, CA 93106, USA, ¹⁶School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA, ¹⁷Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

Abstract

We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.

Keywords: climate change, drought, forest dieback, forest management

Received 22 June 2015; revised version received 2 October 2015 and accepted 5 October 2015

Introduction

Drought is a departure from the mean climate for a region and represents moisture limitation resulting from below-average precipitation, high temperatures, or both. At the time of this writing, drought conditions have continued over much of the continental United States (US) for up to 4 years. Combined warming and variable precipitation have increased forest drought severity in the last two decades, not only in the West, but also the South and the Lake States (Box 1). Prolonged drought affects
the distributions of species, the biodiversity of landscapes, wildfire, net primary production, and virtually all goods and services provided by forests. Understanding how climatic changes already in progress will affect forests can help us anticipate some of these broader impacts. The synthesis that follows finds that vulnerabilities extend beyond the recent well-publicized forest diebacks in western states to include perhaps all US forests.

Our summary of drought effects emphasizes the fundamental scale for both management and community ecology, the forest stand (O’Hara & Nagel, 2013). We build from what can be learned about climate effects on individual trees, but our principal goal is to anticipate consequences for forest structure and composition, the size–species distribution (SSD; Box 2). The SSD is the distribution of trees across species and size classes. The SSD results from interactions of individuals, as each tree responds to local conditions and weather. Competition and climate affect the species and size classes that make up stands in different ways. There is feedback—the structure itself determines how the SSD will respond to drought, through shading and competition for soil moisture. Biogeographic patterns in SSD emerge from these individual responses and interactions with others. Management aims to modify SSDs (e.g., targeted thinning and regeneration) to meet specific resource objectives. However, because SSD responds to climate change as a joint distribution of individuals of many species and size classes, our ability to anticipate impacts and offer solutions to forest managers has been challenged.

Box 1 Forest droughts have increased in recent decades.
This synthesis of current understanding begins with a summary of the extensive but mostly indirect evidence, from studies of individual trees to forest stands, across landscapes and regions, from short-term observations to the paleoecological record. We consider both the responses to individual drought events and the effects of conditions that could be more arid on average than today. Then, we compare and contrast evidence available at the individual tree and stand scales, including why the latter is more critical, but harder to obtain. This is followed by a summary of what has been learned from that evidence for forest stands and for biogeography and how management practices might adapt to more frequent drought. Finally, we address critical research gaps between our growing knowledge on individual tree responses (in contrast to the stand scale) and where the relevant forecasts are needed. Recommendations include the assembly and parameterization of models based on SSD data capable of predicting at the SSD scale.

Consequences for forest stands: individual responses translate to abundance and size structure

Not surprisingly, the effects of drought on forest stands are difficult to anticipate due to the novelty of projected new climates and the complexity of interactions across the SSD, including migration. Furthermore, the additional complexity and nonlinear responses associated with forestry practices and how they influence micro climate are also poorly understood (e.g., Bright et al., 2015). Changing temperatures and precipitation patterns will produce novel combinations of drought frequency, intensity, and seasonality (Wehner et al., 2011; Dai, 2012). Tree populations can disperse and adapt to local climates, including drought stress (Savolainen et al., 2007; Aitken et al., 2008; Montwè et al., 2015). As tree populations arrive in new locations, they interact with existing populations and form new communities. Some will outrun mutualists, competitors, and natural enemies and encounter new ones – processes that are too slow, too small, or too large to observe directly and are therefore difficult to study with experiments. Much of what is known relies on observational data or is inferred from model simulations, both of which provide valuable insights and have inherent limitations.

The most striking result from this review was the large gap between knowledge of drought impacts on individual trees (much) versus responses of forest stands (almost none). To see why individual responses do not readily extrapolate to the SSDs of stands (Box 2), consider how the SSD mediates a climate response. For codominant trees in crowded stands (trees with crowns
How can the effects of drought on forest structure and diversity be quantified? Conversely, what can structure and diversity tell us about past and potential future responses?

Such questions require effective summaries of how temperature, precipitation, and day and season length together influence forest demography – changes in the size–species distribution (SSD) of stands. Annual temperature and precipitation partly explain biodiversity and productivity gradients at subcontinental scales. But their combined effects depend on stand structure and on seasonal timing, more like the hydrothermal surplus and deficit in (Fig. B2.1), the degree hours during months with positive and negative water balance, respectively. Unlike annual values HTS and HTD describe the seasonal convergence of factors that affect competition between size–species classes. They differ from traditional monthly water balance variables (PDSI and Thornthwaite) by including day length, long in the north during the growing season. High temperatures and precipitation contribute to long, warm, wet growing seasons along the Gulf Coast. The resultant high HTS values extend up the moist southern Appalachians, declining to the north and west, but different from either temperature or precipitation alone, in part due to summer deficits. The HTD is especially large in the Piedmont Plateau, Coastal Plain, and western Gulf Coast. The length of the growing season is short in the northern USA, but during the growing season days are long. At this time, moisture is more available in the Northeast than the Upper Midwest.

Fig. B2.1. Size–species structure trends with moisture surplus (number of degree hours at positive) and negative (deficit) water balance. Size–species distributions (SSD), shown for four different regions, reflect climate differences and stand history. Dark colors indicate high density of a size–species class, and vice versa. Species are in the same order in all graphs. Surplus and deficit both reach maximum values near 3000 degree hours, but in different locations. With sufficient moisture, high temperature (up to a point) increases tree growth and survival. Long days and growing seasons combined with moisture benefit species capable of exploiting these conditions in competition with individuals of other species. Conversely, a large number of degree hours at negative water balance benefits species capable of tolerating drought. In the southeast, surpluses and deficits are both common. The Upper Midwest has much lower precipitation, but also lower temperatures and shorter growing seasons. The Northeast benefits from infrequent deficits, despite lower temperatures. (From Clark et al., 2015).

The hydrothermal surplus and deficit (Fig. B2.1, B2.2) and PDSI (the basis for CDI of Box 1) are two examples of variables used to explain forest properties. Note agreement between CDI (Fig. B1.1) and HTD (Fig. B2.1) in the south, but disagreement in the Upper Midwest. One reason for this difference is the fact that CDI counts every month when PDSI is low, progressively amplifying their effects from month to month, whereas HTD considers the entire growing season as a unit.
in the main canopy), growth and mortality are dominated by competition. Canopy individuals that otherwise might respond positively to a moist growing season are constrained by competing neighbors that also benefit. At the stand level, mortality can increase as a result of favorable conditions – climate and site conditions that benefit individual tree health can increase stand mortality rates, depending on the SSD (e.g., Clark et al., 2014b). Mechanistically, this positive relationship arises because self-thinning is driven by growth – the faster the growth, the sooner the resource limitations are reached, and the higher the mortality rate (Assmann, 1970). Conversely, drought that depresses growth of individual trees can also decrease crowding pressure by slowing the rate of resource consumption. Unfavorable climate effects could be mitigated by stand characteristics through the active manipulation of stocking (e.g., thinning) or supplementation of limiting resources (e.g., irrigation) (D’Amato et al., 2013; Grant et al., 2013; Erickson & Waring, 2014; Dobrowski et al., 2015).

The knowledge gap between individual trees versus stands is important because ecologists and foresters more often need to understand and predict responses of stands than individual trees. The gap comes from the challenge of observing and estimating whole stand responses, and it helps to explain why models for stands rely on parameters from individual trees. Using individuals to predict stands is an example of ‘Simpson’s Paradox’ or the ‘ecological fallacy’. This approach does not permit probabilistic prediction, because individuals within an SSD are interacting with one another.

Fig. B2.2. Deficits commonly develop throughout the eastern US each growing season, particularly in the Midwest and southeast. At left is the difference between surplus and deficit (black isohydrotherm is drawn at −1000 degree hours) from 1970 to 1985. The recent shift to larger deficits is nearly ubiquitous in the eastern USA (black line is drawn at zero difference before and after 1985). (From Clark et al., 2015).

Perhaps most important are changes in surpluses and deficits, shown as a different map in Fig. B2.2. Despite the fact that deficits dominate in specific regions (the west and southeast), forests throughout the eastern USA are exposed to increasing deficits (Fig. B2.2 right).

The size–species distribution (SSD) is a stand-level variable, a distribution of species and sizes, related through history, climate, and competition (histograms in Fig. B2.1). Knowledge of the SSD is required for understanding demography, biodiversity, competitive interactions, fuel structure, and response to moisture stress. SSDs are a focus of management practice (Section 5). For a given stand, there is a distribution of stems across species (vertical axes) and size classes (horizontal axes). Disturbance and succession affect the species composition of large and small size classes. Advance regeneration in small classes provides clues to future stand composition. SSDs vary geographically with climate, soils, and over time. For example, species present in the largest size classes can have disproportionate access to light and moisture, thereby suppressing competitors. Crowding affects canopy architecture of individuals, thus influencing their vulnerabilities to drought (e.g., Fig. 7). Thus, different SSDs are expected to respond to drought differently. For this reason, physiology and tree-ring studies of individuals do not directly translate to the forest stand. Thus far, models used to anticipate forest response to drought are based on estimates of how individuals respond to climate. We suggest new efforts to quantify the SSD response (Section 6).
Their joint distribution of responses can only be predictive if it is observed and estimated as a joint distribution. For example, in contrast to codominant trees that experience high competition for light, the tallest (dominant) trees with emergent crowns may respond more directly to climate. The rare individuals that make up the right-most diameter extremes (largest trees) in Fig. B2.1 are the focus of many tree-ring studies, but they rarely appear in small (0.0672-ha) Forest Inventory and Analysis (FIA) plots (note that trees are sampled on the larger 0.4-ha plots in Western states). Best represented in plot-based studies are the smallest size classes, which, in crowded stands, can have growth rates that are limited by both light and moisture. The large number of positive interactions between light and drought results from the fact that individuals not severely light-limited can respond most to climate variation (Clark et al., 2014b).

Tree growth and mortality patterns in the eastern USA

Despite recent attention to large diebacks in the west, eastern forests are also vulnerable, not only in upland habitats (Abrams, 1990; Graumlich, 1993; Pederson et al., 2012a) but also in bottomlands and coastal wetlands (Stahle & Cleaveland, 1992; Cook et al. 1999). Even where drought does not directly kill trees, the effect of reduced vigor on competitive ability affects forest composition and structure. The question is, which effects will be most severe, how, and on which parts of the landscape? After all, the growth-related drought responses of tree species are diverse (Fig. 1). For example, the drought sensitivity of some pine species is high in the southeastern U.S. region (Schumacher & Day, 1939; Cook et al., 2001; Henderson & Grissino-Mayer, 2009; Clark et al., 2014b), while growth of many nonoak hardwoods shows intermediate drought sensitivity (Klos et al., 2009; Clark et al., 2013; Pederson et al., 2013). Combined high temperatures and low moisture could benefit oaks (Quercus spp.), as drier than normal conditions tend to have less impact on oak growth rates (Elliott & Swank, 1994; Klos et al., 2009; Clark et al., 2011, 2014a; Brzostek et al., 2014), perhaps related to physiology and rooting (Abrams, 1990; Abrams & Kubiske, 1990; Iversen et al., 2008b). Hence, with increasing drought in the Upper Midwest and Lake States, drought-tolerant pines and oaks may replace drought-intolerant quaking aspen (Populus tremuloides), bigtooth aspen (Populus grandidentata), paper birch (Betula papyrifera), and some boreal and lowland conifers (Scheller & Mladenoff, 2008; Handler et al., 2014).

Opportunistic reports of mortality following drought are common (Hough & Forbes, 1943; Parshall, 1995), but connections between drought and tree death are more difficult to quantify than those for tree growth. Extended morbidity can precede death, a legacy of low vigor spanning decades (Wyckoff & Clark, 2002; Anderegg et al., 2013a,b; Berdanier & Clark, 2015), potentially related not only to repeated drought (Pedersen, 1998; Voelker et al., 2008; Pederson et al., 2014), but also to other risk factors that occur during sample intervals, which might be from one to 10 years in many studies. Attribution of death to drought is thus challenging. A synthesis of plot data spanning 50 years, four Midwest states, and 48 000 stems did not find a link between precipitation and mortality, highlighting instead the importance of competition (Yaussys et al., 2013). A number of large studies using FIA data suggest geographic relationships between drought and mortality. Climate variables emerge as weak predictors of mortality at best (Lines et al., 2010; Dietze & Moorcroft, 2011; Gustafson & Sturtevant, 2013), and patterns may be hard to interpret. For example, a tendency toward higher mortality rates in warm climates is expected on the basis of higher productivity in warm climates – partly explained by the fact that high growth is attended by rapid thinning (Assmann, 1970; Clark, 1990). This relationship between temperature and mortality does not necessarily constitute a threat of climate change – geographic variation in mortality rate with average temperature need not indicate vulnerability to high temperature (Zhu et al., 2014).

The interactions involving competition and drought could contribute to habitat shifts. A positive interaction between a drought index such as Palmer Drought Severity Index (PDSI) (low PDSI indicates drought) and local moisture status or light availability means that the largest response to PDSI occurs on moist sites and high light (low competition), respectively. Klos et al.’s (2009) suggestion that dense stands may experience the most severe impacts agrees with the positive interaction between drought and competition found at the stand level in the upper Midwest (Fig. 2) and at the tree scale for many species in the eastern USA (Clark et al., 2011, 2014b). The latter study further found positive interactions between drought and local moisture status for many species (e.g., Fig. 3). The possibility that moist sites will provide refuges if climate becomes more xeric (e.g., Frelich & Reich, 2010) represents a negative interaction, with the largest response to drought on dry sites. The alternative positive interaction could result from competition – the water-demanding species on wet sites fully utilize abundant moisture supply and thus are especially vulnerable when moisture availability declines. Large growth and fecundity responses to drought in southeastern forests could occur initially for
trees at high moisture levels, where leaf area, and thus, moisture demand is greatest (Fig. 4). Mesic sites might see large transitions due to the fact that they also support sensitive species dependent on abundant moisture (Elliott & Swank, 1994; Clark et al., 2014b). Still another possibility is that sensitivity could be highest on sites of intermediate moisture (e.g., Dormana et al., 2013). Moreover, the sign of the interaction between drought index and local drainage might shift with time, from short-term positive (loss of moisture-demanding species on mesic sites) to negative (eventually the moist sites provide refuges for some species). Sequential drought will have impacts that differ from individual droughts as stands progressively respond (Miao et al., 2009).

Other soil properties can strongly influence the severity of drought. For example, fragipan soils in some pine flatwoods of the West Gulf Coastal Plain restrict root depth and access to deep moisture (Wackerman, 1929; Rahman et al., 2006). Drought may also operate differently in stands of different density and age (Esper et al., 2008). If leaf area decreases during drought, then understory irradiance increases. For trees beyond the seedling stage, Luo & Chen (2013) argue that warming has the greatest impact on mortality of young trees, but there are also reports that old trees show the strongest responses to climate for Picea glauca (Wang et al., 2006) and Quercus robur (Rozas, 2005). Klos et al. (2009) likewise found that the effects of drought on growth and survival might increase with stand age in the southeast. Due to the large sample interval in many climate-mortality studies, evidence is equivocal (see above). The disparate results could also indicate the importance of unobserved variables that covary with density and stand age (D’Amato et al., 2013).

Even in the eastern USA, drought can interact with fire to shape forest dynamics. Over the last century, much of the eastern USA has experienced pluvials rather than megadroughts (Stahle et al., 1988; Stahle & Cleaveland, 1992; Booth et al., 2006, 2012; Cook et al., 2010; McEwan et al., 2011; Pederson et al., 2013), but fires can occur even during brief periods of low precipitation, high temperatures, or both (Clark, 1989; Lynch & Hessl, 2010; Lafon & Quiring, 2012). Excluding fire has long been a management priority of many landowners and agencies. If this history of fire suppression is responsible for reduced oak regeneration in the east, then climate trends otherwise favorable for oak may be offset by fire suppression. However, evidence that temperate forest stands may
see a long-term increase in oaks (Bachelet et al., 2003; Clark et al., 2014b) presents an apparent paradox, in light of the fact that oak recruitment has declined in many regions (Abrams, 2003; Fei et al., 2011). Fire suppression can lead to a ‘mesophication’ as forest canopies close (Nowacki & Abrams, 2008) and may explain why oak regeneration appears to decline relative to that of red (Acer rubrum) and sugar (Acer saccharum) maples in recent decades (Abrams, 1994, 1998; Hutchinson et al., 2008; Iverson et al., 2008a; Fei et al., 2011; Brose et al., 2013). A decrease in flammability may have followed the loss of American chestnut (Castanea dentata) from eastern forests (Engber & Varner, 2012; Kreye et al., 2013), although human increases in ignition, alteration of fuels, and active suppression make it difficult to characterize pre-settlement fire regimes (Clark & Royall, 1996; Parshall & Foster, 2003; Guyette et al., 2006).

Taken together, many species are vulnerable to drought in eastern forests. How this vulnerability at the individual scale translates into future forest composition and structure remains uncertain. For instance, the combination of climate, land-use, plant-animal interactions, and fire suppression may have contributed to recent maple recruitment, but this could be reversed by increasing drought (Belden & Pallardy, 2009; Woodall et al., 2009; McEwan et al., 2011).

Tree growth and mortality patterns in the western USA

Unlike the east, where drought effects on forest stands are less well documented than the physiological responses of individual trees, the west provides alarming examples of widespread stand replacement, directly or indirectly related to the recent combination of drought and warmer temperatures – ‘hotter drought’ (Allen et al., 2015). Stand- to region-level consequences of hotter drought and forest dieback in the west are now well documented (e.g., Breshears et al., 2005; van Mantgem et al., 2009; Worrall et al., 2013) (Box 1). Extensive drought across much of the western USA and adjoining Canada coincides with declining tree growth, often followed by mortality (Allen et al., 2010; Williams et al., 2013; Hicke et al., 2013; Joyce et al., 2014; O’Connor, 2013; Peters et al., 2014, 2015).
Increased vulnerability of trees and forests to water stress and mortality risk from warmer droughts is a global phenomenon, well illustrated in the western U.S.A. (Allen et al., 2015). High temperatures can increase drought-induced mortality in piñon (Adams et al., 2009) and are especially challenging for seedlings (Kolb & Robberecht, 1996; Chmura et al., 2011). In Arizona and New Mexico, high temperatures combined with droughts coincide with widespread mortality of mesic montane tree species (Mueller et al., 2005; Gitlin et al., 2006; Williams et al., 2010; Ganey & Vojta, 2011) and patchy die-offs in Pinus edulis (Breshears et al., 2005, 2009). Warming is considered most important for seasonal soil water balance due to changes in snowpack dynamics or evapotranspiration (Williams et al., 2013). It contributes to the growth and geographic expansion of insect pest populations (Bentz et al., 2010; Williams et al., 2013; Fig. 5). Varying water deficits appear to be primary drivers of variation in tree recruitment and mortality (Rapacciuolo et al., 2014). A combination of high temperatures during the growing season and low winter–spring precipitation of the previous year can explain much of the variation in conifer growth rates in the southwest (primarily Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) (Williams et al., 2013) and northern California (Abies concolor, Abies magnifica, Pinus lambertiana, Pinus ponderosa, and Pseudotsuga menziesii) (Yeh & Wensel, 2000). Similar relationships between moisture, heat, and growth variation are observed for Picea glauca in interior Alaska (Barber et al., 2000), for Pseudotsuga menziesii in the central and southwest Rocky Mountains and Mexico (Chen et al., 2010), and for Populus tremuloides in western Canada (Hogg et al., 2005). Responses suggest declining growth rates with increasing drought conditions for the western USA during the 21st century, particularly for the southwestern USA (Williams et al., 2010, 2013).

Interactions between drought, fire, climate change, and human fire suppression have altered SSDs in forests throughout the western USA (Westerling et al., 2006; Allen, 2007; Littell et al., 2009; Joyce et al., 2014). Fire suppression has led to increased fuel accumulation and a shift to high-density/small diameter stands, from the foothills to the subalpine zone of the Sierra Nevada (Parsons & DeBenedetti, 1979; Lutz et al., 2009; Dolanc et al., 2013) and extensive semi-arid woodlands and ponderosa pine in the southwest (e.g., Covington & Moore, 1994; Brown & Wu, 2005; Mast & Wolf, 2006; Fulé et al., 2009). Historically low-density forest conditions resulted from the direct and indirect effects of low moisture (McDowell et al., 2006). The modern shift to high-density forests exacerbates moisture stress during drought. High-severity fires now occur in stands that historically supported frequent, low-severity fires (Barton, 2002; Savage & Mast, 2005; Goforth & Minnich, 2008; Savage et al., 2013), and recent high-severity fires are strongly correlated with forest drought stress (e.g., Fig. 5). Projected warming in the
Yellowstone region could increase fire frequency to the point where lodgepole pine (*Pinus contorta*) stands, historically characterized by infrequent fires, are replaced by woodland or nonforest vegetation (Westerling et al., 2011).

Because drought weakens tree defenses, it also makes trees vulnerable to insect attacks and pathogens (Raffa et al., 2008; Weed et al., 2013). The interaction between recent drought and bark beetle outbreaks is clear in the southwest, where severe drought conditions from ca. 2000 to 2013 have resulted in widespread tree mortality from bark beetles (Negrón et al., 2009; Williams et al., 2010, 2013; Ganey & Vojta, 2011). Defoliator populations may also benefit from drought-stressed trees, particularly on xeric sites (Weed et al., 2013). However, resistance to insect herbivory may reduce drought tolerance and increase mortality during subsequent drought events (Shultz et al., 2009). Early successional species that colonize after bark beetle infestations or wildfire may increase in some areas (Pelz & Smith, 2013; Shinne-man et al., 2013).

Large diebacks have the potential to change species distributions more rapidly than has occurred in the past (Swetnam & Betancourt, 1998; Gray et al., 2006; Fellows & Goulden, 2012; Millar et al., 2012). Drought-induced mortality in the 1950s is probably responsible for extensive upslope retreat of ponderosa pine in New Mexico (Allen & Breshears, 1998) and juniper (*Juniperus deppeana*) in southeastern Arizona (Brusca 2013). Recent episodes of drought-induced mortality in California extend from high-elevation *Pinus albicaulis* in the Sierra Nevada (Millar et al., 2012) to southern California conifers (Minnich, 2007). Arapid redistribution of coniferous and broadleaf species occurred in southern California mountains during droughts of the early 2000s (Fellows & Goulden, 2012). The extent and severity of drought impacts on western forests raises concern for biodiversity and carbon storage (Gonzalez et al., 2015). The widespread nature of recent drought and its impacts suggest transformations that will have far-reaching consequences.
Critical impacts of drought on tree recruitment

The preceding summaries of eastern and western forests focused on growth and mortality responses to drought rather than on recruitment, mostly because the relationship between drought and recruitment is poorly understood. An example of this limited understanding is the recent decline in oak regeneration (Fig. 6) at a time when the eastern USA has experienced higher moisture deficits than the two preceding decades (Fig. B2.2). Recruitment warrants special consideration, both for its central role in decadal-scale responses to drought and because it has been especially difficult to study and predict across multiple scales (Dobrowski et al., 2015). Most empirical research on climate effects on seed production are limited to a few years (or less) and a few small study plots (Clark et al., 1999). Some of the longer studies focus on interannual variation, but few provide evidence for decade-scale effects of increasing drought.

Drought influences tree recruitment (and therefore future forest composition) through numerous mechanisms. For some species, drought severely curtails fecundity, limits seed germination, and increases the mortality of shallow-rooted seedlings. Drought effects on fecundity are further complicated by feedbacks with other factors that drive masting cycles, seed predation, and disturbance regimes that disproportionately impact new germinants. Germination, establishment, and early survival are especially susceptible to environmental variation (Grubb, 1977; Harper, 1977; Silvertown, 1987; Ibáñez et al., 2007). Susceptibility of juvenile trees may be particularly acute in dry regions where recruitment is already episodic (Brown & Wu, 2005; Jackson et al., 2009). High mortality of seedlings suggests a bottleneck on population growth rate, but direct evidence for its effects on fitness of many interacting species is lacking.

The development of moisture limitation over successive years appears especially important for fecundity. In general, female function in trees is often stimulated by resources, including moisture (Perez-Ramos et al., 2010), CO₂ (LaDeau & Clark, 2001), and light availability (Clark et al., 2014b). Seed production of many species shows positive interactions between moisture and light, with trees at high light levels showing the greatest response to moisture availability (Clark et al., 2014b). Warm, dry weather can be beneficial during flower induction the year before seeds ripen (Pucek et al., 1993; Houle 1999), a situation imposed artificially by water restriction in some fruit crops (Owens 1995). This effect may be enhanced if dry conditions follow a wet year (Piovesan & Adams, 2001). Drought-induced

Fig. 6 New recruits to FIA plots are relatively rare for oaks (upper panels) in comparison with other species having similar abundances in adult size classes (below). This comes at a time when moisture deficits are becoming more severe throughout the east (Fig. B2.2) and despite the fact that many models predict increasing oaks. Species are *Quercus alba* (querAlba), *Q. rubrum* (querRubr), *Liquidambar styraciflua* (liquStyr), and *Acer saccharum* (acerSacc). Grey symbols indicate presence of adults. Sizes of red circles are in proportion to density of new recruits. When taken as a fraction of sites where adults occur, 98% quantiles for abundances of new recruits on a per-ha basis is zero for *Quercus alba* and *Q. rubrum*, 356 recruits for *Liquidambar styraciflua*, and 23 for *Acer saccharum*. © 2016 John Wiley & Sons Ltd, *Global Change Biology*, 22, 2329–2352
increases in fecundity may be followed by reduced seed production up to several years thereafter (Innes, 1994; Brêda et al., 2006). Increases in late summer temperatures may negatively affect seed cone initiation, which for pinion pine led to a 40% reduction in seed cone production over the past 30 years (Redmond et al., 2012). Furthermore, year-to-year volatility and high spatial variation that comes with the many feedbacks involving weather, competitors, fungal symbionts, cone and seed insects, and pathogens (e.g., Bell et al., 2014) make this response difficult to quantify.

Interactions involving drought and the biotic environment contribute to recruitment variation following disturbance, for example, canopy gaps, fires, landslides, ice storms, timber harvesting, and pest outbreaks (e.g., Savage et al., 1996; Brown & Wu, 2005; Pederson et al., 2008), and they affect composition, structure, and function for many years (Cooper-Ellis et al., 1999; Dietze & Clark, 2008; Kayes & Tinker, 2012). Examples of the interactions that can occur between disturbance and moisture availability include the increased recruitment near the prairie-forest ecotone in Minnesota during the 1930s drought (Shuman et al., 2009).

Interactions involving moisture availability and pathogen attack are especially important at the recruitment stage. Seedling mortality during the first year can be high due to damping off, often most severe in shaded understories (Hood et al., 2004; Ichihara & Yamaji, 2009). Moist conditions that promote fungal infection (Desprez-Loustau et al., 2006) can also benefit the host plant (Hersh et al., 2012). Combined effects may depend on the pathogen’s mode of attack and on the degree of host stress (Desprez-Loustau et al., 2006; Jactel et al., 2012; Oliva et al., 2014). Many pathogens can tolerate a wider range of water stress than the plants they infect, and the combination of pathogen infection and moisture stress on host trees can increase disease severity (Desprez-Loustau et al., 2006). Drought conditions can increase damage from secondary pathogens (those infecting tissue in poor physiological condition), while reducing damage from primary pathogens (those infecting healthy tissue) (Jactel et al., 2012). Long term the SSD may also be impacted by nurse-plant availability to aid persistence of some species. Piñon pine recruitment in the southwest may benefit from high canopy cover following disturbance in areas otherwise predicted to become juniper dominated woodlands (Redmond & Barger, 2013; Kane et al., 2015). Sugar and Jeffrey pine recruitment in western Nevada also benefits from nurse plants and soil water availability (Legras et al., 2010).

Postfire recruitment may be particularly susceptible to drought conditions and lead to recruitment failures or unacceptable reductions in regeneration densities. For example, Feddema et al. (2013) and Savage et al. (2013) predict that ponderosa pine regeneration following high-severity fire will decline on dry sites when fires coincide with drought. Recruitment failures and conversion to shrublands or grasslands are common following recent high-severity fires in the southwest (Roccaforte et al., 2012; Savage et al., 2013). The use of artificial regeneration (planting or direct seeding) offers a potential solution to some of the recruitment failures that have arisen following catastrophic fires and the loss of local seed sources (e.g., Haire & McGarigal, 2008; Zhang et al., 2008; Feddema et al., 2013; Ouzts et al., 2015). However, planting must be done to match seedling genotypes and species for given locations (e.g., Blazier et al., 2004; Will et al., 2010), especially if done in the midst of a long-term or deepening drought. For example, the use of more expensive containerized nursery stock (Nilsson & Örlander, 1995; Grossnickle, 2005) or tree shelters for established seedlings (Taylor et al., 2009) on drought-prone sites may be necessary. If bare-root seedlings are to be planted, those with large root systems (e.g., shoot:root ratios below 2 : 1) should be used (Haase & Rose, 1993; Pinto et al., 2012) to help reduce drought losses.

Scale-dependent consequences of drought

Understanding the dynamics of drought and forests at one scale does not mean the results can be directly scaled up or down. Gene flow and conservation efforts that span landscapes or regions can influence species composition over scales that are hard to detect at in stand or individual responses. Likewise, interactions that occur within stands mean that stand-level responses to drought will not necessarily agree with studies of individual growth and survival. Said another way, responses of individual trees at low moisture availability do not tell us how the abundances of different species will change as a result of drought. As an example, the behavior of SSD under drought conditions depends on how individual trees responses translate to population growth rates, each population being an aggregate across individuals of all size classes, competitive environments, and microhabitats (Box 2) and subject to population constraints (e.g., ability to disperse across landscapes) and attributes such as genetic diversity. Species that can tolerate xeric conditions might progressively increase in abundance within stands subjected to frequent or persistent drought and, in turn, make lower transpiration demands. Thus, the moisture for which trees compete depends in part on competition feedback (D’Amato et al., 2013).

Attempts to anticipate the effects of increased drought on local or regional species diversity highlight
the challenges of extrapolating from tree-level studies. For example, Klos et al.’s (2009) analysis of FIA data specifically targeting the 1999–2001 drought in the southeast found a weak relationship between stand diversity and drought impacts, suggesting that the partitioning of resources that occurs in diverse stands provides some buffering of drought effects. Relationships between diversity and drought impacts may vary among ecosystems (Grossiord et al., 2014). In western forests, increasing drought could result in loss of some species, especially from warm and dry climates at low elevations, potentially accelerated by dieback (Kelly & Goulden, 2008; Bell et al., 2014).

Drought-related biogeographic and biome shifts

Taken together, the evidence for drought effects on forest composition remains mostly indirect. Forests respond to drought not only due to changes in the SSD of trees present in the stand, but also due to immigration and local extinction (Parmesan & Yohe, 2003; Chen et al., 2011). A species’ geographic range changes when regeneration is successful beyond the current population frontier or when regeneration fails in a portion of the current range. In some cases, drought will result in relocation of suitable habitats within the geographic region – for instance, at higher or lower elevations or adjacent to wetlands or bodies of water. Migration is more difficult to evaluate, because it occurs at and beyond range limits, where a species is rare and difficult to study. Local heterogeneity in recruitment success (Pitelka et al., 1997; Ibáñez et al., 2007; Morin et al., 2007), low population density, and the potential importance of rare events over broad regions make migration difficult to detect and to quantify (Clark et al., 2003).

Recent reports that some plant species may already be migrating rapidly in response to changing climates make it important to recognize that the term migration is not applied consistently. For plants, the term most often refers to accumulated gains and losses in the area occupied by a species, typically at a regional scale. Poleward or upslope expansions in response to a warming climate are examples. A second use of the term refers to latitude- or elevation-weighted change in abundance or performance (Feeley et al., 2011, 2013; Gottfried et al., 2012). Such weighted averages can be calculated for samples where observations are individual organisms, abundances of species on plots, or performance (e.g., growth rate) (Lenoir et al., 2008; Woodall et al., 2009). For example, growth rates of trees can serve as weights to calculate a performance-weighted mean latitude for the species. The mean latitude calculated by this approach can change from one survey to the next, regardless of whether or not the population actually moves – even if the range is static, the mean will change if individuals in different parts of the range grow faster/slower than before. Such metrics can provide valuable insight into geographic patterns, although they do not represent a change in a species’ geographical distribution. Migration is also hard to assess because most studies inform us more about the centers of population ranges than about range limits. Like weighted averages, models fitted to occurrence, abundance, or demographic rates (e.g., Canham & Thomas, 2010; Mok et al., 2012; Vanderwel et al., 2013; Clark et al., 2014a; Zhu et al., 2014) can be dominated by samples where the species is abundant and insensitive to margins. The smooth declines in performance near margins assumed in many models are not widely observed in demographic data (Fig. 7).

Future range shifts are difficult to anticipate, because there is only limited evidence for the combinations of variables that control current range limits. Experimental warming in northern Minnesota showed photosynthesis and growth increases near cold range limits and reductions near warm range limits in planted seedlings (Reich et al., 2015); however, seed germination and establishment were not studied. As documented for decades through forestry provenance trials, trees manifest local adaptation and home site advantage to temperature and moisture conditions (Rehfeldt et al., 1999; Aitken et al., 2008), so that climate change impacts would be expected throughout the range of the species, not just at leading or trailing edges of species ranges (Davis & Shaw, 2001). Potential for rapid adaptation to current changes in climate is not well understood but will depend on the interaction of spatial patterns of genetic variation and modern gene flow (Aitken et al., 2008).

Limited evidence of migration over the last century, a time when the velocity of climate change has been substantial in the northern USA (Zhu et al., 2012), is not in agreement with models that suggest that suitable habitats of many species are shifting faster than are the populations themselves (McKenney et al., 2007, 2011). The combination of large projected habitat shifts with limited evidence for the rapid migration that would be needed to track these suggests that biogeographic patterns could substantially lag behind climate change. Fundamental differences in migration potential for eastern and western forests result because of the importance of topographic relief in the latter. In the eastern USA, with substantial areas of low relief, modest changes in climate can translate to large shifts in locations of suitable habitat (Loarie et al., 2009; IPCC 2014). For the southeast, the rate of recent climate change produces a climate velocity ranging from 0.2 km/yr in the Appalachians to >2 km/yr on the Piedmont and coastal plain (Schliep et al., 2015). By 2100, mean isotherms
could move northeastward from 400 km for a less CO₂-sensitive model (PCM) with high energy-resource efficiency (B1) to 800 km for a more sensitive model (HadleyCM3) with a ‘business as usual’ scenario (A1FI) (Iverson et al., 2008a). In western forests, increasing drought could result in loss of some species at low elevations, potentially accelerated by dieback (Kelly & Goulden, 2008; Bell et al., 2014), as shifts in climate may be too fast for many populations to adjust by adaptation or migration.

While there is mounting evidence that certain terrestrial and aquatic invertebrates, birds, and herbaceous plants have changed in distribution with warming (Parmesan & Yohe, 2003; Chen et al., 2011), there are only a few examples of rapid contemporary natural tree migrations (e.g., Fastie, 1995; Pitelka et al., 1997). The paleo record provides some examples of rapid spread in response to climate change, such as Corylus expansion into western Europe in the early Holocene (Huntley & Birks, 1983). Late Holocene range expansion of three western conifers (juniperus osteosperma, Pinus edulis, P. ponderosa) may have depended on long-distance dispersal events ranging from 25 to 100 km (Lyford et al., 2003; Gray et al., 2006; Lesser & Jackson, 2012, 2013). Expansion of colonizing populations of P. ponderosa may have been slowed by Allee effects (Lesser et al., 2013). However, traditional interpretations of the paleo record suggesting that rapid tree migrations were common in the past are hard to reconcile with known dispersal rates and other life-history observations (McLachlan et al., 2005). Paleo evidence can also prove quite ambiguous – for instance, the sporadic occurrence of fossils in lake sediments can mean that a few trees are nearby or that many trees are far away, making it difficult to infer when a population arrives or disappears from a region. Interpretation of Holocene tree migration remains a subject of considerable research.

With their compact moisture and temperature gradients, some of the most effective migrations could be expected in mountainous regions (Jump et al., 2009; Bell et al., 2014). Coops & Waring (2011) predict a distribution shift and reduction in range extent for lodgepole pine in the Pacific Northwest due to late summer drought. Western redcedar (Thuja plicata) and western hemlock (Tsuga heterophylla) may expand, whereas ponderosa pine, lodgepole pine, grand fir (Abies grandis) and noble fir (Abies procera) may contract (Coops et al., 2011). In the Green Mountains of Vermont, some work has indicated northern hardwoods have invaded the lower boundary of boreal forest in several locations over the last half century (Beckage et al., 2008), whereas broader patterns for this region suggest downslope migration of boreal species (Foster & D’Amato, 2015). In this location, the ecotone is sharp, concentrated within 200 m of elevation. Still, even in such topography where dispersal is probably not limiting, tree upslope shifts appear to lag climate change in the Alps (Gehrig-Fasel et al., 2007) and Andes (Feeley et al., 2011).

Although latitudinal migration in response to warming and drought stress could be occurring for some species, evidence of poleward movement of trees is even less obvious than upslope migration. Warming over the last century in the continental USA has been most rapid in the upper Midwest and Northeast, due to the combination of regional climate change and low relief. Poleward migration would be identified by establishment of new recruitment out ahead of established range boundaries, especially in these areas of rapid change. This pattern is not detected in FIA data from the eastern USA (Zhu et al., 2012), but could be occurring at northern limits of several species in Quebec (Boisvert-Marsh et al., 2014). Latitudinal changes might explain some changes in composition at Blackrock Forest of New York (Schuster et al., 2008) and along certain powerline
Drought and forest management

Drought directly and indirectly affects most of the ecosystem services provided by forests, including timber (Woodall et al., 2013b), carbon storage (Gonzalez et al., 2015), recreational value, and water yield and quality (Brown et al., 2008). Management practices modify the SSD (Box 2) through the manipulation of species, size, and density. While typically done to achieve productivity goals, management can also mitigate or exacerbate effects of drought at tree and stand levels through its influence on local site and climate. For example, in dry western forests, density reduction and prescribed burns to promote timber yield or reduce fire risk also can reduce drought vulnerability (Grant et al., 2013; Thomas and Waring 2014).

Management of established forests for a diversity of species can reduce stand vulnerability to drought. Thinning practices may move from simple reductions in density to stand structural attributes that reduce vulnerability to drought (e.g., Guldin, 2014; Thomas and Waring 2014). For example, the maintenance of uneven-aged stands may spread risks across ages/sizes of different vulnerabilities (e.g., Carter et al., 1984). Forest restoration practices may allow for greater persistence of large, old trees under drought conditions (e.g., Erickson & Waring, 2014). Uncertainty in future climate can motivate a mix of drought-tolerant species and genotypes. Species composition can be altered directly through selective removal of moisture-demanding species and release of suppressed individuals of more drought-tolerant species. Such replacement occurs naturally following drought-induced dieback in the pinyon-juniper ecosystems (e.g., Floyd et al., 2009). Thinning to reduce crown competition (Aussenac, 2000; McDowell et al., 2006; Gyenge et al., 2011) also reduces canopy interception of precipitation, thus increasing moisture that reaches the forest floor (Stogsdill et al., 1992; Aussenac, 2000) where expanded root systems due to thinning can improve moisture access for individual trees (Dawson, 1996). However, the reduced vulnerability of remaining trees in the short term can increase future vulnerability through changes in tree architecture and physiology. Long-term increases in leaf-to-sapwood area ratios in stands thinned to low densities can increase individual tree water demand (McDowell et al., 2006; Kolb et al., 2007) despite possibly reduced water use by the stand as a whole. Indirect effects can include promoting regeneration (Covington et al. 1997, Moore et al., 1999), also vulnerability to drought (Aussenac, 2000) and competition from non-tree species that can increase beneath open canopies (Nilsen et al., 2001). In dry forests of the western USA, such negative effects may be offset by the fire hazard reduction that comes with most management options currently being implemented (e.g., Martinson & Omi, 2013; Waltz et al., 2014).

Successful regeneration during drought depends on microsite conditions, including competition from non-preferred species. However, current practices and guidelines for seed transfer may need to be reconsidered given the potential for locally maladapted genotypes, as well as the possibility of planting more heat-tolerant genotypes (Aitken et al., 2008; Joyce & Rehfldt, 2013; Montvé et al., 2015). After all, decades of horticultural practice have clearly shown that growth and reproduction of many species well outside their native ranges is possible, suggesting ‘assisted migration’ is a viable diversity conservation option (e.g., Schwartz et al., 2012). Management for drought through active involvement in the regeneration process can also prove costly (Nyland, 2007). For species that are especially vulnerable as seedlings (Cavender-Bares & Bazzaz, 2000), steps can be taken to maximize below-ground development prior to and immediately after planting (e.g., Burdett, 1990) or to shelter future crop trees (e.g., Aussenac, 2000). Drought may increase reliance on artificial regeneration (i.e., plantings), protection of planted seedlings, and/or seedbed amelioration, such as the manipulation of harvest residues to provide a mulching effect (Roberts et al., 2005; Trottier-Picard...
et al., 2014). Artificial regeneration may become especially important for conifers that fail to regenerate or are outcompeted by sprouting hardwood species (Haire & McGarigal, 2008; Zhang et al., 2008; Feddema et al., 2013; Ouzts et al., 2015). Because recruitment depends on local site conditions, knowledge of how different species and genotypes respond on different sites (Blasier et al., 2004; Will et al., 2010; Erickson et al., 2012) should guide management rather than regional climate projections.

Knowledge gaps and future directions

Challenges/limitations of available data

Efforts to anticipate future forests rely heavily on observational data, which are often unavailable or difficult to extrapolate. For example, droughts are expected to increase in the Northeast (Melillo et al., 2014), a region that has not experienced severe drought since the 1960s, before the regular collection of forest inventory data. Furthermore, many of the variables that affect forests are changing simultaneously, making it difficult to attribute observed changes to rising CO₂, N deposition, invasive species, or increasing average age of forest stands (McMahon et al., 2010). The interactions that control stand responses to drought remain poorly understood. Our best understanding comes from the study of individual trees (e.g., Fig. 1). As individuals respond, they interact with one another and with natural enemies. Some interactions occur within individuals, such as allocation of carbon resources, with the result that growth, maturation rates, fecundity, and survival can react to drought in different ways (Fig. 3). Other interactions occur between individuals, such as competition in crowded stands. Soil moisture depends not only on climate, but also on redistribution by local drainage, and uptake by competing trees (Fig. 4) (e.g., Loik et al., 2004). Interactions with fungal pathogens and herbivores can impact host individuals differently, depending on species, size, resource availability, and host resistance.

In addition to evidence of climate-competition interactions at the scale of individual trees (Cescatti & Piutti, 1998; Martin-Benito et al., 2011), evidence also can be found in stands (D’Amato et al., 2013; Thomas & Waring, 2015) and across plot networks (Clark et al., 2011, 2014b). Drought effects on SSDs depend on all of these interactions (Box 2). For example, rising CO₂ interacts with SSD, because increase in water-use efficiency of individual leaves or drought tolerance of whole plants varies widely between species and is expected to depend on the light environment and soil moisture (Battipaglia et al., 2013). Likewise, spatial variation of forest response to moisture and temperature gradients can be confounded by land use, management history, soils, and complex hydrology. For example, private landowners in the Pacific Northwest manage some productive lands for timber production, whereas state and federal agencies mostly manage low-productivity and high-elevation forests for diverse objectives (Ohmann & Spies, 1998). In the southeast Piedmont, moisture gradients are confounded by land use and stand age. Typical stands of intermediate moisture status established on former cultivated lands a century ago, whereas xeric sites were grazed, and wet bottomlands were not cultivated and thus tend to support older trees (Oosting, 1942; Quarterman & Keever, 1962). As a consequence, observational data may not yield unambiguous relationships between forest structure and moisture.

Data coverage is also uneven. For example, paleo studies of forest response to past climate come from either tree-ring records or fossil evidence from lake/bog sediments, which are dispersed unevenly in humid regions. Tree-ring data come primarily from mature trees expected to be most sensitive to climate (Fritts, 1976) and might respond to climate differently from seedlings and saplings. Moreover, open, low-density stand conditions are often preferentially sampled for tree-ring studies to reduce the growth signal resulting from density-dependent interactions.

Data sets that span sufficient temporal variation in climate are limited. Demographic responses to climate change can be estimated from plot data when there are three or more consistent censuses. Thus far, FIA data provide two consistent censuses for most of the eastern USA, but only one census for most of the west. Two censuses provide estimates of mortality rates from numbers of trees that die during the interval (Lines et al., 2010; Dietze & Moorcroft, 2011), of recruitment rates from individuals appearing in a census not present previously (Zhu et al., 2014), and of growth rates from changes in size (Vanderwel et al., 2013). However, the geographic relationships between demography and climate may not represent how demography responds to climate change. Understanding forest change through inventory analysis is further complicated when different designs were implemented between the first and second censuses (Goeking, 2015). Data sets containing long intervals between censuses can be hard to interpret because they integrate many years of climate variation. Many forest plots are resampled at intervals of 4–10 or more years. Intervals this long can include both exceptionally warm, cold, dry, and wet years (e.g., Williams et al., 2013).

Experiments address some of the limitations of observational data by manipulating the environment in a controlled fashion. However, relatively few experi-
ments are available at a scale that provides general insight for climate changes that affect diverse habitats. Because individual trees can be manipulated more readily than forest stands, there is more evidence of drought effects on trees than on stand-level size-species structure. Experiments sufficiently large and long term to determine effects on stand composition and structure are costly; not surprisingly, there are still only a few rainfall exclusion and redistribution experiments on mature temperate forests (e.g., Hanson & Weltzin, 2000; McDowell et al., 2013), and few experiments at any scale include extreme drought and heat events or tree-killing levels of drought stress (cf. Allen et al., 2015).

Contributions from models of forest change

Models for forest response to climate change rely heavily on parameters fitted independently to recruitment, growth, and mortality, and primarily from observations on individual trees, rather than stands. Furthermore, interactions complicate prediction efforts (Tinner et al., 2013). To date, much of the research on climate impacts on stand dynamics relies on simulations of several types, three of which are summarized here:

Species distribution models (SDMs) are used to map potential future species habitats under climate scenarios (e.g., Guisan & Thuiller, 2005; Franklin, 2010; Matthews et al., 2011; Prasad et al., 2013). Species distributions are calibrated to climate and other environmental variables. The fitted models are then used with climate scenarios generated by GCMs to identify regions of future suitable habitat.

Dynamic global vegetation models (DGVMs) are dynamic and nonspatial (Daly et al., 2000; Sitch et al., 2003; Jiang et al., 2013). Species are aggregated as functional types, such as coniferous, deciduous, and mixed forests, savannas, and woodlands, or grasslands and shrublands (Bachelet et al., 2003). Some incorporate fire, atmospheric CO₂ (Lenihan et al., 2008; King et al., 2013), establishment mechanisms (Song & Zeng, 2014), and patch age structure (Medvigy & Moorcroft, 2012). DGVMs are used to predict change in functional types.

Forest landscape models (FLMs) simulate forest demography on landscapes that may include drought, fire, land use, and pathogens. Some FLMs explicitly focus on climate change impacts (Scheller & Mladenoff, 2008; Loehman et al., 2011), including migration (Lischke et al., 2006; Scheller & Mladenoff, 2008; Gustafson & Sturtevant, 2013; Nabel et al., 2013; Snell, 2014). FLMs are used to predict dynamics of forest stands.

Models of climate effects (including drought) continue to improve but are subject to caveats. First is the uncertainty in climate projections – as an example, three GCMs project climates in 2100 differ by up to 4°C for mean annual temperature and 60% for precipitation over North America (McKenney et al., 2011). This difference suggests mean latitudes for species’ habitats could move northeastward from 400 km for a less CO₂-sensitive model (PCM) with high energy-resource efficiency (B1) to 800 km for a more sensitive model (HadleyCM3) with a ‘business as usual’ scenario (A1F1) (Iverson et al., 2008b). Second is the uncertainty from heterogeneity not captured in GCM output, from redistribution of precipitation within local drainages – wet and dry sites occupy the same grid cell for regional climate prediction, and from variation in temperature with local topography and vegetation cover. Models of future forest response to future climate begin with this uncertainty in regional and local climate.

Third, all calibration–prediction and simulation approaches incorporate parameters relating drought to recruitment, growth, and survival from separate studies and typically from individual trees, while the interactions that determine drought response depend on the SSD – the interdependence between individuals within the SSD requires that they be considered together (Box 2). Regional or population-level differences in climate relationships are rarely incorporated into these models (e.g., Sork et al., 2010; Joyce & Rehfeldt, 2013; Rehfelt et al., 2014). Related to the third point, there remains a need to develop better model representations of climate-mediated mortality (McDowell et al., 2011; Allen et al., 2015) and species interactions (Ibanez et al., 2006). Whether or not populations can move to regions of future suitable climate depends on migration, which is poorly understood. For example, potential distributions predicted from SDMs are sometimes bracketed by two extremes – no migration (species lose but do not gain habitat) and unlimited migration (species occupy all suitable habitat) (Thuiller et al., 2005; Iverson et al., 2008b; Meier et al., 2012). A better understanding of how droughts affect seed production, seed banks, and seedling establishment near range limits, particularly their role in local extinctions and recolonization (Jackson et al., 2009; Zimmermann et al., 2009) might improve characterization of extremes. The limited studies show large variation in fecundity (Clark et al., 2004; Koenig & Knops, 2013) and recruitment (Ibanez et al., 2007). Models that incorporate such estimates predict migration rates that are highly uncertain (Clark et al., 2003). Land cover adds an additional layer of variability, both limiting habitat but often providing recruitment opportunities following disturbance (Clark et al., 2003; Iverson et al., 2004; Prasad et al., 2013).
Conclusions

There is broad consensus from modeling studies, increasingly supported by observation that combinations of heat and moisture limitation, and their corresponding indirect effects, will change the health, dynamics, abundance, and distribution of tree species. These changes may accelerate in coming decades. In the eastern USA, drought effects are still primarily observed in responses of individual trees. How species differences, well studied at the individual scale, translate to future stand structure and composition is uncertain. Observations of stand-level responses to evaluate how climate changes interact with changing effects of competitors, mutualists, and natural enemies, which are also responding to climate change, are limited. In the western USA, stand-level forest transformations are in progress now, already highlighting interactions among warming temperatures, drought, insect attacks, and fire. A proactive management strategy for anticipating change can include promoting drought-tolerant species, managed in lower density stands, and potentially drawing on species or genotypes outside their current geographic ranges.

Despite many important insights from observational evidence, the foregoing knowledge gaps and future climate change highlight the challenge posed by connecting abundant research on individual tree responses to the scale where predictions are needed – the forest stand. Research priorities should include more attention to effects of drought beyond the individual, for example, to focus on the combined size–species interactions that control diversity and productivity of stands. After the uncertainty in climate itself, the greatest obstacle to understanding impacts of future drought is the limited understanding of drought consequences at stand-to-landscape scales. Models will continue to play an important role, one that depends on improved understanding of stand-level responses and the acquisition of suitable long-term data for detection, parameterization, calibration, and validation. This challenge is related to the need for models that accommodate environmental change and forest response as a coherent joint distribution of species and sizes (the SSD), that responds to drought with adequate feedbacks and interactions. The problem persists despite proliferation of bigger and more complex models, faster processing, and increased computer memory. Without the empirical basis for translating fine-scale to aggregate behavior – in the form of allocation constraints, species interactions, and feedbacks – complex models can provide only limited guidance. These constraints are needed in models when they are fitted to field and experimental data.

Much could be gained from increased efforts focused on the connections from individual to stand, both empirical and modeling. For example, how does decline in individual tree health translate to population structure and abundance of a species, when individuals of all species are responding to climate, often in similar ways? Again, consider the well-known relationship in traditional forestry that the highest mortality rates occur in the most productive stands. Climate changes that place individuals at risk can have unpredictable effects on stands as the individuals within stands respond. At the individual scale, long-term data with regional coverage are needed to infer demographic processes under a range of climates and to detect early signs of change (Breshears et al., 2009). However, predicting changes in stands also requires stand-level inference. The observable physiological responses to temperature and moisture stress must be linked to demographic potential of individuals and to stand attributes, such as size–species distributions. Predicting effects of novel climate on biogeographic patterns would likewise benefit from better understanding of how current biogeography emerges from tree responses to climate. Additional insights might be gained from natural gradients in regions expected to differ in sensitivity to moisture and temperature, with emphasis on connections from individuals to stands. Finally, opportunistic or designed experiments to better understand geographic variation of drought effects still are needed.

Acknowledgements

For helpful comments, we thank David Ackerly and three anonymous reviewers. Support is acknowledged from NSF-EF-1550911 (to JSC) and the Department of Interior Northeast Climate Science Center (to AWD).

References

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 2329–2352
DROUGHT IMPACTS ON FORESTS

Treger AL, Nowak CA (2011) Changes in tree sapling composition within powerline corridors appear to be consistent with climatic changes in New York State. Global Change Biology, 17, 3439–3452.

Wackerman AE (1929) Why prairies in Arkansas and Louisiana?

